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Introduction

This paper deals with the problem of reconstructing a scheme X from its derived category
D(X) (where D(X) is some kind of derived category such as Db

c(X) or Dperf(X)). Does
an equivalence Φ : D(X) ∼−→ D(Y ) induce an isomorphism X � Y ? The answer is positive
with great generality for the category Dperf if we assume that the equivalence respects
⊗-products [3, 4]. If Φ does not preserve ⊗-products, the answer is more difficult. As
a negative answer, there are examples of non-isomorphic varieties with equivalent Db

c:
abelian varieties and K3 surfaces [15–18], varieties connected by some kinds of flops
[6, 9, 11] and many others where Y is a moduli space of certain kind of sheaves on
X [5,8,10]. On the contrary, one has the fundamental result of Bondal and Orlov [7]
that states that if X is a smooth projective variety over a field k with ample or antiample
canonical sheaf and the equivalence Φ is k-linear and graded, then X � Y . So X is
determined by the k-linear and graded structure of Db

c(X). Not even the triangulated
structure of Db

c(X) is required. The aim of this paper is to extend this result in two
directions.

Firstly, we shall replace the smoothness condition on X by a Gorenstein condition: X

is a Gorenstein, connected and equidimensional projective k-scheme. Note that X may
be non-irreducible or even non-reduced. With this hypothesis on X we shall prove that
the Bondal and Orlov result (Theorem 1.15) still holds.

Theorem. Let X be a connected equidimensional Gorenstein projective k-scheme with
ample canonical or antiample canonical sheaf. If D = Dperf(X) (respectively, Db

c(X)) is
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equivalent as a graded category to Dperf(X ′) (respectively, Db
c(X

′)) for some other proper
k-scheme X ′, then X is isomorphic to X ′.

Again, only the k-linear graded structure of Dperf(X) (or Db
c(X)) is involved. If we

consider the triangulated structure (i.e. we assume that Φ is exact), this result is obtained
in [2] by different methods.

The original proof of Bondal and Orlov is based on identifying (categorically) the
objects of Db

c(X) that are isomorphic to the skyscraper sheaf of a closed point (up to
translations). From this, one can identify invertible sheaves and then the topology of X.
Finally, the Serre functor allows us to construct the ring structure. In our case, we shall
identify what we have called Gorenstein 0-cycles, Zx, supported at a closed point x. By
this we mean a zero-dimensional closed subscheme Zx ⊂ X supported at a closed point
x and such that OZx is perfect (as an OX -module) and Zx is Gorenstein. These objects
also allow us to identify invertible sheaves and the proof then works as in the smooth
case.

As in [7], one can apply this reconstruction theorem to calculate the group of exact
autoequivalences of Db

c(X). One obtains the same result as Bondal and Orlov (see Corol-
lary 1.17 and [2]).

Secondly, we shall give a relative version of Bondal and Orlov result (Theorem 2.10).
By this we mean the following. Assume that X is a Gorenstein scheme (i.e. its local rings
are Gorenstein) and let f : X → T be a proper morphism. Then Db

c(X) has a T -linear
structure (this roughly means that one can multiply objects of Db

c(X) by objects of
Dperf(T ); see Definition 2.1 for details). Assume also that the relative dualizing complex
f !OT is an invertible sheaf ωX/T , placed at degree dim X−dim T (this holds, for example,
for any f : X → T if T is Gorenstein). Then we shall prove that if ωX/T is either
T -ample or T -antiample, then X is determined (as a T -scheme) by Db

c(X) with its
T -linear structure. The precise statement is as follows.

Theorem. Let X be a Gorenstein scheme, let f : X → T be a proper morphism of
finite Tor-dimension and let T be a Cohen–Macaulay scheme. Let DX/T be the relative
dualizing complex. Assume that DX/T � ωX/T [n], n ∈ Z, where ωX/T is an invertible
sheaf which is either T -ample or T -antiample. If X ′ → T is another Gorenstein T -scheme
and one has a T -linear equivalence Dperf(X) ∼−→ Dperf(X ′), then X � X ′ (isomorphism
of T -schemes).

Note that the definition of the T -linear structure of Db
c(X) does not require the trian-

gulated structure of either Db
c(X) or Dperf(T ).

As in the absolute case, one can apply this reconstruction theorem to calculate the
group of exact T -linear autoequivalences of Db

c(X) (see Corollary 2.12). Let us see some
other immediate applications of this relative reconstruction theorem.

(a) Let X be a projective Gorenstein k-scheme of dimension n. Assume that the canon-
ical sheaf ωX is neither ample nor antiample (i.e. we are not under the Bondal and
Orlov hypothesis). Choose a finite and flat morphism X → P

n, which induces a
P

n-linear structure on Dperf(X). Since it is an affine morphism, the relative dual-
izing sheaf ωX/Pn is P

n-ample. Then X is determined, as a scheme over P
n, by

https://doi.org/10.1017/S0013091510000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000076


Reconstructing schemes from the derived category 783

the P
n-linear structure of Dperf(X) (or Db

c(X)). Of course, natural questions arise:
how many P

n-linear structures admit Dperf(X)? Can one recognize the P
n-linear

structures coming from finite and flat morphisms X → P
n?

(b) Let
X

���
��

��
��

� X ′

����
��

��
��

Y

be two birational proper morphisms between Gorenstein schemes. Let K ∈
Db

c(X ×Y X ′) be an object of finite homological dimension over X (this is a tech-
nical condition that ensures that the associated integral functor maps bounded
complexes to bounded complexes). The associated integral functor

ΦK : Db
c(X) → Db

c(X
′)

is a Y -linear functor. If either X or X ′ has a Y -ample or a Y -antiample relative
dualizing sheaf and ΦK is an equivalence, then X � X ′ as Y -schemes. For example,
if X is the blow-up of Y along a regular centre, then ωX/Y is Y -antiample.

Conventions

Throughout the paper a scheme means a connected and equidimensional scheme. The
latter means that all the irreducible components of X have the same dimension. All
schemes are also assumed to be quasi-compact and quasi-separated.

1. Absolute case

In this section k is a field and we deal with k-linear graded categories with finite Homs.

1.1. Serre functor

Let D be a k-linear category. For any P, Q ∈ D we shall denote

Hom•(P, Q) =
⊕
n∈Z

Homn(P, Q).

Definition 1.1. An object P ∈ D is called a perfect object if Hom•(P, Q) is finite
dimensional for any Q ∈ D. We denote Dperf the faithful subcategory of perfect objects.
It is a triangulated subcategory.

Any autoequivalence Φ : D → D preserves perfectness, i.e. induces an autoequivalence
Φ : Dperf → Dperf .

Definition 1.2. A covariant functor S : Dperf → Dperf is called a Serre functor if it
is a category equivalence and there are bi-functorial isomorphisms

ϕA,B : HomD(A, B)∗ ∼−→ HomD(B, S(A))

for any A, B ∈ Dperf .
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Any autoequivalence Φ : Dperf → Dperf commutes with a Serre functor. Any Serre
functor is graded and exact. Moreover, if it exists, it is unique up to a graded natural
isomorphism.

Example 1.3. Let X be a proper k-scheme of dimension n and let D = Db
c(X). Then

P ∈ D is a perfect object if and only if P is a perfect complex, i.e. Dperf = Dperf(X).
For this, see the proof of [12, Lemma 1.2].

Assume in addition that X is Gorenstein. The dualizing complex is isomorphic to
ωX [n], where ωX is an invertible sheaf (the canonical sheaf), n is the dimension of X

and the functor

(·) ⊗ ωX [n] (1.1)

is a Serre functor.

Remark 1.4. For any scheme X the subcategory Dperf(X) of Db
c(X) can be recognized

categorically: an object P ∈ Db
c(X) belongs to Dperf(X) if and only if for any Q there

exists an integer nQ such that Homn(P, Q) = 0 for any n > nQ.

Proposition 1.5. Let X be a proper k-scheme of dimension n. Then Dperf(X) has a
Serre functor if and only if X is Gorenstein.

Proof. For any P, Q ∈ Dperf(X) one has by duality

Hom(P, Q)∗ = Hom
(
Q, P

L
⊗ DX

)
,

where DX is the dualizing complex of X over k. If S : Dperf(X) → Dperf(X) is a Serre
functor, then the identity S(P ) → S(P ) gives a morphism

S(P ) → P
L
⊗ DX .

This morphism becomes an isomorphism after taking Hom(Q, ·) for any perfect Q. Hence,
it is an isomorphism:

S(P ) = P
L
⊗ DX .

In particular, DX is perfect. Since S is an autoequivalence, one must have

DX

L
⊗ D∨

X � OX .

By [1, Theorem 1.5.2], DX � L[r], r ∈ Z, where L is an invertible sheaf. Hence, X is
Gorenstein. �
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1.2. Gorenstein 0-cycles

Definition 1.6. Let X be a scheme and let x ∈ X be a closed point. A Gorenstein
0-cycle supported at x is a closed subscheme Zx ↪→ X supported at x such that

(i) Zx is a Gorenstein zero-dimensional scheme,

(ii) OZx is an OX -module of finite Tor-dimension, i.e. OZx
∈ Dperf(X).

Remark 1.7. Let X be a Gorenstein scheme.

1. Let Z ↪→ X be a closed subscheme supported at a closed point x ∈ X and let n be
the dimension of the local ring of OX at x. Then Z is Gorenstein if and only if

Extn
OX

(OZ ,OX) � OZ

In particular, any local complete intersection (l.c.i.) zero cycle is Gorenstein (see
[12] for the definition of an l.c.i. zero cycle).

2. For any closed point x ∈ X there exists a Gorenstein 0-cycle Zx supported at x. In
fact it is enough to take an l.c.i. zero cycle supported at x (which exists because X

is Cohen–Macaulay [12, Lemma 1.9]).

3. The set

Ω = {OZx
for all closed points x ∈ X

and all Gorenstein 0-cycles Zx supported on x}

is a spanning class for Db
c(X). This follows from [13, Lemma 3.4].

1.3. Reconstruction of a Gorenstein k-scheme from the derived category of
perfect complexes

For any object P ∈ D we shall define OP = Hom(P, P ). It is a finite k-algebra, possibly
non-commutative. The product is given by composition: f · g = f ◦ g.

For any P, Q ∈ D the set Hom(P, Q) has a natural structure of right OP -modules and
another one of left OQ-modules:

f · g = f ◦ g, h · f = h ◦ f, f ∈ Hom(P, Q), g ∈ OP , h ∈ OQ.

In particular, Homn(P, P ) is a left and right OP -module.

Example 1.8. Let Z be a zero-dimensional closed subscheme of a k-scheme X. Then

HomDb
c(X)(OZ ,OZ) = OZ

(since Z is zero dimensional, we identify OZ with its global sections). That is, if we take
P = OZ , then OP = OZ .
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Definition 1.9. An object P ∈ Dperf is called a Gorenstein 0-cycle object of codi-
mension s, if

(i) S(P ) � P [s],

(ii) Hom<0(P, P ) = 0,

(iii) OP := Hom0(P, P ) is a commutative local k-algebra,

(iv) Homs(P, P ) is a monogenerated right OP -module.

Proposition 1.10. Let X be a Gorenstein proper k-scheme of dimension n with ample
canonical or anticanonical sheaf. Then an object P ∈ Dperf(X) is a Gorenstein 0-cycle
object if and only if P � OZx [r], r ∈ Z, is isomorphic (up to translation) to the structure
sheaf of a Gorenstein 0-cycle supported at a closed point x ∈ X.

Remark 1.11. Since X has an ample invertible sheaf, it is projective.

Proof. The structure sheaf of a Gorenstein 0-cycle supported at a closed point obvi-
ously satisfies conditions (i)–(iv) of Definition 1.9.

Suppose now that P ∈ Dperf(X) satisfies (i)–(iv). Let Hi be the cohomology sheaves
of P . If follows immediately from (i) that s = n and Hi ⊗ ωX � Hi. Since ωX is
either an ample or an antiample sheaf, we conclude that Hi are finite length sheaves,
i.e. their supports consist of isolated closed points. Sheaves with the support in differ-
ent points are homologically orthogonal, therefore any such object decomposes into the
direct sum of those which have the support of all cohomology sheaves in a single point.
By (iii), the object P is indecomposable; hence, all Hi have their support in a single
point. Now, condition (ii) implies that all but one of the cohomology sheaves are trivial.
Indeed, suppose that Hi �= 0, Hj �= 0, i < j and Hm = 0 for m < i or m > j. Then
Homi−j(P, P ) = Hom(Hi,Hj) �= 0. Hence, P � M [r], where M is a coherent OX -module
of finite Tor-dimension supported at a closed point x. The surjection M → M/mxM

induces a surjection (of right OP -modules)

Homn(M, M) → Homn(M, M/mxM) → 0

By (iv), one concludes that Homn(M, M/mxM) is a monogenerated OP -module. Then
M/mxM is a one-dimensional k(x)-vector space. By Nakayama, M is monogenerated,
i.e. M � OX/I, with I an mx-primary ideal. To conclude, we have to prove that OX/I
is Gorenstein. We have to prove that Extn

OX
(OX/I,OX) � OX/I. The surjection OX →

OX/I → 0 induces a surjection

Extn
OX

(OX/I,OX) → Extn
OX

(OX/I,OX/I) → 0

which is an isomorphism because they have the same dimension as k-vector spaces.
Finally, Extn

OX
(OX/I,OX/I) is isomorphic to OX/I because it is a monogenerated

OX/I-module (by (iv)) and has the same dimension as OX/I. This completes the proof.
�
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Definition 1.12. An object L ∈ D is called invertible if, for any Gorenstein 0-cycle
object P ∈ D, there exists s ∈ Z such that

(i) Homs(L, P ) � OP (isomorphism of left OP -modules),

(ii) Homi(L, P ) = 0 for i �= s.

Proposition 1.13. Let X be a Gorenstein scheme. Assume that all Gorenstein 0-cycle
objects have the form OZx [s] for some Gorenstein 0-cycle Zx supported at a closed point
x, s ∈ Z. Then an object L ∈ D is invertible if and only if L � L[t] for some invertible
sheaf L on X, t ∈ Z.

Proof. The converse is obvious. Now let Hi be the cohomology sheaves of an invertible
object L. Consider the spectral sequence

Ep,q
2 = Homp(H−q,OZx) =⇒ Extp+q(L,OZx)

and let Hq0 be the non-trivial cohomology sheaf with maximal index. Then for any closed
point x ∈ X in the support of Hq0 , Hom(Hq0 ,OZx) �= 0. Moreover, Hom(Hq0 ,OZx) and
Ext1(Hq0 ,OZx) are intact by the differentials of the spectral sequence. Therefore, in
view of the definition of an invertible object, we conclude that, for any point x from the
support of Hq0 ,

(a) Hom(Hq0 ,OZx) � OZx
,

(b) Ext1(Hq0 ,OZx) = 0.

Since X is connected, and due to Lemma 1.14, Hq0 is invertible. It follows that
Exti(Hq0 ,OZx

) = 0 for i > 0. Hence, Hom(Hq0−1,OZx
) are intact by differentials of the

spectral sequence. This means that Hom(Hq0−1,OZx) = 0 for any x ∈ X, i.e. Hq0−1 = 0.
Repeating this argument for Hq with smaller q, we easily see that all Hq, except q = q0,
are trivial. This proves the proposition. �

Lemma 1.14. Let O be a commutative noetherian local ring with maximal ideal m and
M a finite O-module. Let I be an m-primary ideal such that O/I is a zero-dimensional
Gorenstein ring. Then M � O if and only if

(a) HomO(M, O/I) � O/I,

(b) Ext1O(M, O/I) = 0.

Proof. Let us define Ō = O/I. For any Ō-module N let us define N∨ = HomŌ(N, Ō).
Since Ō is Gorenstein, the natural map N → N∨∨ is an isomorphism (N of finite type).

Now (M/IM)∨ � Ō by (a). Hence, M/IM � (M/IM)∨∨ � Ō. One has then an
epimorphism O f−→ M that becomes an isomorphism after taking HomO(, Ō). Let K be
the kernel of f . By (b), one obtains that HomO(K, Ō) = 0; that is, (K/IK)∨ = 0. Then
K/IK = 0 and by Nakayama K = 0. �
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Theorem 1.15. Let X be a connected equidimensional Gorenstein projective k-
scheme with ample canonical or antiample canonical sheaf. If D = Dperf(X) is equivalent
as a graded category to Dperf(X ′) for some other proper k-scheme X ′, then X is isomor-
phic to X ′.

Proof. While saying that two isomorphism classes of objects, one in Dperf(X) and
the other in Dperf(X ′), are equal, we mean that the former is taken to the latter by
the primary equivalence Dperf(X) ∼−→ Dperf(X ′). First note that X ′ is Gorenstein by
Proposition 1.5. As in [7], we proceed in several steps.

Step 1. Denote by GD the set of isomorphism classes of the Gorenstein 0-cycle objects
in D, and by GX the set of isomorphism classes of objects in Dperf(X):

GX := {OZx
[r], x ∈ X, Zx is a Gorenstein 0-cycle supported at x, r ∈ Z}.

By Proposition 1.10, GD � GX . Obviously, GX′ ⊂ GD.
Now we shall identify two 0-cycle Gorenstein objects whenever they have the same

support. Let us define
PD = GD/∼,

where P ∼ Q if Hom•(P, Q) �= 0. Analogously, PX = GX/∼. One still has PX′ ⊂
PD. Suppose that there is an object [P ] in PD which is not contained in PX′ . Since
two different objects in PD are mutually orthogonal, it follows that P ∈ Dperf(X ′) is
orthogonal to the structure sheaf of any Gorenstein 0-cycle OZx′ , x′ ∈ X ′. Hence, P

is zero. Therefore, PX′ = PD = PX . We conclude that GX′ = GD. Let P ∈ GD. Since
PX′ = PD, there exists a Gorenstein 0-cycle Zx′

0
, x′

0 ∈ X ′, such that [P ] = [OZx′
0
]. Hence,

for any x′ ∈ X ′, x′ �= x′
0, P is orthogonal to OZx′ . Hence, P ∈ Dperf(X ′) is supported

at the single point x′
0. As shown in the proof of Proposition 1.10, P is isomorphic (up to

translation) to the structure sheaf of a Gorenstein 0-cycle of X ′ supported at x′
0. Hence,

P ∈ GX′ .

Step 2. Denote by LD the set of isomorphism classes of invertible objects in D; denote
by LX the set of isomorphism classes of objects in Dperf(X) defined by

LX := {L[r], L is an invertible sheaf on X, r ∈ Z}.

By Step 1, both X and X ′ satisfy the assumptions of Proposition 1.13. It follows that
LX = LD = LX′ .

Step 3. Let us fix some invertible object L0 in D, which is an invertible sheaf on X.
By Step 2, L0 can be regarded, up to translation, as an invertible sheaf on X ′. Moreover,
changing, if necessary, the equivalence Dperf(X) ∼−→ Dperf(X ′) by the translation functor,
we can assume that L0, regarded as an object on X ′, is a genuine invertible sheaf (the
same precision as in [7] can be taken). Obviously, by Step 1, the set gD ⊂ GD,

gD := {P ∈ GD, Hom(L0, P ) � OP },
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coincides with both sets

gX = {OZx , x ∈ X, Zx is a Gorenstein 0-cycle supported at x}

and

gX′ = {OZx′ , x′ ∈ X ′, Zx′ is a Gorenstein 0-cycle supported at x′}.

If we define pD := gD/∼ (analogously pX , pX′) we obtain pX = pD = pX′ ; this gives us
a pointwise identification of X and X ′.

Step 4. Now let lX (respectively, lX′) be the subset in LD of isomorphism classes of
invertible sheaves on X (respectively, on X ′).

They can be recognized from the graded category structure as follows:

lX′ = lX = lD := {L ∈ LD : Hom(L, P ) � OP for any P ∈ gD}.

For α ∈ Hom(L1, L2), where L1, L2 ∈ lD, and P ∈ gD, denote by α∗
P the induced

morphism
Hom(L2, P ) → Hom(L1, P )

and by Wα the subset of those objects P ∈ gD for which α∗
P is an isomorphism. Note

that if P ∈ Wα and Q ∼ P , then Q ∈ Wα. Hence, Uα := Wα/∼ is a subset of pD.
By [14], an algebraic variety has an ample system of invertible objects. This means that
Uα, where α runs over all elements in Hom(L1, L2), and L1 and L2 run over the elements
in lD, constitute a basis for the Zariski topologies of both X and X ′. It follows that the
topologies of X and X ′ coincide.

Step 5. Now the rest of the proof is identical to that in [7]; we indicate it briefly. Since
codimensions of all Gorenstein 0-cycle objects are equal to the dimensions of X and X ′,
we have dim X = dimX ′. Twisting by the canonical sheaf on X and X ′ induces equal
transformation on the set lD. Let Li = SiL0[−ni], i.e. {Li} it is the orbit of L0 with
respect to twisting by the canonical sheaf on X or X ′. Then, since ωX is either ample or
antiample, the set of all Uα, where α runs over all elements in Hom(Li, Lj), i, j ∈ Z, is
the basis for the Zariski topology on X, and hence on X ′. This means that ωX′ is also
ample or antiample.

For all pairs (i, j) there are natural isomorphisms

Hom(Li, Lj) � Hom(L0, Lj−i)

that induce a ring structure in the graded algebra A over k with graded components
Ai = Hom(L0, Li). If we denote by B (respectively, B′) the graded algebra with graded
components Bi = HomX(OX , ω⊗i

X ) (respectively, B′
i = HomX(OX′ , ω⊗i

X′)), we have iso-
morphisms of graded algebras

B � A � B′

and then
X

∼−→ ProjB ∼−→ ProjB′ ∼−→ X ′.

�
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Remark 1.16. Since any graded equivalence Db
c(X) → Db

c(X
′) induces an equivalence

between perfect objects, one also obtains Theorem 1.15 for the category Db
c(X).

The same methods as in [7] yield the following.

Corollary 1.17. Let X be a connected equidimensional Gorenstein projective
k-scheme with ample canonical or anticanonical sheaf. Then the group AutDb

c(X) of
isomorphism classes of exact autoequivalences Db

c(X) → Db
c(X) is the semi-direct prod-

uct of its subgroups Pic X ⊕ Z and AutX, Z being generated by the translation functor:

AutDb
c(X) � AutX � (Pic X ⊕ Z).

2. Relative case

Now we shall relativize the ampleness or antiampleness of the canonical sheaf. We con-
sider a Gorenstein scheme X together with a proper morphism X → T such that the
relative canonical sheaf ωX/T is either T -ample or T -antiample. We shall then see that
X is determined by the T -linear structure of Db

c(X).

2.1. T -linear structure

Definition 2.1. Let T be a scheme. A T -linear structure on a graded category D is a
bigraded functor

Dperf(T ) × D → D,

(E , P ) �→ E ⊗ P,

satisfying functorial isomorphisms:

1. φP : OT ⊗ P � P ;

2. ψE1,E2,P : E1 ⊗ (E2 ⊗ P ) �
(
E1

L
⊗OT

E2

)
⊗ P .

Definition 2.2. A T -linear category is a graded category endowed with a T -linear
structure. A T -linear functor F : D → D′ between T -linear categories is a functor satis-
fying a bifunctorial isomorphism F (E ⊗ P ) � E ⊗ F (P ), E ∈ Dperf(T ), P ∈ D, which is
compatible with φP and ψE1,E2,P in the obvious sense.

2.2. Local homomorphisms: RHom•
T

Definition 2.3. Let P and Q be two objects of a T -linear category D. We shall denote
by RHom•

T (P, Q) the object of Dperf(T ), if it exists, satisfying

HomDperf (T )(E , RHom•
T (P, Q)) = HomD(E ⊗ P, Q).

Taking E = OT [−i], one obtains

Hi(T, RHom•
T (P, Q)) = Homi

D(P, Q),

where Hi(T, E) := Hi
RΓ (T, E). We shall define Homi

T (P, Q) = Hi(RHom•
T (P, Q)).
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Composition

The identity RHom•
T (P, Q) → RHom•

T (P, Q) gives a morphism in D:

εP : RHom•
T (P, Q) ⊗ P → Q.

Then one can define a composition

RHom•
T (Q, R) ⊗OT

RHom•
T (P, Q) → RHom•

T (P, R),

which corresponds to the composition

RHom•
T (Q, R) ⊗OT

RHom•
T (P, Q) ⊗ P

1⊗εP−−−→ RHom•
T (Q, R) ⊗ Q

εQ−−→ R.

Taking cohomology, one obtains morphisms

Homi
T (Q, R) ⊗OT

Homj
T (P, Q) → Homi+j

T (P, R).

Example 2.4. Let f : X → T be a T -scheme. Then Dperf(X) and Db
c(X) have a

natural T -linear structure: for any E ∈ Dperf(T ) and P ∈ Dperf(X) (respectively, P ∈
Db

c(X)) one defines

E ⊗ P := Lf∗E
L
⊗OX

P.

If f has finite Tor-dimension (e.g. either T regular or f flat) and P, Q ∈ Dperf(X),
then RHom•

T (P, Q) exists. Indeed,

RHom•
T (P, Q) := Rf∗RHom•

OX
(P, Q).

The hypothesis of finite Tor-dimension ensures that Rf∗RHom•
OX

(P, Q) is perfect.
Let X → T and X ′ → T be two T -schemes and let K ∈ Db

c(X ×T X ′) be an object
of finite homological dimension over X (see [13, Definition 2.1]). One has the integral
functor

ΦK : Db
c(X) → Db

c(X
′),

M �→ Rq∗

(
Lp∗M

L
⊗ K

)
,

where p and q are the projections from X ×T X ′ to X and X ′, respectively. Then ΦK is
T -linear (as a consequence of the projection formula).

Any T -linear autoequivalence Φ : D → D preserves RHom•
T , i.e.

RHom•
T (P, Q) � RHom•

T (Φ(P ), Φ(Q)).

2.3. T -Serre functor

Definition 2.5. Let D be a T -linear category such that RHom•
T (P, Q) exists for any

P and Q. A T -Serre functor is an autoequivalence ST : D → D satisfying a bifunctorial
isomorphism

RHom•
T (P, Q)∨ ∼−→ RHom•

T (Q, ST (P )), P, Q ∈ D,

where we define E∨ = RHom•
OT

(E ,OT ) for any E ∈ Dperf(T ).
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Taking Hom(E , ·), E ∈ Dperf(T ), in the above isomorphism, one obtains

Hom
(
E

L
⊗OT

RHom•
T (P, Q),OT

)
� HomD(E ⊗ Q, ST (P )).

In particular,

HomD(Q, ST (P )) = HomDperf (T )(RHom•
T (P, Q),OT ).

Any T -linear autoequivalence Φ : D → D commutes with a T -Serre functor. A T -Serre
functor, if it exists, is unique up to a natural isomorphism.

Proposition 2.6. Let f : X → T be a proper morphism of finite Tor-dimension. Let
DX/T := f !OT be the dualizing complex of X over T . Then Dperf(X) has a T -Serre
functor if and only if DX/T � ωX/T [d], d ∈ Z, ωX/T is an invertible sheaf on X (the
relative canonical sheaf). Moreover, if X and T are Cohen–Macaulay, then

ST � (·) ⊗ ωX/T [n],

where n = dimX − dim S.

Proof. First recall that RHom•
T (P, Q) = Rf∗RHom•

OX
(P, Q). Relative duality yields

an isomorphism

RHom•
T (P, Q)∨ ∼−→ RHom•

T (RHom•
OX

(P, Q), DX/T ).

Since P is perfect,

RHom•
T (RHom•

OX
(P, Q), DX/T ) ∼−→ RHom•

T

(
Q, P

L
⊗OX

DX/T

)
.

Hence, if DX/T � ωX/T [d], then (−) ⊗OX
ωX/T [d] is a Serre functor. Conversely, if ST is

a T -Serre functor, one has

Hom(Q, ST (P )) = Hom(RHom•
T (P, Q),OT ) = Hom

(
Q, P

L
⊗OX

DX/T

)
.

Hence, the identity ST (P ) → ST (P ) gives a morphism

ST (P ) → P
L
⊗OX

DX/T .

One proves as in Proposition 1.5 that DX/T � ωX/T [d]. Finally, let us see that if X and
T are Cohen–Macaulay, then d = dimX − dim T . Let x ∈ X be a closed point and let
t = f(x). One has

Homi(k(x),OX) = Homi(k(x), ωX/T ) = Homi(k(x), DX/T [−d]) = Homi−d(k(t),OT ).

Hence, depth OX,x = d + depthOT,t. Since X and T are Cohen–Macaulay (and equidi-
mensional), dimX = depthOX,x = d + depthOT,t = d + dimT . �
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Proposition 2.7. One has a natural isomorphism

RHom•
T (P, Q) ∼−→ RHom•

T (ST (P ), ST (Q)).

Proof. Indeed,

RHom•
T (P, Q) � RHom•

T (P, Q)∨∨ � RHom•
T (Q, ST (P ))∨ � RHom•

T (ST (P ), ST (Q)).

�

2.4. Reconstruction of a T -scheme from the T -linear category of Dperf (X)

Now we shall show that a T -scheme X can be uniquely reconstructed from the T -linear
category Dperf(X), provided that X is Gorenstein and the relative dualizing sheaf ωX/T

is either T -ample or T -antiample.
First we proceed to reconstruct Gorenstein 0-cycles of X from the T -linear structure

of Dperf(X).

Definition 2.8. Let D be a T -linear category. A 0-cycle Gorenstein object P ∈ D of
relative codimension s is an object satisfying the following:

1. ST (P ) � P [s];

2. Hom<0
D (P, P ) = 0;

3. Hom0
T (P, P ) is supported at a closed point t ∈ T ;

4. Hom0
D(P, P ) is a commutative and local algebra;

5. Homs+dim T
D (P, P ) is a monogenerated right OP -module.

Proposition 2.9. Let X be a Gorenstein scheme, let f : X → T be a proper morphism
of finite Tor-dimension. Let DX/T = f !OT be the relative dualizing complex. Assume
that DX/T � ωX/T [n], n = dimX − dim T , ωX/T , an invertible sheaf which is either
T -ample or T -antiample. Then an object P ∈ Dperf(X) is a Gorenstein 0-cycle object if
and only if P � OZx [r], r ∈ Z, is isomorphic (up to translation) to the structure sheaf of
a Gorenstein 0-cycle supported at a closed point x ∈ X.

Proof. ST (P ) � P [s] implies that s = dimX − dim T and that the support of P is
finite over T . Condition 3 of Definition 2.8 implies that P is supported at the fibre of t.
Hence, the support of P is a finite number of closed points on the fibre of s. The rest of
the proof is like the absolute case (Proposition 1.10). �

Once we have identified Gorenstein 0-cycles of X, Proposition 1.13 identifies invertible
sheaves. Now we can proceed as in the absolute case to give a relative reconstruction
theorem.
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Theorem 2.10. Let X be a Gorenstein scheme, let f : X → T be a proper morphism
of finite Tor-dimension and let T be a Cohen–Macaulay scheme. Let DX/T be the relative
dualizing complex. Assume that DX/T � ωX/T [n], n ∈ Z, where ωX/T is an invertible
sheaf which is either T -ample or T -antiample. If X ′ → T is another Gorenstein T -scheme
and one has a T -linear equivalence

Dperf(X) ∼−→ Dperf(X ′),

then X � X ′ (an isomorphism of T -schemes).

Proof. We follow the same steps as in the proof of Theorem 1.15. We mention the
necessary changes to be made.

Step 1. The same arguments as in the proof of Theorem 1.15 give an identification
GX = G = GX′ (note that X ′ is assumed to be Gorenstein).

Step 2. This remains unchanged.

Step 3. We obtain again an identification PX = P = PX′ . Let us denote by PT the
set of closed points of T . We have a map

fX : PX → PT ,

[P ] �→ supp(Hom0
T (P, P )).

Analogously for X ′, fX′ : PX′ → PT . The identification PX = PX′ is compatible with
fX and fX′ . We denote f : PD → PT .

Step 4. One again obtains lX = lD = lX′ . For each affine open subset V of T and
each α ∈ Γ (V, HomT (L1, L2)), we define

W(V,α) = {P ∈ GD : f([P ]) ∈ V

and α∗
P : HomT (L2, P )|V → HomT (L1, P )|V is an isomorphism}

and U(V,α) = W(V,α)/∼, which is contained in PD. These U(V,α), where α runs over all
elements in Γ (V, HomT (L1, L2)), L1 and L2 run over all elements in lD and V runs over
all affine open subsets of T , constitute a basis for the Zariski topologies of both X and X ′.

Step 5. Since codimensions of all Gorenstein 0-cycle objects are equal to the relative
dimensions of X and X ′, we have dim X = dimX ′. Twisting by the relative canonical
sheaf on X and X ′ induce equal transformation on the set lD. Let Li = Si

T L0[−ni],
i.e. {Li} is the orbit of L0 with respect to twisting by the relative canonical sheaf on X

or X ′. Then, since ωX/T is either (relatively) ample or antiample, the set of all U(V,α),
where α runs over all elements in Γ (V, HomT (Li, Lj)), i, j ∈ Z, is a basis for the Zariski
topology on XV = f−1

X (V ) for sufficiently small V , and hence on X ′
V . This means that

ωX′/T is also (relatively) ample or antiample.
By Proposition 2.7, for all pairs (i, j) there are natural isomorphisms

HomT (Li, Lj) � HomT (L0, Lj−i),
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which induce a ring structure in the graded OT -algebra A with graded components Ai =
HomT (L0, Li). If we denote by B (respectively, B′) the graded algebra with graded com-
ponents Bi = HomT (OX , ω⊗i

X/T ) � fX∗ω
⊗i
X/T (respectively, B′

i = HomT (OX′ , ω⊗i
X′/T ) �

fX′ ∗ω
⊗i
X′/T ), we have isomorphisms of graded OT -algebras

B � A � B′

and then
X

∼−→ ProjB ∼−→ ProjB′ ∼−→ X ′,

an isomorphism of T -schemes. �
Remark 2.11. If T is a Gorenstein and proper scheme over a field k, then the Goren-

stein assumption on X ′ is unnecessary. Indeed, the transitivity of the dualizing complex
gives an isomorphism

DX′/k � DX′/T

L
⊗OX′ Lg∗DT/k,

with g : X ′ → T the structure morphism. Now DX′/T is an invertible sheaf (up
to translations) because Dperf(X ′) has a T -Serre functor, following the equivalence
Dperf(X) � Dperf(X ′). Moreover, DT/k is an invertible sheaf because T is Gorenstein.
Hence, DX′/k is an invertible sheaf, i.e. X ′ is Gorenstein.

Assume now that T is either affine or regular. One can easily adapt the methods of [7]
to obtain the group of exact T -linear autoequivalences Db

c(X) → Db
c(X), as follows.

Corollary 2.12. Let X → T be as in the preceding theorem and assume that T

is either affine or regular. Then the group AutT Db
c(X) of isomorphism classes of exact

T -linear autoequivalences Db
c(X) → Db

c(X) is the semi-direct product of its subgroups
Pic X ⊕ Z and AutT X, Z being generated by the translation functor:

AutT Db
c(X) � AutT X � (Pic X ⊕ Z).
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