SEMIPRIME SEMIGROUP RINGS AND A PROBLEM OF J. WEISSGLASS

by MARK L. TEPLY

(Received 19 March, 1979)

If R is a ring and S is a semigroup, the corresponding semigroup ring is denoted by R[S]. A ring is semiprime if it has no nonzero nilpotent ideals. A semigroup S is a semilattice P of semigroups S_{α} if there exists a homomorphism φ of S onto the semilattice P such that $S_{\alpha} = \alpha \varphi^{-1}$ for each $\alpha \in P$.

In [4] J. Weissglass proves the following result.

THEOREM. Suppose that R is a commutative ring with identity element and that S is a commutative semigroup such that a power of each element lies in a subgroup. Then R[S] is semiprime if and only if S is a semilattice P of groups S_{α} , and $R[S_{\alpha}]$ is semiprime for each $\alpha \in P$.

Then Weissglass asks [4, Question 9, page 477] if the commutativity of R can be removed from the hypothesis of his theorem. The purpose of this note is to answer his question affirmatively.

Given a ring R and a semigroup S, the support of $x = \sum_{s \in S} r_s s \in R[S]$, denoted by supp x, is defined to be the set $\{s \in S \mid r_s \neq 0\}$. For a set X, |X| denotes the cardinality of X.

LEMMA 1. Let R be a ring with identity element, and let S be a commutative semigroup. Assume that the group G is an ideal of S and that every element of S has a power in G. Let A be a nonzero ideal of R[S] such that $A \cap R[G] = 0$. Then there exists a nonzero element $y = \sum_{i=1}^{n} r_i s_i \in A \ (r_i \in R, s_i \in S)$ such that $yrs_j = 0$ for each $r \in R$ and each $j \le n$.

Proof. Let $m = \min\{j \mid 0 \neq x \in A \text{ and } |(\text{supp } x) \cap (S - G)| = j\}$. Since $A \cap R[G] = 0$, then $m \ge 1$. Let $y = \sum_{i=1}^{n} r_i s_i \in A - \{0\}$ be chosen such that

$$\{s_1, s_2, \ldots, s_m\} = (\text{supp } y) \cap (S - G)$$

and

$$\{s_{m+1},\ldots,s_n\}\subseteq G$$
 if $m < n$.

Let k be a positive integer such that $k \le m$, and consider the condition $ys_j = 0$ for j < k. This condition is vacuously satisfied when k = 1; so assume that the condition holds for some $k \ge 1$. Since a power, say s_k^t , of s_k is in the ideal G of S, then $ys_k^t \in R[G]$. But $ys_k^t \in A$, since $y \in A$. Hence $ys_k^t = 0$. Thus there is a least nonnegative integer h such that $ys_k^{h+1} = 0$. (If h = 0, let $s_k^0 = 1 \in R$ for notational convenience.) Then by the choice of m and k, we have that $s_1s_k^h$, $s_2s_k^h$, ..., $s_ms_k^h$ are distinct elements of S - G, and $s_is_k^h \in G$ for

Glasgow Math. J. 21 (1980) 131-134.

i > m. Since S is commutative,

$$\left(\sum_{i=1}^{n} r_{i} s_{i} s_{k}^{h}\right) s_{j} s_{k}^{h} = \left(\sum_{i=1}^{n} r_{i} s_{i}\right) s_{j} s_{k}^{2h} = y s_{j} s_{k}^{2h} = 0$$

for $j \le k$. Thus, if we replace s_i by $s_i s_k^h$ in our original expression for y, we may assume that $y = \sum_{i=1}^{n} r_i s_i \in A - \{0\}$, $s_i \in S - G$ for $i \le m$, $s_i \in G$ for i > m, and $y s_j = 0$ for $j \le k$. By induction, we may assume that $y s_j = 0$ for $j \le m$. Since G is an ideal of S, we also have $y s_j \in A \cap R[G] = 0$ for each j > m.

Let $j \in \{1, ..., n\}$. Write $T = \{s_i s_i \mid i = 1, ..., n\}$ and, for each $t \in T$, let $I_t = \{i \mid s_i s_i = t\}$.

Since $ys_i = 0$, we have that, for all $t \in T$, $\sum_{i \in I_i} r_i = 0$. Hence, for all $r \in R$,

$$0 = \sum_{i \in T} \left(\sum_{i \in L} r_i \right) rt = \sum_{i=1}^n r_i r(s_i s_j) = \left(\sum_{i=1}^n r_i s_i \right) rs_j = yrs_j.$$

Let P be a semilattice whose natural order is indicated by \leq , and let S be a semilattice P of semigroups S_{α} . Then there exist ideal extensions D_{α} of S_{α} ($\alpha \in P$) and homomorphisms $\varphi_{\alpha,\beta}: S_{\alpha} \to D_{\beta}$ ($\beta \leq \alpha$) satisfying the following conditions:

- (a) $\varphi_{\alpha,\alpha}$ is the identity map on S_{α} ;
- (b) $(S_{\alpha}\varphi_{\alpha,\alpha\beta})(S_{\beta}\varphi_{\beta,\alpha\beta}) \subseteq S_{\alpha\beta};$
- (c) if $\alpha\beta > \gamma$, then for all $a \in S_{\alpha}$ and $b \in S_{\beta}$, $[(a\varphi_{\alpha,\alpha\beta})(b\varphi_{\beta,\alpha\beta})]\varphi_{\alpha\beta,\gamma} = (a\varphi_{\alpha,\gamma})(b\varphi_{\beta,\gamma})$;
- (d) S is the disjoint union of the S_{α} ($\alpha \in P$);
- (e) if $a \in S_{\alpha}$ and $b \in S_{\beta}$, then multiplication in S is determined by

$$ab = (a\varphi_{\alpha,\alpha\beta})(b\varphi_{\beta,\alpha\beta}) \in S_{\alpha\beta}.$$

For more details, see Section III.7 of [2]. We note that each $\varphi_{\alpha,\beta}$ has a natural extension to a ring homomorphism from $R[S_{\alpha}]$ to $R[D_{\beta}]$:

$$\sum_{s \in S_{\alpha}} r_s s \to \sum_{s \in S_{\alpha}} r_s (s \varphi_{\alpha,\beta}).$$

We also denote this extension by $\varphi_{\alpha,\beta}$ for convenience.

LEMMA 2. Let R be a ring with identity element, and let S be a semilattice P of commutative semigroups S_{α} . Let $\sigma \in P$ and $y = \sum_{i=1}^{n} r_i s_i \in R[S_{\sigma}]$ be such that $yrs_j = 0$ for each $r \in R$ and each $j \le n$. Then the principal ideal B of R[S] generated by y satisfies $B^2 = 0$.

Proof. Every element of B^2 is a sum of terms, each of which contains at least one of the following factors: y^2 or y. rs. y, where $r \in R$ and $s \in S_{\alpha}$ for some $\alpha \in P$.

But $y^2 = \sum_{i=1}^n yr_i s_i = 0$ by our choice of y. Moreover, if $r \in R$ and $s \in S_\alpha$ then, since $S_{\alpha\sigma}$

is commutative and $\varphi_{\sigma,\alpha\sigma}$ is a homomorphism, we have

$$y \cdot rs \cdot y = \left(\sum_{i=1}^{n} r_{i}s_{i}\right) \cdot rs \cdot \left(\sum_{i=1}^{n} r_{i}s_{i}\right)$$

$$= \sum_{i,j} r_{i}rr_{j}(s_{i}\varphi_{\sigma,\alpha\sigma})(s\varphi_{\alpha,\alpha\sigma})(s_{j}\varphi_{\sigma,\alpha\sigma})$$

$$= \sum_{i,j} r_{i}rr_{j}((s_{i}s_{j})\varphi_{\sigma,\alpha\sigma})(s\varphi_{\alpha,\alpha\sigma})$$

$$= \left[\sum_{i=1}^{n} \left(\left(\sum_{i=1}^{n} r_{i}s_{i}\right)rr_{j}s_{j}\right)\varphi_{\sigma,\alpha\sigma}\right](s\varphi_{\alpha,\alpha\sigma})$$

$$= \left[\sum_{i=1}^{n} \left(y(rr_{j})s_{j}\right)\varphi_{\sigma,\alpha\sigma}\right](s\varphi_{\alpha,\alpha\sigma}) = 0$$

by our choice of y.

It follows that $B^2 = 0$ as desired.

LEMMA 3. Let R be a ring with identity element, and let S be a semilattice P of commutative semigroups S_{α} . Let $\sigma \in P$, and assume that the group G is an ideal of S_{σ} . Let A be a nilpotent ideal of $R[S_{\sigma}]$ such that $A^2 = 0$. Then the principal ideal C of R[S] generated by any element of $A \cap R[G]$ satisfies $C^2 = 0$.

Proof. Let $x = \sum_{i=1}^{n} r_i s_i \in A \cap R[G]$ with $\{s_1, s_2, \dots, s_n\} \subseteq G$, and let x generate C. Since $x^2 = 0$, then every element of C^2 is a sum of terms, each of which contains a factor of the form $x \cdot rs \cdot x$, where $r \in R$ and $s \in S_{\alpha}$ for some $\alpha \in P$. Let e be the identity element of G, let $r \in R$, and let $s \in S_{\alpha}$ for some $\alpha \in P$. Since $S_{\alpha\sigma}$ is commutative and $\varphi_{\sigma,\alpha\sigma}$ is a homomorphism, we have

$$x \cdot rs \cdot x = \left(\sum_{i=1}^{n} r_{i} s_{i}\right) \cdot rs \cdot \left(\sum_{i=1}^{n} r_{i} s_{i}\right)$$

$$= \sum_{i,j} r_{i} rr_{j} (s_{i} \varphi_{\sigma,\alpha\sigma}) (s \varphi_{\alpha,\alpha\sigma}) (s_{j} \varphi_{\sigma,\alpha\sigma})$$

$$= \left[\left(\sum_{i,j} r_{i} rr_{j} s_{i} s_{j}\right) \varphi_{\sigma,\alpha\sigma}\right] (s \varphi_{\alpha,\alpha\sigma})$$

$$= \left[\left(\sum_{i=1}^{n} r_{i} s_{i}\right) (re) \left(\sum_{j=1}^{n} r_{j} s_{j}\right)\right] \varphi_{\sigma,\alpha\sigma} \cdot (s \varphi_{\alpha,\alpha\sigma})$$

$$\subseteq (A^{2}) \varphi_{\sigma,\alpha\sigma} \cdot (s \varphi_{\alpha,\alpha\sigma})$$

$$= 0$$

It follows that $C^2 = 0$ as desired.

We are now ready for our main result.

THEOREM. Let R be a ring with identity element, and let S be a commutative semigroup such that a power of each element of S lies in a subgroup. Then R[S] is semiprime if and only if S is a semilattice P of groups S_{α} , and $R[S_{\alpha}]$ is semiprime for each $\alpha \in P$.

Proof. By [1, §4.3, Exercise 5] the hypothesis on S forces S to be a semilattice P of semigroups S_{α} , where each S_{α} contains a group ideal G_{α} such that S_{α}/G_{α} is a nil semigroup.

Let R[S] be semiprime. Suppose that there exists $\sigma \in P$ such that $R[S_{\sigma}]$ is not semiprime. Then $R[S_{\sigma}]$ contains a nonzero nilpotent ideal A such that $A^2 = 0$. If $A \cap R[G_{\sigma}] = 0$, then R[S] has a nonzero nilpotent ideal B by Lemmas 1 and 2; if $A \cap R[G_{\sigma}] \neq 0$, then R[S] has a nonzero nilpotent ideal C by Lemma 3. Consequently, each $R[S_{\sigma}]$ must be semiprime to avoid a contradiction. It now follows from [4, Lemma 4] that each S_{σ} is a group.

The converse follows from [3, Theorem 1] or [4, Corollary 1].

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I, Math. Surveys No. 7, Amer. Math. Soc. (Providence, R. I., 1961).
 - 2. M. Petrich, Introduction to semigroups (Merrill, Columbus, 1973).
- 3. M. L. Teply, E. G. Turman, and A. Quesada, On semisimple semigroup rings, *Proc. Amer. Math. Soc.* (to appear).
- 4. J. Weissglass, Semigroup rings and semilattice sums of rings, *Proc. Amer. Math. Soc.* 39 (1973), 471-478.

University of Florida Gainesville, Florida 32611