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Abstract

We give precise asymptotic estimates of the tail behavior of the distribution of the
supremum of a process with regenerative increments. Our results cover four qualitatively
different regimes involving both light tails and heavy tails, and are illustrated with
examples arising in queueing theory and insurance risk.
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1. Introduction

Regenerative processes are a versatile tool in stochastic modeling, as they are general enough
to cover many applications and at the same time provide a natural and tractable extension of
the random walk. In particular, the computation of overflow probabilities in (fluid) queues and
ruin probabilities in insurance can often be reduced to the study of the maximum of a process
of which the increments are regenerative. Specifically, let S(t), t ≥ 0, be a càdlàg process
almost surely drifting to −∞, such that S(0) = 0. Suppose that there exists a renewal process
with renewal epochs Ti, 0 ≤ T0 < T1 < · · · , such that

(S(t))0≤t<T0 , (S(T0 + t)− S(T0))0≤t<T1−T0 , · · ·
are independent and the distributions of (S(Tk + t)− S(Tk))0≤t<Tk+1−Tk , k ≥ 0, are identical.
We call Tn, n ≥ 0, the regeneration or renewal epochs of S(t), t ≥ 0. If T0 = 0, we say that
(S(t)) is zero-delayed. Define

M = sup
t≥0

S(t), Mn+1 = sup
Tn≤t<Tn+1

S(t)− S(Tn), n ≥ 0,

and let Xn+1 = S(Tn+1) − S(Tn) and Sn = S(Tn), for n ≥ 0. This is strongly related to
the setting considered in [3] and many other papers. Typically, the distribution of M is too
complicated to compute exactly. Therefore, we are often concerned with the tail behavior of
M , i.e. the behavior of P{M > x} as x grows large. This forms the motivation for the present
paper.

In this paper we focus on the zero-delayed case, and thus have the identity

M = sup
n≥1

[Sn−1 +Mn]. (1)
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The sequenceMn, n ≥ 1, is independent and identically distributed but depends on the random
walk Sn, n ≥ 1, sinceMn andXn are dependent. Note that the sequence of pairs (Mn,Xn), n ≥
1, is independent and identically distributed. Thus, the regenerative setting can be viewed as a
special case of the more general framework of the perturbed random walk, which was considered
in a recent paper by Araman and Glynn [1]. They investigated the tail behavior ofM in a variety
of cases.

The main goal of this work is to analyze the tail behavior ofM in the perturbed random walk
setting (1), under conditions that are general enough to be applicable to regenerative processes.
For random walk maxima, it is well known (see, e.g. [4], [10], and [20]) that the description
of the tail behavior can be classified into three main regimes: (i) the Cramér case, (ii) the
intermediate case, and (iii) the heavy tail case. Our main results cover these cases for perturbed
random walks. In addition, we identify a fourth main case, in which the perturbations dominate
the tail behavior of M . Specifically, our results are as follows:

• The first scenario we consider is when the Cramér condition holds forX1, i.e. we assume
that there exists a strictly positive solution κ to the equation E{eκX1} = 1. In addition, we
assume that the tail of M1 is not too heavy (in a sense we make precise later on). These
assumptions allow us to apply the implicit renewal theory developed by Goldie [14],
to obtain the tail behavior of M . The results of [14] have mostly been applied to
autoregressive processes but have much wider applicability. Special cases of our result
have been derived before, by Araman and Glynn [1] and by Schmidli [25]. We note that
the main result of [1], which covers the case in which the perturbations (Mn) form a
stationary sequence independent of the random walk (Sn), is not covered in the present
paper.

• A qualitatively different case occurs whenM1 is light tailed but heavier tailed than supn Sn.
Again we exploit theory developed for autoregressive processes. In particular, we utilize
stochastic ordering arguments proposed in [16] to extend and unify both Theorem 3 of [1]
and Example 2 of [16].

• We again apply stochastic ordering arguments to analyze the intermediate case, which
also pertains in the case of a standard random walk. We derive the tail behavior of M
under the assumption that the right tail of X1 is in the class S(α), and that the right tail
of M1 is not heavier than the right tail of X1.

• A fourth regime we consider is that in which M∗
1 = max{M1, X1} has a heavy tail in

a sense we make precise later on. This case has been investigated before, in [1], under
the additional assumption that X1 is light tailed. We also extend a result of [3], where
it was assumed that the tails of M∗

1 and X1 asymptotically coincide (note that our M∗
1 is

identical to theirM1). Other related papers are [12] and [13], where a class of modulated
random walks and Lévy processes with heavy-tailed increments were considered.

We illustrate our results by considering some specific models that arise in telecommunica-
tions and insurance. We first consider a basic on–off fluid model where S(t), t ≥ 0, either
increases with rate r − c > 0, or decreases with rate c. Then we investigate an insurance risk
model. More precisely, we consider a Cox-type process which was introduced and motivated
in [26]. We apply our general result to derive an exponential estimate for the ruin probability,
and obtain bounds on the prefactor.
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The rest of the paper is organized as follows. Section 2 contains the main results: the four
different cases are investigated in Subsections 2.1–2.4. Section 3 is devoted to the on–off model.
The insurance risk model is investigated in Section 4. In Section 5 we conclude.

2. General results

In this section we present the main results of this work. We focus on four cases: first, we
consider the situation in which M∗

1 is heavy tailed, in Section 2.1. Then we assume that both
X1 andM1 are light tailed. Three further distinctions arise here, and are respectively treated in
Subsections 2.2, 2.3, and 2.4.

We always assume that the joint distribution of (X1,M1) satisfies E{X1} ∈ (−∞, 0),
E{M1} < ∞, and P{M1 = −∞} = 0. The last assumption is not restrictive: for regenerative
processes we have the representation M1 = supt∈[0,T1)

S(t) ≥ 0. Throughout this section
we use various standard results for the class L of long-tailed distributions, the class S of
subexponential distributions, and the class S(γ ), γ ≥ 0. A standard reference on such
distributions is the textbook [11]. For two functions f (x) and g(x), we write f (x) ∼ g(x) if
f (x) = g(x)(1 + o(1)) as x → ∞.

2.1. The heavy tail case

Our first result concerns the case in which M∗
n = max{Xn,Mn} is heavy tailed.

Theorem 1. If E{M∗
1 } < ∞ and min{1, ∫ ∞

x
P{M∗

1 > u} du} is subexponential, then

P{M > x} ∼ 1

µ

∫ ∞

x

P{M∗
1 > u} du

as x → ∞, with µ = − E{X1}.
This is an extension of Theorem 3.3 of [2], where it was assumed that P{M∗

1 > x} ∼
P{X1 > x}. In Section 3 we give examples to show that this condition is sometimes too
restrictive. Theorem 1 is also related to Theorem 4 of [1]. There it was assumed thatX1 is light
tailed and that the marginal distribution of M1 has a hazard rate converging to 0.

Proof of Theorem 1. The proof consists in deriving lower and upper bounds which asymp-
totically coincide.

We start with the lower bound, for which we adapt a standard (see [3], [13], [12], and [28])
technique to our setting. The idea is to identify a way in which the event {M > x} occurs.
Informally speaking, we choose an event on which Sn−1 − Mn, n ≥ 1, behaves in a typical
way up to some time k for which M∗

k+1 = max{Mk+1, Xk+1} is large. By also including the
event that Mk+2 is not too small, we ensure that M > x.

Let δ, 0 < δ < µ, be given, and for n ≥ 1 define the event En ≡ En(δ,K) by

En = {Sk ∈ (−k(µ+ δ)−K,−k(µ− δ)+K), k ≤ n}.
In addition, consider the event Fn ≡ Fn(δ,K), defined by

Fn = {Mk < δk +K, k ≤ n}.
Also defineG(x) = P{Mn < x} = P{M1 < x}, and letK be such that Ḡ(K) = 1−G(K) < 1

2 .
Since log(1 − x) ≥ −2x if x ∈ (0, 1

2 ), we see that

log P{Fn} =
n∑
k=1

log(1 − Ḡ(δk +K)) ≥ −2
∞∑
k=1

Ḡ(δk +K) = −2 E{	(M1 −K)+/δ
},
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where y+ = max{y, 0}. Since E{M1} < ∞, the last expression converges to 0 if K → ∞ for
any δ > 0. Combining this fact with the weak law of large numbers for Sn, n ≥ 1, we arrive
at the following conclusion: for every ε > 0 there exists a K such that P{En ∩ Fn} ≥ 1 − ε.

For n ≥ 1, we define the event

Gn = Fn ∩ En ∩ {M∗
n+1 > x + n(δ + µ)+ 2K} ∩ {Mn+2 > −K}.

Observe that the events Gn, n ≥ 1, are disjoint and that Gn implies {M > x} for every n ≥ 1.
Consequently,

P{M > x} ≥ P

{ ∞⋃
n=1

Gn

}
=

∞∑
n=1

P{Gn}

≥ (1 − ε)

∞∑
n=1

P{M∗
n+1 > x + n(δ + µ)+ 2K} P{Mn+2 > −K}

∼ 1 − ε

δ + µ
P{M1 > −K}

∫ ∞

x+K
P{M∗

1 > u} du

∼ 1 − ε

δ + µ
P{M1 > −K}

∫ ∞

x

P{M∗
1 > u} du,

where in the last two steps we have used the fact that M∗
1 is long tailed. This implies that

lim inf
x→∞

P{M > x}∫ ∞
x

P{M∗
1 > u} du

≥ 1 − ε

δ + µ
P{M1 > −K}.

The proof of the lower bound follows by letting K → ∞ and δ, ε ↓ 0.
To obtain an asymptotic upper bound, let y > 0 be given and construct the random

walk Syn , n ≥ 0, with Sy0 = 0. For k ≥ 1, let Xyk = Xk if M∗
k ≤ y and let Xyk = M∗

k if
M∗
k > y. Finally, let Syn = X

y
1 + · · · +X

y
n, n ≥ 1. Informally, the increments of the random

walk Syn , n ≥ 0, are the same as those of Sn, n ≥ 0, except when a large value of M∗
n occurs.

Obviously Sn ≤ S
y
n for any y > 0 and n ≥ 1. Moreover, we have the following crucial

bound:

sup
n≥1

[Sn−1 +Mn] ≤ sup
n≥0

S
y
n + y.

For x > y, we have P{Xyk > x} = P{M∗
k > x}, which implies that the integrated tail of Xyk is

subexponential. Thus, we can apply Veraverbeke’s theorem (see, e.g. [27] or [28]), yielding

P

{
sup
n≥1

S
y
n > x

}
∼ 1

− E{Xy1 }
∫ ∞

x

P{M∗
1 > u} du.

Putting everything together, we conclude that

lim sup
x→∞

P{M > x}∫ ∞
x

P{M∗
1 > u} du

≤ lim sup
x→∞

P{supn≥1 S
y
Tn
> x − y}∫ ∞

x
P{M∗

1 > u} du
≤ 1

− E{Xy1 } .

By dominated convergence, it follows that − E{Xy1 } → µ as y → ∞.
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2.2. Dominating perturbations

We now suppose that M1 is light tailed. More precisely, we assume that

P{M1 > x} = m1(x)e
−νx, (2)

with m1(·) such that m1(x + y) ∼ m1(x) as x → ∞, for any fixed y. This is equivalent to the
requirement that the right tail of the distribution of exp{M1} is regularly varying with index −ν.

To formulate our result, we need to make two more assumptions. The first additional
assumption we invoke is that

E{eνX1} < 1. (3)

Our final assumption is of a more technical nature: let X̃1 be an independent copy ofX1 which
is also independent of M1, and suppose that

P{X̃1 +M1 > x} ∼ E{eνX1} P{M1 > x}. (4)

This assumption is a consequence of (2), (3) and a minor additional regularity condition. In
particular, one of the following three conditions suffices: (i) E{eηX1} < ∞ for some η > ν

(Breiman’s theorem), (ii) limx→∞m1(x) > 0, or (iii) m1(x) is decreasing and in S∗; see [9]
for details. Moreover, assumption (4) implies that P{X1 > x} = o(P{M1 > x}).

The following result extends and unifies Example 2 of [16] (where condition (i) was as-
sumed), and Theorem 4 of [1] (where it was assumed that limx→∞m1(x) > 0). To prove our
result, we adapt the arguments in [16] to our setting.

Theorem 2. If (2)–(4) hold, then

P{M > x} ∼ 1

1 − E{eνX1} P{M1 > x}.

In the remainder of this subsection we assume that (2)–(4) are in force. The proof of
Theorem 2 involves the following lemma.

Lemma 1. Suppose that Y ≥ 0 is independent of (M1, X1) and that

P{Y > x} ∼ cY P{M1 > x}
for a constant cY ∈ (0,∞). Then P{max{M1, X1 + Y } > x} ∼ (1 + cY E{eνX1})P{M1 > x}.

Proof. An asymptotic upper bound simply follows from the assumptions, the bound

P{max{M1, X1 + Y } > x} ≤ P{M1 > x} + P{X1 + Y > x},
and the fact that (4) is closed under tail equivalence. To prove that this upper bound is tight,
it suffices to show that P{min{M1, X1 + Y } > x} = o(P{M1 > x}). Note that there exists a
function h(x) → ∞ such that x − h(x) → ∞ and P{X1 > h(x)} = o(P{M1 > x}). Now
distinguish between the two cases X1 > h(x) and X1 ≤ h(x), to obtain

P{M1 > x, X1 + Y > x} ≤ P{X1 ≥ h(x)} + P{M1 > x} P{Y > x − h(x)} = o(P{M1 > x}),
which implies the statement.
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Proof of Theorem 2. As in [16], we use the fact thatM
d= max{M1, X1 +M̃}, where M̃ is an

independent copy ofM which is independent of X1 andM1. In addition, we use the following
stochastic comparison argument. If Y↓

1 and Y↑
1 are two random variables independent of

(X1,M1), then Y↓
1 ≥st M if and only if Y↓

1 ≥st max{M1, X1 + Y
↓
1 }. Similarly, Y↑

1 ≤st M if
and only if Y↑

1 ≤st max{M1, X1 + Y
↑
1 }.

To prove an asymptotic lower bound, define a sequence of random variables Y↑
n , n ≥ 1,

where Y↑
1 = M1 and Y↑

n+1 = max{Mn+1, Xn+1 + Y
↑
n }, n ≥ 1. Using the above stochastic

comparison argument n times, we find that P{M > x} ≥ P{Y↑
n > x} for every n. By repeated

application of Lemma 1, we have

P{Y↑
n > x} ∼ 1 − E{eνX1}n

1 − E{eνX1} P{M1 > x}.

Consequently,

lim inf
x→∞

P{M > x}
P{M1 > x} ≥ 1 − E{eνX1}n

1 − E{eνX1} ,
which implies the desired asymptotic lower bound by letting n → ∞.

To prove an asymptotic upper bound, we again use an idea from [16]. Let C > 1/(1 −
E{eνX1}) and let Y be a random variable independent of (M1, X1) and such that P{Y > x} ∼
C P{M1 > x}. By Lemma 1, there exists an x0 < ∞ such that

P{Y > x} ≥ P{max{M1, X1 + Y } > x} for x ≥ x0.

DefineY↓
1 as an independent random variable such that P{Y↓

1 > x} = P{Y > x}/P{Y > x0}.
As in Lemma 3 of [16], it is easy to verify that Y↓

1 ≥st max{M1, X1 + Y
↓
1 }. Now define

Y
↓
n+1 = max{Mn+1, Xn+1 + Y

↓
n } for n ≥ 1. The remainder of the proof is similar to the proof

of the lower bound. Applying the comparison argument, we see that P{M > x} ≤ P{Y↓
n > x}.

Set C0 = C/P{Y > x0}. By Lemma 2 and induction, we have

P{Y↓
n > x} ∼

(
1 − E{eνX1}n−1

1 − E{eνX1} + C0 E{eνX1}n−1
)

P{M1 > x}.

Combining these results, we obtain

lim
n→∞ lim sup

x→∞
P{M > x}
P{M1 > x} ≤ 1

1 − E{eνX1} ,

which completes the proof of the upper bound.

2.3. The intermediate case

We now consider the case in which X1 satisfies

P{X1 > x + y} ∼ e−αy P{X1 > x} (5)

as x → ∞, for every fixed y, and

P{X1 +X2 > x} ∼ 2 E{eαX1} P{X1 > x}. (6)

This is equivalent to the condition that X+
1 ∈ S(α). The case α = 0 was treated in Subsec-

tion 2.1, so we assume that α > 0. Another assumption we make is that

E{eαX1} < 1, (7)
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which implies that Cramér’s condition is not satisfied. Finally, we specify the tail behavior
ofM1. The case in whichM1 has a heavier tail thanX1 was covered in the previous subsection.
Motivated by this, we assume that

lim
x→∞

P{M1 > x}
P{X1 > x} < ∞ (8)

(we allow the limit to equal 0). Furthermore, we assume that there exists a bounded function f
such that

lim
x→∞

P{M1 > x, X1 ≤ x − a}
P{X1 > x} = f (a) (9)

for all real values of a. This covers the case in whichM1 andX1 are independent (in which f is
constant) and the random walk case (in which M1 = 0, meaning that f (a) = 0). An example
in the regenerative setting can be found in Section 3.

We are now ready to state and prove our third main result. The method we use is similar
to the one employed in the previous subsection, and also provides a new proof of the random
walk case. As a preliminary result, we need the following lemma, which plays the same role
as Lemma 1 in the previous subsection.

Lemma 2. Suppose that (5)–(9) are satisfied and that Y is independent of (M1, X1) with
P{Y > x} ∼ CY P{X1 > x}. Then

P{max{M1, X1 + Y } > x} ∼ (E{f (Y )} + E{eαY } + CY E{eαX1})P{X1 > x}.
Proof. Write

P{max{M1, X1 + Y } > x} = P{X1 + Y > x} + P{M1 > x, X1 + Y ≤ x}.
The first term is asymptotically equivalent to (E{eαY }+CY E{eαX1})P{X1 > x}, using a result
of [7]. To estimate the second term, note that (8) allows us to apply the bounded convergence
theorem, which yields

lim
x→∞

P{M1 > x, X1 + Y ≤ x}
P{X1 > x} = lim

x→∞

∫
P{M1 > x, X1 ≤ x − y} d P{Y ≤ y}

P{X1 > x} = E{f (Y )},

which completes the proof of the lemma.

Theorem 3. Suppose that (5)–(9) are satisfied. Then

P{M > x} ∼ E{eαM} + E{f (M)}
1 − E{eαX1} P{X1 > x}.

Proof. As in the proof of Theorem 2, we make use of stochastic ordering arguments. The
sequence (Y↑

n ) is defined as before: Y↑
1 = M1 and Y↑

n+1 = max{Mn+1, Xn+1 + Y
↑
n }, n ≥ 1.

Using the stochastic comparison argumentn times, we find that P{M > x} ≥ P{Y↑
n > x}, which

holds for every n. By repeated application of Lemma 2, we have

P{Y↑
n > x} ∼ C

Y
↑
n

P{X1 > x}, n ≥ 2,

where C
Y

↑
1

is the limit in (8) and

C
Y

↑
n+1

= E{f (Y↑
n )} + E{eαY↑

n } + C
Y

↑
n

E{eαX1}, n ≥ 1.
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Consequently,

lim inf
x→∞

P{M > x}
P{X1 > x} ≥ C

Y
↑
n
, n ≥ 1.

Since Y↑
n ≤st Y

↑
n+1 ≤st M and Y↑

n
d−→ M , by bounded and monotone convergence we find that

C
Y

↑
n

→ CM , where CM satisfies

CM = E{f (M)} + E{eαM} + CM E{eαX1}.
This completes the proof of the asymptotic lower bound.

To obtain an upper bound, we need to construct a random variable Y↓
1 with the property

that Y↓
1 ≥st max{M1, X1 + Y

↓
1 }. Let X be an independent copy of X1 and let Y = (X+ T )×

1(X ≥ y), with y and T large constants. Note that P{Y > x} ∼ eαT P{X1 > x} and
E{eαY } = eαT E{eαX1 1(X1 ≥ y)}. From Lemma 2 we have

P{max{M1, X1 + Y } > x} ∼ (E{f (Y )} + E{eαY } + eαT E{eαX1})P{X1 > x}.
Using the facts that E{f (Y )} is bounded and E{eαX1} < 1, we can choose T and y such that the
prefactor E{f (Y )} + E{eαY } + eαT E{eαX1} is smaller than eαT . Consequently, there exists a
value x0 such that P{Y > x} ≥ P{max{M1, X1 + Y } > x} for x ≥ x0.

Now define Y↓
1 as a random variable independent of (M1, X1) and such that

P{Y↓
1 > x} = P{Y > x}

P{Y > x0} = P{Y > x | Y > x0}.

As in Lemma 3 of [16], for x ≥ x0 we see that

P{max{M1, X1 + Y
↓
1 } > x} = P{max{M1, X1 + Y } > x | Y > x0}

≤ P{max{M1, X1 + Y } > x}
P{Y > x0}

≤ P{Y > x}
P{Y > x0}

= P{Y↓
1 > x}.

The inequality is trivial for x < x0, so we see that Y↓
1 ≥st max{X1,M1 + Y

↓
1 }. The proof is

now completed by defining Y↓
n , n ≥ 2, as in the proof of Lemma 1. SinceM ≤st Y

↓
n for any n,

by applying Lemma 2 we obtain

lim sup
x→∞

P{M > x}
P{X1 > x} ≤ C

Y
↓
n
,

with C
Y

↑
n

defined in a way similar to that in the proof of the lower bound. Using the same
arguments as in the proof of the lower bound, we find that C

Y
↓
n

→ CM , which completes the
proof.

2.4. The Cramér case

In this subsection we review the extension of the classical Cramér case from random walks
to perturbed random walks and regenerative processes. This problem has also been considered
in [25] and [1]. The result presented here is an extension of these two works, and it follows
from Theorem 5.2 of [14]. Actually, there the equation R

d= max{AR̃,B}, which can easily be
reduced to our equation for M by taking logarithms, was considered.
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Theorem 4. (Theorem 5.2 of [14].) Assume that there exists a solution κ > 0 to the equation
E{eκX1} = 1 such that m = E{X1eκX1} < ∞. Assume, furthermore, that X1 is nonlattice and
that E{eκM1} < ∞. Then

P{M > x} ∼ Ke−κx with K = 1

κm
E{eκM1 − eκ(M̃+X1); M1 > M̃ +X1}.

It is easy to see thatK is bounded from above by K̄ = E{eκM1}/(κm). IfM1 is nonnegative
then K is bounded from below by the prefactor CW in the Cramér–Lundberg expansion
P{W > x} ∼ CW e−κx , with W = supn≥0 Sn; see [2, Theorem XIII.5.3, p. 365].

3. A fluid model

To illustrate the general theory developed in the previous section, we now investigate a
simple example. Let J (t), t ≥ 0, be an alternating renewal (0–1) process with generic on-
period Ton and generic off-period Toff , i.e. Ton is the period during which J (s) = 1 and Toff is
the period during which J (s) = 0. Let Y (t) = r

∫ t
0 J (s) ds, t ≥ 0, be the associated integrated

on–off process. The constant r > 0 is called the on rate. Assume that J (t) is such that an
on-period starts at time 0. Let the sequence (Ton,i , Toff,i ), i ≥ 1, representing on-times and off-
times, be independent and identically distributed with (Ton,1, Toff,1)

d= (Ton, Toff). We allow
Ton and Toff to be dependent and assume that Ton + Toff has finite mean. Assume further that
E{J (t)} → ρ ∈ (0, c) for some constant c > 0 called the drain rate. Under these conditions,
the process S(t) = Y (t)− ct, t ≥ 0, is almost surely convergent to −∞. The renewal epochs
for the process S(t), t ≥ 0, are given by Ti = ∑i

k=1(Ton,k + Toff,k), i ≥ 0. In this setting, the
distribution of M can be viewed as the Palm stationary distribution of the amount of fluid in a
buffer fed by an on–off source. This is a simple and well-known model (see, e.g. [17] and [19]),
and as such it provides simple applications of the theory developed in the previous section. In
the setting of that section, we have X1 = (r − c)Ton − cToff , M1 = (r − c)+Ton, and, hence,
M∗

1 = M1.

3.1. An application of Theorems 1, 2, and 4

Assume that r > c and that Ton and Toff are dependent in the following way: let E0, E1,
and E2 be independent random variables with finite means, and suppose that Ton = E0 + E1
and Toff = E0 + E2. In this case,

M1 = (r − c)E0 + (r − c)E1, X1 = (r − c)E1 + (r − 2c)E0 − cE2.

Moreover, E{X1} is assumed to be strictly negative. We now focus on two different scen-
arios.

• Assume that P{E0 > x} is long tailed, that
∫ ∞
x

P{E0 > u} du is subexponential, and
that E1 has a finite moment generating function in a neighborhood of the origin. Then
P{M1 > x} ∼ P{(r−c)E0 > x}, implying that the conditions of Theorem 1 are satisfied.
The property P{M1 > x} ∼ P{X1 > x} is clearly not satisfied. If E0 has a lognormal or
heavy-tailed Weibull distribution, it can actually be shown that

P{X1 > x} ∼ o(P{M1 > x});

we omit the details.
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• Assume that P{E0 > x} ∼ c0e−ν0x and that E{eν0E1} < ∞. Then

P{M1 > x} ∼ c0 E{eν0E1} exp

{
− ν0

r − c
x

}
=: c̄0e−ν̄0x.

Furthermore, we have E{eν̄0X1} < ∞. If this quantity is strictly larger than 1, then we
are in the Cramér case covered by Theorem 4. If the quantity is strictly less than 1, then
the tail behavior of P{M > x} follows from Theorem 2.

3.2. An application of Theorem 3

Assume that r > c, that Ton and Toff are independent, and that Ton is in S(α), α > 0. Then
M1 is in S(α) as well, and P{X1 > x} ∼ E{e−αcToff } P{M1 > x}. Since the class S(α) is closed
under tail equivalence, we see that X+

1 ∈ S(α), which implies (5) and (6). Assume further that
(7) holds. To apply Theorem 3, it remains to verify condition (9). To do so, we write

P{M1 > x, X1 ≤ x − a} = P{M1 > x, M1 − cToff ≤ x − a}
=

∫ ∞

0
P{x < M1 ≤ x + u} d P{cToff − a ≤ u}

∼ P{M1 > x}
∫ ∞

0
(1 − e−αu) d P{cToff − a ≤ u}

= P{M1 > x}(P{cToff ≥ a} − E{e−α(cToff−a) 1(cToff ≥ a)}),
where we have applied the property (5) for M1 in the third step. The tail behavior of M now
follows from Theorem 3, with f (a) = E{(1 − e−α(cToff−a)) 1(cToff ≥ a)}/E{e−αcToff }.
3.3. A fluid model with noise

In this subsection we provide another application of Theorem 1. Let r = c = 1 and let
S(t) = Y (t)+W(t)−t withW(t), t ≥ 0, an independent standard Wiener process. The process
S(t), t ≥ 0, can be interpreted as the net input process of an on–off fluid model perturbed by
Brownian motion, with the additional feature that the on rate equals the drain rate (both are
equal to 1).

The sequence Tn, n ≥ 1, representing the starting points of on-periods, is again a renewal
sequence of the process S(t), t ≥ 0. It is clear that

(M1, X1)
d=

(
sup

0<t≤Ton+Toff

[W(t)− (t − Ton)
+],W(Ton + Toff)− Toff

)
.

Assume that P{Ton > x} is regularly varying of index −ν, ν > 1. We first state some
preliminary results. Combining Theorem 2.1 and Proposition 2.1(i) of [8] we obtain

P
{

sup
0<t<Ton

W(t) > x
}

∼ 1√
π

2ν+1


(
ν + 1

2

)
P{Ton > x2}.

Using a famous result of P. Lévy [23, p. 240], we have that

P
{

sup
0<t<Ton

W(t) > x
}

= P{|W(Ton)| > x}.

By using the symmetry around 0 of the standard normal distribution, we conclude that

P{W(Ton) > x} = 1

2
P{|W(Ton)| > x} ∼ 1√

π
2ν


(
ν + 1

2

)
P{Ton > x2}.

https://doi.org/10.1239/jap/1183667406 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667406


Tail asymptotics of the supremum of a regenerative process 359

In particular, the right tails of the distributions of W(Ton) and sup0<t<Ton
W(t) are regularly

varying with index −2ν. This is an important ingredient in the proof of the following result.

Lemma 3. In the setting of this subsection, we have

P{M∗
1 > x} = P{M1 > x} ∼ P

{
sup

0<t<Ton

W(t) > x
}
, P{X1 > x} ∼ P{W(Ton) > x}.

Proof. First we prove the assertion forM1. From the definition ofM1 it immediately follows
that

lim inf
x→∞

P{M1 > x}
P{sup0<t<Ton

W(t) > x} ≥ 1.

To prove an asymptotic upper bound, we use Toff < ∞ to obtain

M1 ≤ sup
t>0

[W(t)− (t − Ton)
+]

= max
{

sup
0<t<Ton

[W(t)],W(Ton)+ sup
t>Ton

[W(t)−W(Ton)− (t − Ton)]
}

≤ sup
0<t<Ton

[W(t)] + sup
t>Ton

[W(t)−W(Ton)− (t − Ton)].

Since the increments of the Wiener process are independent, it is clear that the two terms in the
last line are independent. Furthermore, the random variable supt>Ton

[W(t)−W(Ton)−(t−Ton)]
has an exponential distribution with mean 1

2 ; see, e.g. [2, Example IX.3.5, p. 258]. Moreover,
the right tail of sup0<t<Ton

W(t) is regularly varying with index −2ν, which leads us to

P
{

sup
0<t<Ton

[W(t)] + sup
t>Ton

[W(t)−W(Ton)− (t − Ton)] > x
}

∼ P
{

sup
0<t<Ton

W(t) > x
}
.

Consequently,

lim sup
x→∞

P{M1 > x}
P{sup0<t<Ton

W(t) > x} ≤ 1,

which implies our first assertion.
To prove the second assertion, let W̃ be another standard Wiener process, independent of

W , Ton, and Toff . We first prove an asymptotic lower bound. Note that

X1
d= W(Ton)+ W̃ (Toff)− Toff .

Consequently, for any y > 0,

P{X1 > x} ≥ P{W(Ton) > x + y} P{W̃ (Toff)− Toff > −y}.
The random variable W(Ton) has a right tail which is regularly varying with index −2ν. In
particular, its right tail is long tailed. This implies that

lim inf
x→∞

P{X1 > x}
P{W(Ton) > x} ≥ P{W̃ (Toff)− Toff > −y}.

The asymptotic lower bound now follows by letting y → ∞. We now turn to the upper bound.
Since

P{W̃ (Toff)− Toff > x} ≤ P
{

sup
t>0

[W̃ (t)− t] > x
}

= e−2x,

the upper bound follows by an argument similar to that made for M1.
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Putting everything together, it follows that P{M1 > x} ∼ 2 P{X1 > x}, and both tails are
regularly varying with index −2ν. Using Theorem 1, this yields

P{M > x} ∼ 1

E{Toff}
1√
π

2ν+1


(
ν + 1

2

) ∫ ∞

x

P{Ton > u2} du.

To conclude, it is interesting to note that the tail asymptotics of M in the zero-delayed case
discussed here are regularly varying with index 1 − 2ν. This differs significantly from the tail
behavior in the delayed (stationary) case, which is regularly varying with index 2 − 2ν; see
Theorem 4.1 of [29].

4. A model from insurance risk

Consider the regenerative process S(t), t ≥ 0, given by

S(t) =
N(t)∑
i=1

Ui − t, t ≥ 0,

whereN(t), t ≥ 0, is a Cox process with an underlying regenerative process R(t), t ≥ 0, with
renewal epochs Ti, i ≥ 1. That is, there exists a nonnegative measurable function λ : R →
R+ ∪ {0} with the following property: for a realization r(t), t ≥ 0, of the process R(t), t ≥ 0,
the processN(t), t ≥ 0, has the same law as an inhomogeneous Poisson process with intensity
λ̄(t) = λ(r(t)) at time t ≥ 0. Detailed discussions of Cox processes and their impact on
risk theory can be found in [15], [24], [5], [25], and [3]. The claim sizes Ui, i ≥ 1, are
independent, identically distributed random variables independent of the process N(t), t ≥ 0,
with a common nonlattice distribution function FU . Let x be the initial reserve and assume that
S(t) → −∞ almost surely, as t → ∞. The process x − S(t), t ≥ 0, is known as the surplus
process, and we say that ruin occurs if this process hits 0. The infinite-horizon ruin probability
is then given by

ψ(x) = P{M > x}.
4.1. Applications of Theorem 4

We first focus on the Cramér case covered by Theorem 4. That is, we assume that there
exists a constant κ > 0 such that

E{eκS(T1)} = E exp

{∫ T1

0
λ(R(s)) ds(m̂U (κ)− 1)− κT1

}
= 1,

where m̂U (θ) = E{eθU }. In risk theory, κ is called the adjustment coefficient. In addition, we
assume that

m = E

{
m̂′
U(κ)

∫ T1

0
λ(R(s)) ds − T1

}
exp

{∫ T1

0
λ(R(s)) ds(m̂U (κ)− 1)− κT1

}
< ∞

and that

E

{
exp

{∫ T1

0
λ(R(s)) ds(m̂U (κ)− 1)

}}
< ∞.

From Theorem 4 we derive the exponential asymptotics

ψ(x) ∼ Ke−κx. (10)
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Note that the constant K can be bounded from above by

K̄ = 1

κm
E

{
exp

{
κ

N(T1)∑
i=1

Ui

}}
= 1

κm
E

{
exp

{∫ T1

0
λ(X(s)) ds(m̂U (κ)− 1)

}}
.

An important special case is the Björk–Grandell model, where λ(x) = x and R(s) = Li
for

∑i−1
j=1 σj ≤ s <

∑i
j=1 σj , with (Li, σi), i ≥ 1, an independent, identically distributed

sequence of vectors with positive components. In this particular case, the adjustment coefficient
κ > 0 is a solution to the equation

E{exp{σL(m̂U (κ)− 1)− κσ }} = 1,

where (σ, L) are generic (σi, Li). The upper bound of K satisfies

K̄ = (1/κm)E{exp{σL(m̂U (κ)− 1)}}
with

m = E{(m̂′
U(κ)σL− σ) exp{σL(m̂U (κ)− 1)− κσ }}.

Existence of the exponential asymptotics was first established in [25]. A different upper bound
for K was derived in Theorem 12.5.3 of [24].

We now discuss an example of a Cox process where the intensity process is described by
a diffusion process. A motivating example comes from vehicle insurance, where the intensity
of the claim arrivals may depend on the density of vehicles insured. The latter can randomly
change in time due to the variability of the number of inhabitants, or market share within an area.
A functional of a diffusion process seems flexible enough to take the stochastic variability of the
intensity process into account; we refer the reader to [26] for further discussion and motivation.
We can use the exponential asymptotics given by (10) to obtain an exponential approximation of
the ruin probability in this model. We consider the example of an Ornstein–Uhlenbeck process
R(t), t ≥ 0, which starts at 0 and has generator

(Af )(x) = 1

2

d2

dx2 f (x)− bx
d

dx
f (x),

for some b > 0. The domain of this generator contains all functions f in C2(R). In addition,
we assume that λ(x) = x2 + k for k ≥ 0. In [22] it was shown that if E{U} < 2b/(1 + 2bk)
then S(t) tends to −∞ almost surely as t → ∞; the inequality E{U} < 2b/(1 + 2bk) will be
assumed to hold from now on. Note thatR(t), t ≥ 0, is a regenerative process with regeneration
epochs Tn+1 = inf{t ≥ In : R(t) = 0}, where In = inf{t ≥ Tn : |R(t)| = 1}, n ≥ 0.

Let η > 0. Under Q, the twisted law of R with respect to the martingale

M(t) = exp

{
−η

2 − b2

2

∫ t

0
R2(s) ds − η − b

2
(R2(t)− R2(0)− t)

}
, t ≥ 0,

we obtain an Ornstein–Uhlenbeck process with parameter η (see [21]). Let

Z =
∫ T1

0
λ(R(s)) ds =

∫ T1

0
(R2(s)+ k) ds
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and ξ = m̂U (κ) − 1. Applying the twisted law with η = √
b2 − 2ξ , we obtain the following

equation for the adjustment coefficient κ: EQ{e−(η̂+κ)T1} = 1, where η̂ = −(b − η)/2 − ξk.
Hence, η̂ + κ = 0 and κ solves the equation

κ = b − √
b2 − 2(m̂U (κ)− 1)

2
+ (m̂U (κ)− 1)k.

If the claims are exponentially distributed with mean ϕ and k = 0 then, for ϕ < 2b, we have

κ = bϕ + 1

2ϕ

(
1 −

√
1 − 2ϕ(2b − ϕ)

(bϕ + 1)2

)
.

To the best of the author’s knowledge, this is the first exact expression for the adjustment
coefficient in a Cox model driven by a diffusion process. In addition, we can obtain an explicit
expression for K̄ , the upper bound of K . Note that T1 is the sum of the exit time from interval
[−1, 1] and the (independent) first passage time into the negative half-line for the Ornstein–
Uhlenbeck process starting from 1. Write D−ζ for the parabolic cylinder function and set

S(ζ, x, y) = 
(ζ )

π
e(x

2+y2)/4(D−ζ (−x)D−ζ (y)−D−ζ (x)D−ζ (−y)).

Using arguments similar to those in [22] and results from [6, p. 429, p. 434], for η̂/η > −2 we
obtain

K̄ = 1

κm
E{eξZ} = 1

κm
EQ{e−η̂T1} = 1

κm
H(η̂),

where

H(s) = S(s/η,
√

2η, 0)+ S(s/η, 0,−√
2η)

S(s/η,
√

2η,−√
2η)

eη/2D−s/η(
√

2η)

D−s/η(0)
for m = (∂/∂κ)H(η̂ + κ).

4.2. An application of Theorem 2

Consider the Björk–Grandell model with P{L = λi} = pi > 0, i = 0, 1, . . . , d. We assume
that λ0 > λ1 > · · · > λd > 0 and that λ0 E{U} < 1. Moreover, let

P{σ0 > x} := P{σ > x | L = λ0} ∼ x−α0 l0(x)

for a slowly varying function l0, and let there exist a solution ν0 > 0 to the equation φ0(θ) =
λ0(m̂U (θ)− 1)− θ = 0. We assume that m̂U (θ) is finite in a neighborhood of ν0. Also define
φi(θ) = λi(m̂U (θ)− 1)− θ . Writing τ(x) = inf{t ≥ 0 : S(t) > x} for the ruin time, we find
that

P{M1 > x} = P{τ(x) < σ } =
d∑
i=0

P{τ(x) < σ | L = λi}pi.

Our main goal is to determine the tail behavior of M1, and to verify that the conditions of
Theorem 2 are satisfied.

Proposition 1. In the setting of this subsection, we have

P{M1 > x} ∼ p0 P

{
σ0 >

x

φ′
0(ν0)

}−φ′
0(0)

φ′
0(ν0)

e−ν0x.
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Proof. We first focus on the tail behavior of P{M1 > x | L = λ0}. A crucial observation is
that, conditionally upon L = λ0, the risk process evolves according to a standard compound
Poisson process with rate λ0 up to time σ0. Let P0{·} be the probability measure under which the
intensity equals λ0 (we define Pi{·} similarly). Then P{M1 > x | L = λ0} = P0{τ(x) < σ0},
meaning that σ0 is independent of (S(t)) under P0{·}. We now state two important results,
which directly follow from results of [18]. Define d̂ = 1/φ′

0(ν0) and let ε > 0. Corollary 2.3
of [18] implies that

P0{τ(x) < (d̂ + ε)x} ∼ P0{τ(x) < ∞} ∼ −φ′
0(0)

φ′
0(ν0)

e−ν0x. (11)

Moreover, for every ε ∈ (0, d̂), there exists a constant δ > 0 such that

P0{τ(x) < (d̂ − ε)x} = o(e−(ν0+δ)x). (12)

Therefore, from (11),

P0{τ(x) < σ0} ≥ P0{τ(x) < (d̂ + ε)x} P{σ0 > (d̂ + ε)x}.

Combining this with the fact that P{M1 > x} ≥ p0 P0{τ(x) < σ0}, we obtain

lim inf
x→∞

P{M1 > x}
p0 P{σ0 > x/φ′

0(ν0)}(−φ′
0(0)/φ

′
0(ν0))e−ν0x

≥
(

d̂

d̂ + ε

)α0

.

The proof of the lower bound is now completed by letting ε → 0.
For the upper bound, observe that

P{M1 > x} ≤ p0 P0{τ(x) < σ0} +
d∑
i=1

Pi{τ(x) < ∞}. (13)

Since λi > λ0 for i ≥ 1, and since the moment generating function of U is finite in a
neighborhood of ν0, the quantity νi = sup{s : φi(s) ≤ 0} is strictly larger than ν0 for i ≥ 1.
From Lundberg’s inequality, we find that

d∑
i=1

Pi{τ(x) < ∞} ≤
d∑
i=1

e−νix = o(e−(ν0+η)x) (14)

for an appropriate choice of η > 0. In addition, observe that

P0{τ(x) < σ0} ≤ P0{τ(x) ≤ (d̂− ε)x}+P0{∞ > τ(x) > (d̂− ε)x} P{σ0 > (d̂− ε)x}. (15)

So from (11)–(12), and by substituting the bounds (15) and (14) into (13), we find that

lim sup
x→∞

P{M1 > x}
p0 P{σ0 > x/φ′

0(ν0)}(−φ′
0(0)/φ

′
0(ν0))e−ν0x

≤
(

d̂

d̂ − ε

)α0

.

The proof of the upper bound is now completed by letting ε → 0.
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We now derive the behavior of the ruin probability ψ(x) as x → ∞. Since λi < λ0 for
i ≥ 1, it follows that φi(ν0) < 0 if i ≥ 1. Consequently,

E{eν0X1} = E{eν0S(σ)} =
d∑
i=0

pi E{eν0S(σ) | L = λi} =
d∑
i=0

pi E{eφi(ν0)σ | L = λi} < 1.

(16)
Applying Theorem 2 yields

ψ(x) = P{M > x} ∼ CRx
−α0 l0(x)e

−ν0x,

for CR = −p0φ
′
0(0)(φ

′
0(ν0))

α0−1/(1 − E{eν0S(σ)}), where E{eν0S(σ)} is as given in (16).

5. Concluding remarks

We have examined the tail behavior of the supremum of a process of which the increment pro-
cess is regenerative. We identified four different regimes, all exhibiting qualitatively different
behavior for P{M > x} as x → ∞. Our results focus on the zero-delayed case. It is not difficult
to extend our results to the delayed case, using the representation M = max{M0, X0 +Mzd}
with Mzd a random variable independent of (M0, X0), having the same distribution of M as in
the zero-delayed case, where M0 = supt≤T0

S(t) and X0 = S(T0).

Acknowledgements

The authors are indebted to Maria Vlasiou and the referee for constructive comments, which
significantly improved the presentation of our results. Z. Palmowski gratefully acknowledges
the support from grants NWO 613.000.310 and KBN 1P03A03128. This research would not
have been possible without the hospitality of EURANDOM.

References

[1] Araman, V. F. and Glynn, P. (2006). Tail asymptotics for the maximum of perturbed random walk. Ann. Appl.
Prob. 16, 1411–1431.

[2] Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.
[3] Asmussen, S., Schmidli, H. and Schmidt, V. (1999). Tail probabilities for non-standard risk and queueing

processes with subexponential jumps. Adv. Appl. Prob. 31, 422–447.
[4] Bertoin, J. and Doney, R. (1996). Some asymptotic results for transient random walks. Adv. Appl. Prob. 28,

207–226.
[5] Björk, T. and Grandell, J. (1988). Exponential inequalities for ruin probabilities in the Cox case. Scand.

Actuarial J. 1988, 77–111.
[6] Borodin, A. N. and Salminen, P. (1996). Handbook of Brownian Motion—Facts and Formulae. Birkhäuser,

Basel.
[7] Cline, D. (1987). Convolution tails, product tails, and domains of attraction. Prob. Theory Relat. Fields 72,

529–557.
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