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ORTHOGONAL FUNCTIONS AND ZERNIKE
POLYNOMIALS—A RANDOM VARIABLE

INTERPRETATION
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Abstract
There are advantages in viewing orthogonal functions as functions generated by a ran-
dom variable from a basis set of functions. Let Y be a random variable distributed uni-
formly on [0, 1]. We give two ways of generating the Zernike radial polynomials with
parameter l, {Z l

l+2n(x), n ≥ 0}. The first is using the standard basis {xn, n ≥ 0} and
the random variable Y 1/(l+1). The second is using the nonstandard basis {x l+2n, n ≥ 0}
and the random variable Y 1/2. Zernike polynomials are important in the removal of
lens aberrations, in characterizing video images with a small number of numbers, and
in automatic aircraft identification.

2000 Mathematics subject classification: primary 42A16; secondary 45B05.
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1. Introduction and summary

Orthogonal functions arise naturally as eigenfunctions of Fredholm integral equations
and Green’s functions of differential equations. Among their many uses, they give a
generalized Fourier expansion of a function. Section 2 gives a brief presentation of
the theory of orthogonal functions and Fourier series in terms of random variables.
The idea of expressing orthogonal function theory in terms of random variables was
introduced in [13]. This also shows some of the advantages of this point of view.

Section 3 gives a Gram–Schmidt procedure for obtaining real functions (not
necessarily polynomials) that are orthogonal with respect to any real random
variable X in the sense that

E fm(X) fn(X)= 0 for m 6= n, (1.1)

starting from any given set of real functions {gn(x), n ≥ 0}. We shall say that
functions { fn(x), n ≥ 0} satisfying (1.1) are X-orthogonal. The basis functions
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{gn(x)} generally have a simple form. For example for orthogonal polynomials, one
takes gn(x)= xn for n ≥ 0, or g0(x)= 1, gn(x)= (x − E X)n for n ≥ 1. We call
these the noncentral and central basis functions, respectively. They generate the same
X -orthogonal polynomials. However, using the central basis gives fn(x) in simpler
form in terms of the central moments of X , rather than in terms of its noncentral
moments.

This leads to several distinct Gram–Schmidt procedures for obtaining the Zernike
radial polynomials.

Section 4 gives a new derivation of the explicit formulas for the Zernike radial
polynomials. These formulas were derived in [2] from the Jacobi polynomials.
However, our derivation is given in terms of random variables. An explicit expression
for these polynomials, as well as their geometric generating function, is given in [3].

When observations are made on an annulus, say β ≤ r ≤ 1, rather than on the circle
r ≤ 1, some of the results on Zernike polynomials have been extended by [8]. In
optics, Zernike polynomials are used in the analysis of interferogram fringes and for
minimizing aberrations when grinding lenses—see, for example, [5].

A number of papers have given methods for obtaining the Fourier coefficients of an
arbitrary function on the circle using the Zernike polynomials. Teague [7] calls these
coefficients the Zernike moments, and gives their relation to the ordinary moments of
the function. He shows that under rotation by an angle θ , the Fourier coefficients are
the same except for a factor eilθ , where the index l is given in Section 4. He also gives
their leading invariants. His applications include characterizing video images with
a small number of numbers, say 20, automatic aircraft identification, and automatic
identification of biological patterns. Prata and Rusch [6] compare the matrix inversion
method and the integration method for obtaining the Fourier coefficients (which they
call the Zernike polynomials expansion coefficients), giving an integration algorithm
based on their new expressions for the integral of a product of a power and a Zernike
polynomial. They also give the interesting recurrence formulas (5) and (6) for the
Zernike radial polynomials. For other references, see [9] and Wikipedia.

2. Fourier series

Let µ be a finite measure on a set �. Typically �⊂ Rq for some q , but much more
general domains are possible.

Let L2(p, µ) be the space of functions g :�→ C p such that
∫
|g|2 dµ <∞ where∫

|g|2 dµ=
∫
�
|g(x)|2 dµ(x). Let { fn, n = 0, 1, . . .} be a complete set of functions

in L2(p, µ). This holds, for example, if∫
fng dµ= 0, n = 0, 1, . . . ⇒ g = 0 almost everywhere µ

or if Parseval’s identity holds. Then any function g ∈ L2(p, µ) can be written as a
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linear combination of { fn},

g(x)=
∞∑

n=0

cn(g) fn(x), (2.1)

where convergence is in L2(p, µ),∫
|g − gN |

2 dµ→ 0 as N →∞ where gN (x)=
N∑

n=0

cn(g) fn(x).

Convergence holds more strongly under extra conditions. For example
[4, Theorem 9.1] gives conditions for pointwise convergence of gN to g. Now suppose
that { fn} are orthonormal with respect to µ:∫

f ∗m fn dµ=
∫
�

fm(x)
∗ fn(x) dµ(x)= δmn, (2.2)

where f ∗ is the transpose of the complex conjugate of f and δmn = 1 or 0 for m = n
or m 6= n. Then the Fourier coefficient cn(g) in (2.1) is given simply by

cn(g)=
∫

f ∗n g dµ,

and Parseval’s identity states that∫
|g|2 dµ≡

∞∑
n=0

|cn(g)|
2.

If we require only that { fn} be orthogonal rather than orthonormal, (2.1) holds with

cn(g)=

∫
f ∗n g dµ∫
| fn|

2 dµ
,

and Parseval’s identity becomes∫
|g|2 dµ≡

∞∑
n=0

∣∣∫ f ∗n g dµ
∣∣2∫

| fn|
2 dµ

. (2.3)

Orthonormal functions arise naturally as eigenfunctions of symmetric functions
K (x, y) on �2 satisfying∫ ∫

K (x, y)2 dµ(x) dµ(y) <∞;

see, for example, Withers [10–12].
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2.1. Orthogonal functions in terms of a random variable The standardized
measure

dµ0(x)=
dµ(x)

µ(�)

has total measure 1, so it is a probability measure. So if�⊂ Rq , then one can construct
a random variable X with domain � such that

PX (x)= µ0((−∞, x]) where we shall write PX (x)= Probability(X ≤ x).

Set fn0(x)= fn(x)µ(�)1/2, n ≥ 0. If { fn} are orthonormal with respect to µ,
then { fn0} are X-orthonormal:

E fm0(X)
∗ fn0(X)=

∫
f ∗m0 fn0 dµ0 =

∫
f ∗m fn dµ= δmn.

So without loss of generality we shall assume that µ(�)= 1, so that (2.2) and (2.3)
can be written

E fm(X)
∗ fn(X)= δmn, E |g(X)|2 =

∞∑
n=0

|E fn(X)∗g(X)|2

|E fn(X)2|
.

If f0(x)= 1, the orthogonality condition
∫

f ∗m fn dµ= 0 for m 6= n can now be
written

E fn(X)= 0 for n > 0,

cov( fm(X), fn(X))= 0 for m 6= n,

where
cov(X, Y )= E(X − E X)(Y − EY );

that is, { fn(X)} is an infinite set of uncorrelated random variables with means all zero,
except for f0(X)= 1. This gives a very nice interpretation of orthogonality in terms
of the random variable X .

In the rest of this paper we shall assume that p = q = 1 and that the functions we
are dealing with are real.

3. Gram–Schmidt procedures

Let X be a random variable in a set �, typically the real line. Let {gn(x), n ≥ 0} be
a set of real functions defined on �, satisfying Egn(X)2 <∞.

X -orthogonal functions, { fn(x), n ≥ 0}, are often generated from a simpler
set of basis functions {gn, n = 0, 1, . . .} by a Gram–Schmidt orthogonalization
procedure. These are sequential methods starting with f0(x)= g0(x). For orthogonal
polynomials, the usual choice is the noncentral basis gn(x)= xn . To make these
polynomials X -orthonormal, one merely scales them by setting

fn0(x)=
fn(x)

h1/2
n

where hn = E fn(X)
2 so that E fn0(X)

2
= 1.
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We shall assume that all the bivariate moments

Mkn = Egk(X)gn(X)

are finite. This condition is needed so that the coefficients of { fn(x), n ≥ 0} are finite.
Gram–Schmidt orthogonalization can be achieved in number of ways. Here we

modify the third way given in [13]. We want to construct orthogonal fn of the form

fn(x)=
n∑

j=0

anj g j (x) where ann = 1.

This is equivalent to the form

fn(x)= gn(x)+
n−1∑
j=0

bnj f j (x).

So for 0≤ j < n, 0= E f j (X) fn(X)= A jn + bnj h j where A jn = E f j (X)gn(X),
giving bnj =−A jn/h j . So

f0(x)= g0(x), fn(x)= gn(x)−
n−1∑
j=0

f j (x)A jn

h j
, n ≥ 1

where A jn is given sequentially in terms of the moments by

A0n = M0n, Akn = Mkn −

k−1∑
j=0

A jk A jn

h j
, 1≤ k < n. (3.1)

On substitution one obtains

hn = Ann = Mnn −

n−1∑
j=0

A2
jn

A j j
,

so that (3.1) also holds for k = n. For example h0 = A00 = M00,

A1n = M1n −
M01 M0n

M00
, n ≥ 1,

A2n = M2n −
M02 M0n

M00
−

A12 A1n

A11
, n ≥ 2,

and explicit formulas for { fn, 0≤ n ≤ 3} are f0(x)= g0(x),

f1(x)= g1(x)−
f0(x)M01

M00
, f2(x)= g2(x)−

f0(x)M02

M00
−

f1(x)A12

A11
,

f3(x)= g3(x)−
f0(x)M03

M00
−

f1(x)A13

A11
−

f2(x)A23

A22
,

https://doi.org/10.1017/S1446181109000169 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000169


440 C. S. Withers [6]

where

A11 = M11 −
M2

01

M00
, A12 = M12 −

M01 M02

M00
, A13 = M13 −

M01 M03

M00
,

A22 = M22 −
M2

02

M00
, A23 = M23 −

M02 M03

M00
−

A12 A13

A11
.

The moments needed for fn are {Mk j , 0≤ k < n, k ≤ j ≤ n}.

EXAMPLE 1. Suppose that

gn(x)= x l+2n on �= [0, 1]

for some constant l. Then

Mkn = m2l+2k+2n where m j = E X j .

If PX (x)= x2 on �= [0, 1], that is, if X =U 1/2 where U is distributed uniformly
on [0, 1], then m j = 2/( j + 2).

We shall see in Section 4 that the corresponding X -orthogonal fn(x) are just the
Zernike radial polynomials scaled so that their leading coefficient is 1.

A disadvantage of the method of Example 1 is its use of a nonstandard basis.

EXAMPLE 2. Consider the usual noncentral basis gn(x)= xn . Then

Mkn = mk+n where m j = E X j .

So the first 2n − 1 moments of X , {m j = E X j , 1≤ j < 2n}, are needed to
compute fn(x):

f0(x)= 1, fn(x)= xn
−

n−1∑
j=0

f j (x)A jn

A j j
, n ≥ 1,

where A jn are given sequentially by

A0n = mn, A jn = mn+ j −

j−1∑
k=0

Ak j Akn

Akk
, 0< j < n.

If one uses instead the central basis, one obtains fn in terms of the central moments
ν j = E(X − E X) j and central versions of A jn . By [13] the first five X -orthogonal
polynomials are given in terms of y = x − E X by

f1(x)= y, f2(x)= y2
− ν2 −

yν3

ν2
, f3(x)= y3

− ν3 −
yν4

ν2
−

f2(x)A23

A22
,
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where

A22 = ν4 − ν
2
2 −

ν2
3

ν2
, A23 = ν5 − ν2ν3 −

ν3ν4

ν2
,

f4(x)= y4
− ν4 −

yν5

ν2
−

f2(x)A24

A22
−

f3(x)A34

A33
,

in which

A24 = ν6 − ν2ν4 −
ν3ν5

ν2
, A33 = ν6 − ν

2
3 −

ν2
4

ν2
−

A2
23

A22
,

A34 = ν7 − ν3ν4 −
ν4ν5

ν2
−

A23 A24

A22
,

and

f5(x)= y5
−
ν5 − yν6

ν2
−

f2(x)A25

A22
−

f3(x)A35

A33
−

f4(x)A45

A44
,

where

A25 = ν7 − ν2ν5 −
ν3ν6

ν2
, A35 = ν8 − ν3ν5 −

ν4ν6

ν2
−

A23 A25

A22
,

A44 = ν8 − ν
2
4 −

ν2
5

ν2
−

A2
24

A22
−

A2
34

A33
,

A45 = ν9 − ν4ν5 −
ν5ν6

ν2
−

A24 A25

A22
−

A34 A35

A33
.

Now suppose that PX (x)= x l+1 on �= [0, 1], where l + 1> 0 so that m j =

(l + 1)/(l + 1+ j). We shall see in the next section that it is precisely this example
(with l = 0, 1, . . .), that generates the Zernike radial polynomials—but this time after
a transformation.

NOTE 3.1. If Y is a one-to-one transformation of X , say Y = h(X) :�→�′ and
y = h(x), then PY (y)= PX (x), that is, P(Y ≤ y)= P(X ≤ x). For example, if X has
a density pX (x) with respect to Lebesgue measure, then so does Y and it is given by

pY (y)= pX (x)
dx

dy
, y ∈�′.

The Y -orthogonal functions are fnY (y)= fn(x) since E fmY (Y ) fnY (Y )= E fm(X)
fn(X). If { fn} are generated by {gn}, then { fnY } are generated by gnh(y)= gn(x).

NOTE 3.2. Suppose that a(x) is a function satisfying Ea(X)2 = 1. Then fnZ (x)=
fn(x)/a(x) are the Z -orthogonal functions of a random variable Z with density

d PZ (x)= a(x)2 d PX (x)
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since
E fm(X) fn(X)= Ea(X)2 fm Z (X) fnZ (X)= E fm Z (Z) fnZ (Z).

If { fn} are generated by orthogonalizing {gn}, then { fnZ } can be generated by
orthogonalizing {g̃na(x)= gn(x)/a(x)}.

4. Zernike polynomials

The Zernike circular polynomials Z l
n(x, θ) are orthogonal over the circle with unit

radius: ∫ 1

0

∫ 2π

0
Z l

n(x, θ) Z l ′
n′(x, θ) d PX (x) d P2(θ)=

δnn′δll ′

n + 1
for n ≥ |l|,

where PX (x)= x2 on [0, 1], P2(θ)= θ/(2π) on [0, 2π ].
This can be written

E Z l
n(X, 2) Z l ′

n′(X, 2)=
δnn′δll ′

n + 1
for n ≥ |l|,

where (X, 2) are independent random variables with distributions PX (x), P2(θ).
So 2 has the uniform distribution on [0, 2π ] and X = Y 1/2 where Y has the uniform
distribution on �= [0, 1]:

x2
= P(X ≤ x)= P(Y ≤ y)= y for y = x2

= h(x), say.

Because X and2 are independent, Z l
n(x) factorizes into the product of two functions,

each orthogonal with respect to one of these random variables:

Z l
n(x)= R|l|n (x)e

ilθ , l = . . . ,−1, 0, 1, . . . ,

where eilθ are orthogonal with respect to 2, and Rl
n(x), known as the Zernike radial

polynomials, are orthogonal with respect to X :

Ee−il2eil ′2
= δll ′, E Rl

n(X)R
l
n′(X)=

δnn′

n + 1
.

As noted in [3, Equation (2.8)],

fn(x)= Rl
l+2n(x), n ≥ 0, l ≥ 0,

are generated by the basis gn(x)= x l+2n , not the basis gn(x)= xn , and so are
proportional to the polynomials generated in Example 1.

We now show how to use Notes 3.1 and 3.2 to put fn(x) in the context of the
previous section. By Note 3.1, fn(x) is generated by

gn(x)= cx l+2n
= cyl/2+n

= gnh(y) for x = y1/2,
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where c 6= 0 is any constant. Set a(y)= cyl/2 and choose c so that

1= Ea(Y )2 =
c2

l + 1
that is, c = (l + 1)1/2.

Then by Note 3.2, {g̃na(y)= gnh(y)/a(y)= yn
} generate polynomials { fnZ (y)=

fnY (y)/a(y)} on [0, 1] that are orthogonal with respect to Z where d PZ (y)=
a(y)2 d PY (y), that is, PZ (y)= yl+1:

E fm Z (Z) fnZ (Z)= E fmY (Y ) fnY (Y )= E fm(X) fn(X)=
δmn

n + l + 1
.

But we know the orthogonal polynomials generated by {yn
} and the beta random

variable Bβα with density yβ(1− y)α/B(β + 1, α + 1), since A = 2Bβα − 1 has
density

pA(x)=
(1− x)α(1+ x)β

2α+β+1 B(β + 1, α + 1)

on [−1, 1], with orthogonal polynomials the Jacobi polynomials if standardized so that
fn(1)=

(n+α
n

)
; see [1] and [13, Example 4.1]. Equivalently, the Jacobi polynomials

on [0, 1] are generated by {yn+β(1− y)α , n ≥ 0}. So taking α = l, β = 0, by the
uniqueness up to constant multiplier of the orthogonal polynomials generated by a
given random variable, we conclude that fnZ (y) is a constant multiple of the shifted
Jacobi polynomial with α = l, β = 0, that is, the polynomial generated by B0l . So
from the formula for the Jacobi polynomial, one obtains

fn(x)= Rl
l+2n(x)=

n∑
s=0

(−1)s(2n + l − s)!
x l+2n−2s

s!(l + n − s)!(n − s)!
, n ≥ 0,

that is,

n! fn(x)= n!Rl
l+2n(x)=

n∑
s=0

(−1)s
(

n

s

)
[l + 2n − s]s x l+2n−2s, (4.1)

where

[a]s = a(a − 1) · · · (a − s + 1)=
a!

(a − s)!
.

(Some references give this as the definition of the Zernike radial polynomials.) This
is a version of the derivation in [2], but it is given here in terms of random variables.
Also our (4.1) is simpler than the previous formula. Note that

fnZ (y)= (l + 1)−1/2 f ′nZ (y), where f ′nZ (y)=
n∑

s=0

(−1)s
(

n

s

)
[l + 2n − s]s yn−s,

has leading coefficient 1. So f ′nZ is just the polynomial generated by Example 1.
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