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A CANONICAL FORM AND SOLUTION FOR THE
MATRIX RICCATI DIFFERENTIAL EQUATION
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Abstract

A canonical form of the self-adjoint Matrix Riccati Differential Equation with constant
coefficients is obtained in terms of extremal solutions of the self-adjoint Matrix Riccati
Algebraic (steady-state) Equations. This form is exploited in order to obtain a convenient
explicit solution of the transient problem. Estimates of the convergence rate to the steady
state are derived.

Introduction

There is a long history of interest in quadratic differential equations in mechanics
(Bolza [3]), control theory (Kalman [6]) and systems theory (Herman [5]). Reid
[10] considered the special system

P = -A - PB - DP - PCP (1)

where P = dP/dt, P = P(t) is an m X n matrix with complex entries, and
A = A(t), B = B(t), D = D(t), C - C(t) are respectively m X n, n X n, m X m,
n X m matrices with complex entries, which are locally Lebesgue integrable. Reid,
(following Bernoulli) reduced (1) to the consideration of

where U = U(t) and V= V(t) are respectively n X m and mXm matrices,
ob ta in ing m a n y interesting results. If m = n, then the correspondence between (1)
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356 R. B. Leipnik [2|

and (2) is effected by the Bernoulli formula

P{t)=V{t)U~\t). (3)

The self-adjoint case D = B*, A = A*, C = C* has many applications in the
calculus of variations and hence in control theory. Also, the non-self-adjoint case
appears in scattering theory (Reid [10], Redheffer [9]). In most engineering
problems, self-adjointness (either real or Hermitian) is assumed, the coefficient
matrices A, B,C, D = B* are taken as constant, and a self-adjoint solution
P = P* is desired, starting from a self-adjoint initial matrix P(0) = P*(0). These
problems can lead to numerical difficulties which we can try to circumvent. We
shall obtain a canonical form (in terms of steady-state solutions) and an explicit
solution convenient for high-speed computing and error estimation in medium to
large systems (n > 8, say). Previously, Bellman [2] found an elegant solution for
special A, B, C, and B. D. O. Anderson [1] found a general solution requiring
somewhat more computing. Our approach exploits these ideas, as well as alge-
braic results of Coppel [4] and Kucera [7]. These results relate to the self-adjoint
algebraic (steady-state) matrix Riccati equation

PB + B*P + PCP = -A. (4)

In Section 2, the canonical form for (1) is derived and expressed in terms of a
pair of solutions of (4) and of bisymmetric matrices. In Section 3, functions of
bisymmetric matrices are shown to be bisymmetric, permitting the (transient)
solution of (1) to be expressed explicitly (in Section 4). Convergence rates of the
transient solution to the steady-state are discussed in Section 5.

2. Canonical form

Consider now the equation

P = -A - PB - B*P - PCP (5)

and make the transformation

P = Z*PlZ + H where H = H* = constant, Z = constant, (6)

and note that P1 satisfies

P, = -BtP, - PXB, - P^P, - Ax (7)

where

B* = Z*~\B* + HC)Z*, C, = ZCZ\

AY = Z*-\A + B*H + HB + HCH)Z~\

We wish to choose H, Z so that
B* = -Bx, C, = -A, (9)
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[3] Matrix Riccati equation 357

which yields our canonical form for (7). Condition (9) is clearly implied by the
coupled equations

(Z*Z){B + CH) = -(B* + HC)(Z*Z), (10)

(Z*Z)C(Z*Z) = -A- B*H - HB- HCH, (11)

The coupled system (10), (11) is uncoupled by the substitution

Z*Z = (P+- P~)/2, H = (P++ P~)/2 (12)

if P+, P~ satisfy the equations

B*P++ P+B + P+CP+= -A,

B*P+ PB + P~CP'= -A

and (P+)* = P+, (P~)* = P~ and if, in addition, the chosen P+, P~ satisfy
P+> P-.

Motivation for the steps (6)-(12), the key novelty in the paper, can be supplied
by noting that if P + is normalized to / and P" to - / , then Z*Z = / and H = 0, so
P = ZlPxZ, Bx = ZBZ'1, Cx = ZCZ'1, Ax = ZAZ'1. The whole procedure is
now merely a unitary transformation of the original problem valid when B is
skew-Hermitian and C is already equal to -A. This useful comment was provided
by a referee.

To see that (12) uncouples (10), (11), simply form

2(P+CP++ P'CP-) = (P++ P-)C(P++ P-) +(P+- P~)C(P+- /»"),

(13a)

2(P+CP+- P~CP~) = (P++ P-)C(P+- P-) +(/»+- P-)C{P++ P-).

(13b)

Addition and subtraction of (13a) and (13b) yields (10), (11). (In the special
case, (13) becomes 2(2C) = 2C(2) and 0 = 0).

Assume, from now on, that C < 0, (B, C) is controllable and the matrix

B C
-A -B*

has no pure imaginary eigenvalues. Then (4) has a unique, symmetric solution P+

such that all eigenvalues of B + CP+ have negative real part and a unique,
symmetric solution P~ such that all eigenvalues of B + CP~ have positive real
part. Moreover P+ and P~ are the maximal and minimal symmetric solutions of
(27), and P+> P~. (These results follow from Coppel [4, Corollaries of Theorems
6 and 2].)
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3. Bisymmetric matrices

We begin with the reduced equation

/>, = -BtP, - P,B, - P.C.P, - A, (14)

under the condition

B* = -Bu Cx = -A, (15)

obtained in Section 2.
If V(t) is a nonsingular solution of the linear differential equation

v= [B1 + cy^oip (16)
then V(t) and U(t) = P1(/)F(/) satisfy the extended equation

(17)

Conversely, if U(t), V(t) satisfy (17) and V(t) is nonsingular then P^t) =
U(t)V-\t) is a solution of (14).

The block matrix above is said to be in the bisymmetric form. The solution to
(17) is

\ B,\)W)\ (18)

To obtain an explicit formula for P, the partition of matrices of the form

is necessary. For any matrix power series

HS) = LanS
n, (19)

n

it is easy to show that if

then

where

X = ${0(K + L) + 0(K - L)), Y = \(6(K + L) - »(AT - L)) (20)

whether A", L commute or not.
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Let

Kn = ±((K + L)n +(K- L)n) and Ln = $((

and note that (by an easy induction)

K L l" = [ * . Ln
L K\ [Ln Kn

for all n, from which (20) follows by summation.
In particular, we conclude with the seemingly novel

L
K

where

X = l/2(cxp( A: + L) + cxp(K - L)), ,
Y= l/2(exp(K + L) - exp(K - L)). ' l '

4. Solution of the differential equation

Consider a solution P(t) of (5) which is defined either for all / > 0, or all / < 0,
or both.

Let F = P(0), i\(0) = F1 = Z * " 1 ^ - i ^ Z " 1 and take £/(0) = Fj, K(0) = /,
where Fx may be singular and

5 = U(0) + V(0), D = U(0) - V(0). (25)
Then by Sections 2 and 3 we have Pl = UV'1, where

Also, since 5f = Bv Cf = Q, and S = S*, D = £>*, we have

F* = ^[cxpi-B, + Cjt] - D[aqp(-B1 - Cjt]).
Now Bx + C1 commutes with -Bx - Cr and B1 - C\ commutes with -Bx + Cv

trivially, whether Bx and Cl commute or not. Hence,

[expiB, + C1)r][exp(-51 - Cjt] = / = [exp(5! - Cjt] [exp(-B1 + C j r ]
and thus by direct calculation from (26) and (27), U*V - V*U = 0. It follows
that

P? = {UV-1)* = V-X*U* = V-l*U*W-x = V-l*{V*U)V-x = Pu (28)

as desired. If P(t0) is defined, and /'(O) is not, time-shifts can be made.
Clearly P(t) = Z*Px(t)Z + H. But it is Z*Z = (P+- P~)/2 which is defined,

not Z* or Z separately. Since ( ^ + - i*")/2 is Hermitian and positive defimte, it
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has a unique Hermitian, positive square root Zo = ZjJ, obtained by direct or
iterative procedures, which may be preferred to other values of Z.

Having Z and H permits the calculation of Fv S, and D from (25). Also, Bx

and C1 are obtainable from Z, H, and (8). This permits the determination of U(t)
and V(t) from (26) and so P^t) = UV~X and finally P(t) from (6). Clearly
Px(0) = FJ-1 = Fx and P(0) = Fas desired.

A word on the calculation of the exponentials exp[(5x ± Cx)t] which appear in
(26). First, Bl + Ct = Z(B + CP+)Z~l is stable (all its eigenvalues have negative
real part) since B + CP+ is stable, as mentioned following (13). Likewise,
Cx - B1 = (2?! + Cx)* is stable. It follows that as / -» ± oo the exponentials tend
to 0, oo and so U(t) and V(t) tend separately to oo. Taking out a common factor
from U{t) and V(t) shows that, nevertheless, P^t) tends to a limit as t -* ± oo.

The numerical stability of the exponentials is an extremely important and
difficult practical issue. A review paper devoted to eMl where M is of order < 200
(typical of control applications but not of large structure applications) is Moler
and Van Loan [15]. Nineteen methods are considered, falling into five classes, in
this long paper. Generally, when M is symmetric (or normal), the difficulties are
very much reduced. Unfortunately, control system matrices are typically non-nor-
mal.

Squaring Method 3, in which eAl = (e
A/m)m< is USed for m = 2", where

||Y4|| < m, is well recommended. Of course, eMt can be obtained by integration of
x = Mx. This partially defeats the object of the present paper, but apart from
that, the integration methods appear 10 to 20 times less efficient than squaring.
Method 18, based on triangular block diagonalization, appears comparable to
Method 3 in speed and accuracy. Trotter's formula

eM'= lim (e" i /

is the basis for the splitting method 19, where M = Mx + M2, and m = 2". The
special choices Mx = (M + M*)/2 and M2 = (M — M*)/2 are particularly con-
venient, where eMl/m and eMl/m may themselves be computed by Method 3. A
more satisfactory basis for the splitting method may be the Hausdorff expansion
formula for e

(-Ml + Ml)l or as recently suggested by Kenney (unpublished), the use
of Richardson extrapolation. However, since Methods 18 and 19 are conceptually
more complicated and generally no faster than the squaring method, the latter
appears most useful.

5. Convergence rate

Suppose the eigenvalues of B + CP+ (or of B1 + Cx) have real parts whose
maximum < rx < 0 (discussed by Coppel [4]). Then as t -* oo,e(B' + Cl)' = O(er'')-
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If D = F! - / is nonsingular, then by (26),

Px{t) = U(t)V-\t) = (D + O(e2r>'))(-D + O(e2^')) =-I + O(e2"')
as t -* oo.

Similarly, if 5 = Fx + / is nonsingular, then

P1(t) = I+ O(e-2r>') ast->-ao.
Returning to the original matrix variable P(t), it follows that

P(t) = P'+ 0(e2ri'), t -* oo, if D'1 exists,

P{t) = P + + O{e-2ri'), t -» -oo, if S"1 exists,
where rx < 0, and P+> P~ are the extremal solutions of the algebraic matrix
Riccati equation (4). Any less satisfactory result is due to numerical integration or
numerical matrix-exponentiation errors in truncation, round-off, or algorithmic
inadequacies.

The preceding results are reminiscent of Coppel's reduction of the system
matrix to the form LML'1, where L is symplectic, and

» °
0 -M U

They differ in being derived through quadratic identities (numerically managea-
ble) rather than through the characteristic function of the system matrix (numeri-
cally highly volatile) and so being more adaptable to conventional computing, the
original motivation for the present work.
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