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FARTHEST POINTS AND THE FARTHEST DISTANCE MAP

PRADIPTA BANDYOPADHYAY AND S. DUTTA

In this paper, we consider farthest points and the farthest distance map of a closed
bounded set in a Banach space. We show, inter alia, that a strictly convex Banach
space has the Mazur intersection property for weakly compact sets if and only if
every such set is the closed convex hull of its farthest points, and recapture a classical
result of Lau in a broader set-up. We obtain an expression for the subdifferential of the
farthest distance map in the spirit of Preiss' Theorem which in turn extends a result of
Westphal and Schwartz, showing that the subdifferential of the farthest distance map
is the unique maximal monotone extension of a densely defined monotone operator
involving the duality map and the farthest point map.

1. INTRODUCTION

We work with real scalars. The closed unit ball and the unit sphere of a Banach

space X will be denoted by B(X) and S(X) respectively. Our notations are otherwise

standard. Any unexplained terminology can be found in [3].

For a closed and bounded set K in a Banach space X, the farthest distance map r#

is defined as

x 6 X. For x 6 X, we define the farthest point map as

QK(x) = {zGK:\\z-x\\=rK(x)},

that is, the set of points of K farthest from x. Note that this set may be empty. Let

The set of farthest points of K will be denoted by far(i<T), that is,

= u{QK(x):x€D(K)}.

Call a closed and bounded set K densely remotal if D(K) is norm dense in X.

We say that a Banach space X has the Mazur Intersection Property if every closed
bounded convex set in X is the intersection of closed balls containing it. The Mazur
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Intersection Property is a well studied notion in geometry of Banach space and several
authors have studied Mazur-like intersection properties for different families of closed
bounded convex sets. See [1, 2] and references thereof for a survey and unified treat-
ments. However, no complete characterisation is available, in particular, for every weakly
compact convex set in X to be intersection of balls.

Lau [6, Theorem 3.3] had shown that a reflexive Banach space X has the Mazur
Intersection Property if and only if every closed bounded convex set in X is the closed
convex hull of its farthest points. In Section 2, we show that in a strictly convex Banach
space X, every weakly compact convex set is intersection of balls if and only if every
such set is the closed convex hull of its farthest points. Similar conclusions hold for
compact convex sets, compact convex sets of finite affine dimension. And if X has the
Radon-Nikodym Property, then similar result holds for io*-compact convex sets in X*.

Recall that the subdifferential of a convex function 0 : X - > R a t a ; e A ' i s

d<p(x) = {x* € X" : x'{y - x) ^ <f>{y) - </>(x) for all y e X}.

The subdifferential of the function <j>{x) = ||x||2/2 is referred to as the duality map on X
and is denoted by T>.

Since TK is a continuous convex function, dr^ is a maximal monotone operator
defined on X. In [8, Proposition 4.3], the authors showed that if X is a reflexive Banach
space with X* Frechet smooth, then for a closed bounded set K, dr^ is the unique
maximal monotone extension of "D(I — QK)ITK and for each x € X,

(1) drK(x) = f l ^ - T — i v ) • \\V-*W <
6>0 K

Note that this is actually the Preiss' Theorem (see [7]) for 8TK-

For a nonreflexive space, such a statement needs qualification as V(I — i

may be empty for some y. Nonetheless, even in nonreflexive spaces, for a densely remotal

set K, ~D(I — QK^I^K is a well-defined monotone operator with dense domain. We show

that if X is locally uniformly convex/rotund, then drK remains the unique maximal

monotone extension of T>(I — QK^I^K and an analogue of (1) is available where we need
to take the w*-closure and choose y from the set Dx (K) defined below. We believe that
this is the only version of the Preiss' Theorem for dr^ available in the nonreflexive case.

For a closed and bounded set K C X, x € X and a > 0, a crescent of K determined
by x and a is the set

C(K,x,a) = {zeK: \\z - x\\ > rK(x) - a } .

Let K be a closed and bounded set in X. Let x £ X and k e QK(X). We say
x € Di(K) if k is contained in crescents of K determined by x of arbitrarily small
diameter. It is easy to note that if x € D\(K), then QK{X) is necessarily singleton.
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2. I N T E R S E C T I O N O F B A L L S AND F A R T H E S T P O I N T S

Here is the main theorem of this section. As mentioned in the introduction, this, in
particular, gives the only known characterisation of when every weakly compact convex
set in X is intersection of balls.

T H E O R E M 2 . 1 .

(a) IfX is a strictly convex Banach space and C is one of the following families

of sets,

(i) K. = {all compact convex sets in X}.

(ii) T = {all compact convex sets in X with finite affine dimension}.

(iii) W = {all weakly compact convex set in X}.

then every K G C is intersection of balls if and only if every K G C is the

closed convex hull of its farthest points.

(b) If X has the Radon-Nikodym Property, then X* has the w*-Mazur Inter-

section Property if and only if every w*-compact convex set in X* is the

w*-closed convex hull of its farthest points.

(c) [6] If X is reflexive, then X has the Mazur Intersection Property if and

only if every closed bounded convex set in X is the closed convex hull of

its farthest points.

P R O O F : (a) We give the proof for the family W of weakly compact sets. The same
proof works in the other cases too.

N E C E S S I T Y . Let K G W and thus by [6, Theorem 2.3], K is densely remotal. We claim
every crescent of K contains a farthest point of K.

To see this, let C(K, x, a ) be any crescent of K. Choose e and 0 such that 0 < e
< a / 2 and 0 < /3 < a — 2e. Since K is densely remotal, there exists y G D(K) such that
\\x - y\\ < e. Then clearly

QK(y)QC(K,y,0)CC(K,x,a).

Now let L = co(ia.i(K)). Then L e W is also intersection of balls. So if K \ L ^ 0,
there exists a crescent C of K disjoint from L. By the above claim, Cnfar(if) ^ 0. But,
of course, far(AT) C L. This proves the necessity.

SUFFICIENCY. Suppose there exists K e W that is not intersection of balls. Let

K = n{B : B is a closed ball and K C £ } . Let x0 G K \ K. Choose y0 G K and

0 < A < 1 such that ZQ = Xx0 + (1 - A)j/0 £ K.

Let Kx = CO(K\J{ZQ}). Then Kx G W. We shall show that i&r{Kx) C K, and

hence, ^ ^ co(far(A'1)).

Let i G X. Then
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Note that
^ rKl{x) ^ rR(x) = rK{x).

Clearly, z0 as well as any point of the form

(2) v = azo + (1 - a)z, a € ( 0 , l ] , z & K,

are not extreme points of K, and since X is strictly convex, they are not farthest points

as well. Therefore, \\v - x\\ < rK{x). Thus, QKAX) Q K- Since x e X was arbitrary,

far(tfi) C K.

(b) li X has the Radon-Nikodym Property, by [4, Proposition 3], each u/*-compact

set K C X* is densely remotal. Thus, necessity can be proved as in (a).

For sufficiency, note that if there exists a w*-compact set K that is not intersection

of balls, since K = f) [K + \B(X*)], passing to some K + XB(X*) if necessary, we may
A>0

assume that K has nonempty interior. Now if we choose t/o G int(A'), then z0 and any

point of the form (2) are interior points of K, and hence the result follows as before. D
The following observation is immediate from the above arguments.

PROPOSITION 2 . 2 . Every closed bounded convex set in X is the closed convex

hull of its farthest points if and only if

(a) X has the Mazur Intersection Property ; and

(b) for every closed bounded convex set K C X, every crescent of K contains

a farthest point of K.

Note that the proof of Theorem 2.1 shows that if K is densely remotal, then K

satisfies (b) above. This also captures the essential argument in the proof of [6, Theorem
3.2]. Following example shows that we cannot dispense with (b).

EXAMPLE 2.3. The space CQ has a strictly convex Frechet differentiable renorming [3,
Theorem 7.1(ii)] which, thus, has the Mazur Intersection Property . However, since the
unit ball of the usual norm on CQ lacks extreme points, it must lack farthest points in the
new norm.

REMARK 2.4. This also shows that even if X* has the Radon-Nikodym Property, there

may exist a closed bounded convex set in X with iax{K) = 0 (Compare this with [4,

Proposition 3]).

Observe that since the bidual of a space with the Mazur Intersection Property has

the w*- Mazur Intersection Property , Theorem 2.1 (b) shows that every u;*-compact

convex set in l°°, with the bidual of the above norm, is the w*-closed convex hull of its

farthest points. Thus, there is a closed bounded convex set K C Co, such that no farthest

point of the iu*-closure of K in X" comes from K.

https://doi.org/10.1017/S0004972700038430 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038430


[5] Farthest points 429

3. T H E FARTHEST DISTANCE M A P

We begin by collecting some simple properties of the set D\{K). Recall that a
sequence {zn} C K is called a maximising sequence for x if ||x — zn\\ — t rK(x).

PROPOSITION 3 . 1 . Let K be closed bounded set in a Banach space X.

(a) x G Di(K) if and only if any maximising sequence for x converges.

(b) If x G D\{K), then QK is single valued and continuous at x and <2K(X) is
a strongly exposed point of K.

(c) DX(K) isaGsinX.

The following proposition shows that any discussion on D\(K) naturally require
some convexity conditions on the norm.

PROPOSITION 3.2.

(a) A Banach space X is strictly convex if and only if for every compact set K

and k G far(/f), there exists x G D\(K), such that QK{X) = {k}.

(b) A Banach space X is locally uniformly convex/rotund if and only if for

every closed bounded set K and k G far (if), there exists x G D\{K), such

that QK{x) - {k}.

PROOF: (a) Let if be a compact set in a strictly convex Banach space X. Let
k G far(/T). Then, k G QK(X) for some x G D{K). Let t > 1. Strict convexity of
the norm shows that for y = k + t(x — k), QK(V) = {k}. Now compactness shows that

Conversely, if X is not strictly convex, there exists x,y G S(X) such that the line
segment [x, y] C S(X). Clearly, K = [x,y] is compact and K C QK(0). But any point of
the open segment (x, y) cannot be strongly exposed and therefore, cannot be in the set
QK{DX(K)).

(b) Observe that S(X) C QB(X)(0)- For any x G S(X) and any sequence {xn}
C B(X) that is maximising for —x, we have ||x + xn | | -» 2. So if X is locally uniformly
convex/rotund, x n -> x. Thus —x G D\(B{X)) and x G QB{X)(-X). NOW for a closed
bounded set K C X and k G far(/f), get x G D{K) such that k G QK(X), and apply this
argument with suitable translation and scaling to the ball B[x, rK(x)].

To prove the converse, let K = B(X). Then, S(X) = fai(B(X)). So by the
hypothesis, it follows that every point in S(X) is a strongly exposed point of B(X), and
therefore, X is strictly convex.

Now let x0 G S{X). By hypothesis, there exists x G D 1 (B(X)) such that
QK{X) = {xo}. Then ||x — xo| | = rB(x)(x) = 1 + ||x||. By strict convexity, it follows
that x = axQ for some a G R and |a — 1| = 1 + \a\. Therefore, a < 0.
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To show X is locally uniformly convex/rotund, let {xn} C B(X) be such that
||xn + xo|| —• 2. For each n consider the function on (0,1),

/n(A) = 1 - ||Axn + (1 - A)xo||

Then for all A € (0,1), /n(A) ^ 0. And by triangle inequality,

2/B(l/2) ^ fn(X) + fn(l - A) £ /n(A) ^ 0

By assumption, / n ( l /2) —• 0. Thus, for any A € (0,1), /n(A) —> 0. In particular, putting
A — 1/(1 — a), we get ||xn — axo|| —> (1 — a) , that is {xn} is a maximising sequence for
x = ax0. Hence, xn —• x0. D

The following two lemmas are crucial in proving our main theorem of this section.

LEMMA 3 . 3 . Suppose X is locally uniformly convex/rotund and K C X is
densely remotal. Then DX(K) is a dense Gs in X.

P R O O F : By Proposition 3.1 (d), it suffices to show that D\(K) is dense in X.
Let x G D(K). Get k e QK{x). 0 < e < 1. Let y = k + (1 + e)(x - k). Then,

||x — y\\ = ETK(X). It is easy to see that rn(y) = (1 + e)rK(x) and by strict convexity, k
is a unique farthest point from y.

We now claim y e DX{K). Let {2n} C K be a maximising sequence for y. That is,
(x). Then,

I (zn - x) + e(k - x) I

Then

»» = (̂ n - x)/rK(x) G B(X), IA, = (fc - X)/TK{X)

and for A = 1/(1 + e), we have ||Aj/n + (1 — A)j/0|| —>• 1. Notice that since e < 1,
1/2 < A < 1. As in the proof of Proposition 3.2 (b), let

By convexity of the norm,

Since /n(A) -> 0, we have that /n(l /2) -¥ 0, that is, \\yn + yo\\ -+ 2. Since X is
locally uniformly convex/rotund, yn —• y0 and hence, zn —> k. D

REMARK 3.4. It follows that for any weakly compact set if in a locally uniformly
convex/rotund Banach space, D\{K) is a dense Gs in X. So our result is more general
than [5, Corollary 2.8], where it is proved that if the norm on X* is Frechet differentiate,
then for any closed and bounded subset K C X, D\{K) is residual.
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LEMMA 3 . 5 . Let x G Di(K). Then, drK{x) = V(I - QK/rK){x).
Moreover, TK is Gateaux (respectively Frechet) differentiable at x if and only if the

norm is Gateaux (respectively Frechet) differentiable at x — QK(X).

PROOF: Let Qjr(x) = {k} and x* G V(x - k/rK(x)). Then x*(x - k) = rK(x). For

z G X, x'{z -x)= x*{z) - x*{k) - rK{x) ^ rK(z) - rK(x).

Thus x* G drK (x).
Conversely, let x* G drK(x). Since V(I — QK/TK){X) is a iu*-closed convex subset

of S(X*), it is enough to show that for any z G S(X), there is an xj € V(I — QK/TK){X)

such that x*(z) ^ xj(z).
Let {kn} C K be such that

||x + a/n - fcn|| > rK(x + z/n) - 1/n2.

Then {kn} is a maximising sequence for x, and hence, kn —• A;. Now

i ' ( - ) =x'(« + - ) -x'(x) <r K (x + - ) -rK{x) < llx + - - * J - rK(x) + \ .
\n/ n> v n/ II n II n^

Choose x*n e V{x + z/n - kn). Then

Combining the two, we have x*(z) ^ x*n(z) + 1/n. Let xjj be a iy*-cluster point of {x*}.
Since x + z/n — kn converges to x — k in norm, we have xJJ G 2?(/ — QK/^K)(X) and
z*(2) < XQ(Z), as desired.

Thus, the norm is Gateaux differentiable is at x — k & V(x — k/rK(x)) is singleton
o so is drK(x) <=> rK is Gateaux differentiable at x.

Now, let {x*} = drK(x) = V(x- k/rK{xj). For any A e R and

x'(Xz) ^ \\x + Xz- k\\ - ||x - fc|| ^ rK(x + \z) - rK{x).

Therefore,

Az - *|| - ||s - Xz)-rK(x)., ,\ ^ r K ( x + X z ) r K ( x )
— X \Z)\ 5s r X (Z)A

Thus, Frechet differentiability of rK at x implies that of the norm at x — k.
Conversely, let the norm be Frechet differentiable at x—k. Let xn —t x, x* G drK (xn)

and x* G drK(x), then {x*} C B(X*) and since r̂ - is Gateaux differentiable at x, x* —¥ x*
in the w*-topology. Since x* G 2?(/ — QK/^K)^), X* is a u;*-norm point of continuity
of B(X'), and therefore, x* —> x* in norm. It follows that rK is Frechet differentiable at

D
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REMARK 3.6. [5, Theorem 3.2(a)] proves only the "necessity" part of this result. Our
proof is also simpler.

Combining Lemma 3.5 with Lemma 3.3, it follows that in a Banach space with
smooth locally uniformly convex/rotund norm, the farthest distance map r# of a densely
remotal set K is Gateaux differentiable on a dense Gs-

We now state the main theorem of this section. This gives an expression for drK in
the spirit of Preiss' Theorem [7]. Note that our result does not need smoothness of the
norm and with (Frechet) smoothness, by Theorem 3.5, we get back Preiss' Theorem for
drK.

THEOREM 3 . 7 . Let K be such that DX{K) is dense in X and x e X. Then

drK(x) = f)cb~{drk(y) : y e DX{K) and \\y - x\\ < 6}.
6>0

PROOF: Let x* G right hand side and e > 0. Choose S < e/3. For z £ X, choose
y G Di{K) and y* G drK{y) such that ||y - x\\ < 5 and x*(z - x) < y*(z -x) + S. Thus,

x*{z - x) < y*(z -x) + 6 = y'{z - y) + y'{y - x) + 6 ^ TK{Z) - rK{y) + 25

Since e is arbitrary, we have x* e drK(x).
Conversely, let x* G drtf(x). As in Lemma 3.5, we shall show given any z € S(X)

there is an xjj € right hand side such that x*(z) ^ XQ(Z).

For each n, get yn e D\{K) such that \\x + z/n - yn\\ < 1/n2. Then

Let x'n G drK(yn). Let kn G QK{yn)- Then

xn[ — I — xn{yn — Kn) — xn\yn kn

Thus x*(z) ^ x*n{z) + 2/n. Let x^ be aw*-cluster point of x*. Then xj G right hand side
and x"{z) < x*0{z). D

Combining the Lemma 3.3, Lemma 3.5 and Theorem 3.7 we obtain the following:

COROLLARY 3 . 8 . Suppose K is a densely remotal set in a locally uniformly
convex/rotund Banach space X. Then 3TK is the unique maximal monotone extension
of the densely defined monotone operator V(I — QK)/TK and for each x G X, we have,

drK{x) = P)co*{x> ~ ^K {y) : y € Di{K) and \\y - x|| < tf}.
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R E M A R K 3.9. In [8, Proposition 4.3] obtained the similar conclusion for reflexive Ba-
nach spaces with X* Frechet smooth.

We end this section with a result on range of drK. Compare this with [8, Theorem

4.2].

THEOREM 3 . 1 0 . Let X be a smooth (respectively Frechet smooth) Banach

space. Let K C X be a closed and bounded set such that D\(K) is dense in X, then the

image of D\{K) under dr^ is w*-dense (respectively norm dense) in S(X*).

P R O O F : Let NA(X) denote the set of norm attaining functional in S(X'). By
Bishop-Phelps Theorem, NA(X) is norm dense in S(X'). Let x*0 € NA(X) and
x0 € S(X) such that XQ(X0) = 1. By density of D\(K), choose xn € Di(K) such that
||xn - n x o | | < 1/n and let x* € drK(xn). Then ||xn|| -* oo. Therefore, by [8, Lemma 4.1],
limi* (xn/ | |xn | | ) = lim||x*|| = 1. But since xn / | |xn | | —• XQ in norm, x*(x0) -> 1 as well.
Thus, any u;*-cluster point of {x*} is in V(x0). Since the norm is smooth, this set is
singleton. Hence, x* —> xjj in io*-topology.

Now, if the norm on X is Frechet smooth, then zjj chosen above is a u;*-norm point
of continuity of B(X'). Thus drK(D1(K)) is norm dense in S{X'). D
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