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Abstract

Destructive array update optimization is critical for writing scientific codes in functional

languages. We present set constraints for an interprocedural update optimization that runs

in polynomial time. This is a multi-pass optimization, involving interprocedural flow analyses

for aliasing and liveness. We characterize and prove the soundness of these analyses using

small-step operational semantics. We also prove that any sound liveness analysis induces a

correct program transformation.

Capsule Review

The authors present two small-step operational semantics – one based on an environment, and

the other on a store – for a first-order call-by-value functional language with flat arrays. The

store semantics permits destructive array updates, whereas the environment semantics does

not. A transformation is defined from the pure language to the one with destructive updates,

and it is shown that for any sound live variable analysis, the transformation is correct; i.e.

program meaning is preserved. The proof architecture adopted in showing correctness is

unique, as is the notion of “computation addresses”, which both record order of evaluation

and serve as addresses in the store semantics. The authors then introduce a propagation

analysis based on set constraints to determine whether an expression that evaluates to an

array could be propagating an array that was passed to it. Together with an alias analysis

also based on set constraints, they then derive a sound live variable analysis, thus leading to

a correct method for array update optimization.

1 Introduction

In this paper we use set constraints to reformulate an algorithm for interprocedural

array update optimization in a call-by-value functional language. We then prove the

correctness of the program transformation that introduces imperative assignments,

as well as the correctness of the analyses on which this transformation is based.

ã Work supported by the National Science Foundation under grants numbered CCR-9404646, CCR-
9629801, and CCR-9804115.
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1.1 The destructive update problem

Since there are no assignments or other side effects in functional languages, updating

an array or other data structure generally involves creating a copy that is like the

original except at the index being updated. Such copying can drastically degrade the

performance of the program, and can easily increase its asymptotic complexity.

Destructive update transformation is an optimization that transforms functional

updates into assignments whenever a flow analysis reveals that the array value being

updated is dead following the update. In an imperative language this is always the

case, because updating by assignment kills the previous value of the array.

Our optimization is based on the flow analysis of Sastry et al. (1993; 1994). As

reported previously, this is a very effective optimization. It was also the first inter-

procedural update analysis to run in polynomial time. As originally presented, this

algorithm’s efficiency depended upon a special technique for symbolic computation

of a least fixed point (Chuang and Goldberg, 1992). In the reformulated algorithm,

the generated set constraints are easily seen to be data flow inequalities, which can

be solved in polynomial time using standard techniques (Aiken et al., 1993).

1.2 Proof architecture

We use a small-step operational semantics. (A small-step operational semantics

represents a computation by a linear sequence of configurations, whereas a big-step

operational semantics represents a computation by a tree of subcomputations.) We

assume that for each program E, there are an infinite number of possible starting

configurations C0, representing the different computations possible using E (say,

by running it on different data). We say a configuration C is reachable from E

iff it appears as a configuration in the computation starting from some initial

configuration C0.

We imagine that we have some transformation we would like to apply to programs.

We can apply the transformation to our program E to get a transformed program

E∗, and to an initial configuration C0 to get a transformed initial configuration

C∗0 . The goal is to show that C0 reaches a final configuration iff C∗0 reaches a final

configuration representing the same answer.1

We do this by introducing a relation R between configurations of the original

program and configurations of the transformed program. Our transformation will

be correct if R has suitable properties on initial and terminal configurations, and is

preserved under computation, that is,

(C R D) ∧ (C → C ′) ∧ (D ⇒ D′) =⇒ (C ′ R D′) (1)

where → is the transition relation of the original program and ⇒ is the transition

relation of the transformed program.

Unfortunately, this is usually false. It fails just when the two configurations are

1 For simplicity, we consider only transformations that do not change the number of steps in the
computation; it is conceptually easy but notationally messy to remove this restriction.
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executing a phrase in the program that has been transformed. For example, if we are

replacing a copying array update in C by an in-place update in D, the side-effects

of the in-place update might be visible, destroying any correspondence R we might

have.

Hence we fall back to the weaker condition

(C reachable) ∧ (C R D) ∧ (C → C ′) ∧ (D ⇒ D′) =⇒ (C ′ R D′) (2)

which is enough to establish the desired result. We use the reachability information

by finding a property P such that

(C reachable) =⇒ (C |= P ) (3)

and

(C |= P ) ∧ (C R D) ∧ (C → C ′) ∧ (D ⇒ D′) =⇒ (C ′ R D′) (4)

In this proof architecture, the primary purpose of program analysis is to find such

a P . Property (3) expresses the soundness of the analysis, and (4) expresses the

correctness of the transformation as justified by the analysis.

We use the paradigm of set-based analysis to find such properties P . In this

paradigm, we first characterize a class of propositions P to be found; this gives us a

notion of soundness such as (3). For any program E, we then show how to generate

a set of constraints on the form of P . Typically these constraints can be solved using

well-known algorithms (e.g. Heintze and Jaffar (1990), and many others). To show

the constraint generation system is correct, we prove that if P is any solution to the

constraints generated from E, then property (3) holds.

In general, the proof of (3) may require course-of-values induction on the length

of the execution sequence leading to C , that is, it may involve not only the immediate

predecessor of C in the sequence, but also the global structure of the sequence (see, for

example, case 1(c) of Theorem 24). We may also need to deal with propositions that

are not just about a single configuration, but about larger computations. Nielson

calls such propositions ‘second-order analyses’ (Nielson, 1985). Our propagation

analysis P[[−]] (section 6) is an example.

In this paper, Definition 7 corresponds to property (3); Theorem 9 corresponds

to property (4), and Theorem 24 shows the correctness of the constraint-generation

system.

1.3 Outline

We begin in section 2 by describing our functional source language and its environ-

ment semantics, which is a small-step operational semantics using an environment

and a continuation. In section 3 we obtain our imperative target language by adding

destructive updates to the source language. The semantics of destructive updates are

not expressible in the environment semantics, so we must introduce a store semantics.

Section 4 presents our main result: We state the soundness property for live-

variable analysis, define a transformation from source to target languages, and

assert that any sound live-variable analysis yields a correct transformation.
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E, F ::= θ:T expressions (labelled terms)

θ ∈ Lab expression labels

T ::= x | φ(E, . . .) terms

| if E0 then E1 else E2

φ ::= f1 | . . . | fN | g function symbols

g ::= NEW | REF | UPD | p primitives

p ∈ Prim scalar primitives

Fig. 1. Syntax of expressions.

EC ::= 〈halted, v〉 | 〈α, ρ, G, K〉 configurations

α ∈ N∗ computation addresses

(ordered lexicographically)

ρ ∈ Var →fin Val environments

v ∈ Val ::= bv | lv denoted values

bv ::= true | false | 0 | 1 | . . . scalar (basic) values

lv ∈ LabVal ::= α:〈bv, . . .〉 labelled arrays of scalar values

G ::= E | v partially reduced expressions

| θ:φ(v1, . . . , vi−1, Ei, . . . , En)

| θ: if v then E1 else E2

R ::= θ:φ(v1, . . . , vi−1, [ ], Ei+1, . . . , En) return contexts

| θ: if [ ] then E1 else E2

K ::= halt | 〈α, ρ, R, K〉 continuations

Fig. 2. Configurations of the environment semantics.

Sections 5 through 8 develop a live-variable analysis and prove its correctness. To

do this, we first present a propagation analysis, which determines when the output of

a procedure can be the same array as one of its inputs. We then use the propagation

analysis to develop an alias analysis that keeps track of when two variables in an

environment may denote the same array. The use of instrumented values allows

us to do both of these within the environment semantics. Finally, we use both the

propagation and alias analyses to develop the live-variable analysis. In each case,

the presentation follows the pattern suggested above: First we characterize a kind of

flow analysis. Next we define a notion of soundness for this kind of analysis. Then

we write down a set of constraints generated from the source program. Lastly, we

prove a theorem showing that any solution to these constraints is sound.

Finally, section 9 proves the correctness of the transformation that introduces

destructive updates.

We conclude with a discussion of related work and possible extensions.
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〈α, ρ, θ: x, K〉 → 〈α, ρ, ρ(x), K〉 [fetch]

〈α, ρ, θ:φ(v1, . . . , vi−1, Ei, Ei+1, . . . , En), K〉
→ 〈α.i, ρ, Ei, 〈α, ρ, θ:φ(v1, . . . , vi−1, [ ], Ei+1, . . . , En), K〉〉 [push]

〈α, ρ, v, 〈α′, ρ′, R, K〉〉
→ 〈α′, ρ′, R[v], K〉 [return]

〈α, ρ, v, halt〉 → 〈halted, v〉 [halt]

〈α, ρ, θ: fk(v1, . . . , vn), K〉
→ 〈α.(n+ 1), {xk:1 7→ v1, . . . , xk:n 7→ vn}, Fk, K〉 [call]

〈α, ρ, θ: p(bv1, . . . , bvn), K〉
→ 〈α.(n+ 1), ρ, bv′, K〉 [primop]

if p∗(bv1, . . . , bvn) = bv′

〈α, ρ, θ: NEW(n, bv), K〉
→ 〈α, ρ, α:〈bv, . . . , bv〉, K〉 [new-e]

NEW creates a new array filled with n copies of bv.

〈α, ρ, θ: REF(β:〈bv1, . . .〉, j), K〉
→ 〈α, ρ, bvj , K〉 [ref-e]

〈α, ρ, θ: UPD(β:〈bv1, . . . , bvn〉, j, bv′), K〉
→ 〈α, ρ, α:〈bv1, . . . , bv

′, . . . , bvn〉, K〉 [upd-e]

UPD produces a new copy of the array

with the j-th element changed to bv′.

〈α, ρ, θ: if E0 then E1 else E2, K〉
→ 〈α.1, ρ, E0, 〈α, ρ, θ: if [ ] then E1 else E2, K〉〉 [push-test]

〈α, ρ, θ: if true then E1 else E2, K〉
→ 〈α.2, ρ, E1, K〉 [branch-true]

〈α, ρ, θ: if false then E1 else E2, K〉
→ 〈α.2, ρ, E2, K〉 [branch-false]

Fig. 3. Reduction rules for the environment semantics.

2 Source language

Our source language is a first-order, call-by-value functional language, specified by

recursion equations. Values are either scalar (basic) values bv or arrays of scalars.

Each array is time-stamped with a computation address. These time-stamps are highly

structured; their structure is crucial to the proofs.

The detailed syntax of expressions is given in Figure 1. Expressions are labelled

first-order terms, including conditionals. Function symbols may be either procedure
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symbols fk or primitive function symbols; the latter are divided into the array

primitives NEW, REF, and UPD, and the scalar primitives. Each scalar primitive p

takes scalar arguments and returns a scalar value given by a function p∗ : bvn → bv.

Every function symbol has a fixed arity, and the number of arguments must match

this arity; for notational convenience, we do not include this information in the

grammar, but we will use it implicitly throughout.

The semantics and the analysis assume that we are looking at a fixed program

f1(x1:1, . . . , x1:n1
) = F1

f2(x2:1, . . . , x2:n2
) = F2

...

fN(xN:1, . . . , xN:nN ) = FN
in F0

where the xk:j are distinct variables, and for each i ∈ {0, . . . , N} the free variables

of Fi excluding function symbols, which we abbreviate as fv(Fi), are a subset of

{xi:1, . . . , xi:ni}.

2.1 Environment semantics

We give this language a small-step operational semantics using environments and

continuations. We refer to this as the environment semantics.

For the purpose of formulating and proving our theorems, the semantics is

instrumented by adding a computation address to each configuration and to each

continuation frame. Each array is time-stamped with the computation address at

which it was created. These addresses are clearly extraneous to the computation;

we omit the tedious formulation of an uninstrumented semantics and the forgetful

transformation linking the instrumented and uninstrumented semantics.

As described in figure 2, a configuration either is of the form 〈halted, v〉 or else it

consists of a computation address, an environment, a partially reduced expression,

and a continuation. A configuration of the form 〈halted, v〉 is said to be successful.

A continuation is either the initial continuation halt, or else it consists of a saved

computation address, a saved environment, a return context (representing a return

address and saved temporaries), and a nested continuation.

Definition 1 (Initial, Reachable)

An initial configuration is a configuration

〈α0, ρ0, F0, halt〉
where α0 = 1 and ρ0 contains only scalar values. A reachable configuration is any

configuration that is reachable from an initial configuration by the rules of figure 3.

The initial configurations differ only in the initial environment ρ0. The restriction of

ρ0 to scalar values can be removed; see section 12.

The operational semantics is given by the reduction rules in figure 3. The rule

[push] begins the evaluation of the i-th argument in a function call; when evaluation

of the argument is completed, its value will be left in the E-register, and argument

https://doi.org/10.1017/S0956796801003938 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801003938


Set constraints for destructive array update optimization 325

evaluation will be resumed by [return]. When a value is returned to the initial

continuation halt, the machine halts successfully.

If there are no more subexpressions to evaluate, the function is called. This may

be either a procedure call ([call]) or a primitive. In the case of a procedure call,

the procedure body is executed tail-recursively in an appropriate environment. In

the case of a scalar primitive p, the interpretation p∗ of p is invoked and the

value returned in the E-register ([primop]). In the case of an array primitive, the

appropriate transformation is performed. Note that each array is time-stamped with

the computation address at which it was created. If any of the arguments is of the

wrong type (not an integer, not a scalar, or not an array), the computation is stuck

(halted unsuccessfully).

A similar set of rules ([push-test], [branch-true] and [branch-false]) manages

conditionals.

This notation suppresses the program, which is used in the [call] rule.

The environment semantics carries around more information than it needs because

the environment component of a continuation often contains values for variables

that aren’t needed by the component that indicates the return context. We therefore

define a congruence ∼= that relates configurations that differ only by such dead

variables.

Definition 2 (Congruence, ∼=)

We define congruence first for configurations and then for continuations:

• 〈halted, v〉 ∼= 〈halted, v′〉 iff v = v′.
• 〈α, ρ, G, K〉 ∼= 〈α′, ρ′, G′, K ′〉 iff

1. α = α′,
2. G = G′,
3. for all x ∈ fv(G), ρ(x) = ρ′(x), and

4. K ∼= K ′

• halt ∼= halt always.

• 〈α, ρ, θ:φ(v1, . . . , vi−1, [ ], Ei+1, . . . , En), K〉∼= 〈α′, ρ′, θ:φ(v′1, . . . , v′i−1, [ ], E ′i+1, . . . , E
′
n), K

′〉 iff

1. α = α′,
2. for all j ∈ [0, i− 1] vj = v′j ,
3. for all j ∈ [i+ 1, n] Ej = E ′j ,
4. for all j ∈ [i+ 1, n], for all x ∈ fv(Ej), ρ(x) = ρ′(x), and

5. K ∼= K ′

• 〈α, ρ, θ: if [ ] then E1 else E2, K〉∼= 〈α′, ρ′, θ: if [ ] then E ′1 else E ′2, K ′〉 iff

1. α = α′,
2. E1 = E ′1 and E2 = E ′2,

3. for all j ∈ {1, 2}, for all x ∈ fv(Ej), ρ(x) = ρ′(x), and

4. K ∼= K ′

• These are the only cases for which the congruence holds.
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Congruence is preserved by reduction; furthermore congruent configurations either

both have reductions or both are terminal:

Lemma 3 (Preservation of Congruence)

If EC1
∼= EC2, and EC1 → EC ′1, then there exists a unique EC ′2 such that EC2 →

EC ′2. Furthermore EC1 → EC ′1 and EC2 → EC ′2 by the same rule, and EC ′1 ∼= EC ′2.

Proof

By examination of the reduction rules. q

3 Target language

Our imperative target language has exactly the same syntax as the purely functional

source language, except that we add a destructive update operation UPD! to the

list of primitive operations:

g ::= NEW | REF | UPD | p | UPD!

Unlike the UPD operation, which creates and returns a new array, the UPD!

operation writes a new value into the storage occupied by the original array, and

then returns a pointer to that storage. This side effect is not expressible in the

environment semantics.

3.1 Store semantics

To express the semantics of this new operation, we must use a store semantics. A

store is a finite function from locations to labelled values. Locations are computation

addresses. We denote locations by α or β when we rely on this fact, or by l in contexts

where this fact can be ignored. This trick allows locations to carry their own time

stamps. As with the environment semantics, it would be easy enough to construct

a bisimulation between this instrumented semantics and an uninstrumented one in

which locations are modelled in some more primitive way.

Storable values are labelled values (arrays). Denoted values are now scalar values

or locations. A halted configuration may contain a scalar value or an array. A non-

halted configuration contains the same information as an environment configuration,

plus a store.

The configurations of our store semantics are the same as those of the environment

semantics, except they contain a store as a fifth component. Apart from the rules in

figure 4, which show how arrays are managed in the store, the reduction rules for the

store machines are the same as for the environment machines (adding an unchanging

store component to each rule). Notice that a location is dereferenced before halting;

this prevents the location at which an array is allocated from being observable

outside the program, which would wreck the equivalence between unoptimized and

optimized programs.
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〈α, ρ, θ: NEW(n, bv), K, Σ〉
→ 〈α, ρ, α, K, Σ[α 7→ α:〈bv, . . . , bv〉]〉 [new-s]

new array allocated at α, filled with n copies of bv

〈α, ρ, θ: REF(β, j), K, Σ〉
→ 〈α, ρ, bvj , K, Σ〉 [ref-s]

if Σ(β) = γ:〈bv1, . . . , bvn〉

〈α, ρ, θ: UPD(β, j, bv′), K, Σ〉
→ 〈α, ρ, α, K, Σ[α 7→ α:〈bv1, . . . , bv

′, . . . , bvn〉]〉 [upd-s]

where Σ(β) = β′:〈bv1, . . . , bvj , . . . , bvn〉
UPD produces a new copy of the modified array,

allocated at the fresh location α.

〈α, ρ, θ: UPD!(β, j, bv′), K, Σ〉
→ 〈α, ρ, β, K, Σ[β 7→ α:〈bv1, . . . , bv

′, . . . , bvn〉]〉 [upd!]

where Σ(β) = β′:〈bv1, . . . , bvj , . . . , bvn〉
UPD! destructively modifies the array.

〈α, ρ, bv, halt, Σ〉 → 〈halted, bv〉 [halt-b]

〈α, ρ, l, halt, Σ〉 → 〈halted, Σ(l)〉 [halt-a]

Fig. 4. Reduction rules for the store semantics.

3.2 Store elimination

We can map a store configuration to an environment configuration by Store Elimi-

nation: we replace any locations by their contents and replace any UPD! by UPD.

We show representative portions of this inductive definition in figure 5.

We use store elimination to define the reachable configurations of the store

semantics.

Definition 4 (Initial, Reachable (store))

A store configuration is initial iff its store component is empty and its Elim is an

initial environment configuration. A store configuration is reachable iff it is reachable

from some initial store configuration by the rules of the store semantics.

Storage elimination loses any sharing relationships that may hold in the store con-

figuration. In the absence of destructive update this doesn’t matter, so the successive

configurations of the environment semantics can be obtained by store elimination

from the successive configurations of the store semantics; this is Corollary 16 below.

We will prove the correctness of our optimization by showing that this happens

even in the presence of destructive updates, provided those updates are justified by

a sound flow analysis.
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Elim 〈α, ρ, G, K, Σ〉
= 〈α, Elim ρ Σ, Elim G Σ, Elim K Σ〉

(Elim ρ Σ)(x) = Elim(ρ(x)) Σ

Elim α Σ = Σ(α)

Elim bv Σ = bv

Elim β Σ = Σ(β)

Elim[ ] Σ = [ ]

Elim UPD! Σ = UPD

Elim φ Σ = φ (φ 6= UPD!)

Elim(θ:φ(E1, . . .)) Σ

= θ: (Elim φ Σ)((Elim E1 Σ), . . .)
...

Fig. 5. Store elimination (partial definition).

4 The transformation

The goal of our analysis is to identify variables that denote locations that are

certainly not live in a store continuation. If the program contains UPD(x, E1, E2),

and we know that x can’t be bound to a live location after E1 and E2 have been

evaluated, then it will be safe to replace the UPD by a UPD!.

We will need two distinct but closely related notions of liveness, one for the

environment semantics and another for the store semantics. These definitions are

formally similar, because the structure of a continuation is the same in both the

environment and the store semantics: a continuation is either the initial continuation

halt or a tuple consisting of a computation address, an environment, a return context,

and a nested continuation.

Definition 5 (Live Location (environment))

For the environment semantics, liveness is defined as follows.

• No location is live in halt.

• l is live in 〈α, ρ, R, K〉 iff either:

1. l is the label of an array that occurs in R, or

2. there exists x ∈ fv(R) such that ρ(x) = l:〈. . .〉, or

3. l is live in K .

Definition 6 (Live Location (store))

For the store semantics, liveness is defined as follows.

• No location is live in halt.

• l is live in 〈α, ρ, R, K〉 iff either:

1. l occurs in R, or

2. there exists x ∈ fv(R) such that ρ(x) = l, or

3. l is live in K .

We can now state the soundness condition for a live variable analysis L[[−]].
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Definition 7 (Live Variable Analysis)

A live variable analysis L[[−]] is a map from expression labels θ to sets of variables.

L[[−]] is sound iff for each label θ, L[[θ]] is a set of variables such that for all

reachable store configurations of the form 〈α, ρ, θ:T , K, Σ〉, ρ(x) live in K implies

x ∈ L[[θ]].

The idea behind the transformation is that if θ: UPD(x, E1, E2) is an update in

the program, and x 6∈ L[[θ]], then we can replace the UPD by UPD!, because the

stores after the UPD and UPD! will agree on the locations that are live in the

continuation K . We formulate the transformation as follows:

Definition 8 (The Transformation (−)∗)
Given a program or expression E, let Θ be a set of labels such that every θ ∈ Θ

labels an update of the form θ: UPD(x, E1, E2), where x 6∈ L[[θ]]. Then E∗ is the

result of replacing θ: UPD(x, E1, E2) by θ: UPD!(x, E∗1 , E∗2 ) for each θ ∈ Θ.

Note that Elim E∗ Σ = Elim E Σ, because the transformation (−)∗ merely replaces

some occurrences of UPD by UPD!, and these differences are erased by Elim .

Our reduction rules depend upon the program because the rule for a call to fk
mentions its body Fk . We will use→ to indicate reduction using the original program

and ⇒ to indicate reduction using the transformed program.

We now state our main theorem, which establishes the correctness of the trans-

formation. Its proof appears in section 9 below.

Theorem 9 (Main Theorem)

LetL[[−]] be a sound live variable analysis, and let 〈α0, ρ0, F0, halt, Σ0〉 be an initial

configuration. If

〈α0, ρ0, F0, halt, Σ0〉 →n 〈α, ρ, G, K, Σ〉
and

〈α0, ρ0, F
∗
0 , halt, Σ0〉 ⇒n 〈α′, ρ′, G′, K ′, Σ′〉,

then

Elim〈α, ρ, G, K, Σ〉 ∼= Elim〈α′, ρ′, G′, K ′, Σ′〉

Corollary 10 (Correctness of Transformation)

If L[[−]] is a sound live variable analysis, and 〈α0, ρ0, F0, halt, Σ0〉 is an initial

configuration, then

〈α0, ρ0, F0, halt, Σ0〉 →n 〈halted, v〉
if and only if

〈α0, ρ0, F
∗
0 , halt, Σ0〉 ⇒n 〈halted, v〉

Proof

From Theorem 9 and Lemma 3. q
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5 Consistency

We will not be done, of course, until we show how to find a sound live-variable

analysis L[[−]]. To get to the live-variable analysis, we perform two preliminary

analyses – a propagation analysis and an alias analysis. We carry out these analyses

on the environment semantics; in proving our theorems, we lift them to give useful

results for the store semantics.

For each analysis we generate a set of constraints from the program, and show

that any solution to those constraints yields a safety property of the environment

semantics (and hence of the store semantics).

The soundness of all these analyses involves a notion that we call consistency. A

configuration of the environment semantics is consistent iff each of its components

was created after its subcomponents (which we formalize using the time stamps),

every expression is a subexpression of the original program, and there are no

unbound variables.

For any continuation K , the time at which K was created corresponds to the

computation address of the configuration that created it. The reduction rules imply

that this computation address crtime(K) can be computed as follows:

crtime(halt) = 1

crtime(〈α, ρ, θ:φ(v1, . . . , vi−1, [ ], Ei+1, . . . , En), K〉) = α.i

crtime(〈α, ρ, θ: if [ ] then E1 else E2, K〉) = α.1

The formal definition of consistency is somewhat involved; an explanation follows

the definition.

Definition 11 (Environment Consistency)

• 〈halted, v〉 is consistent.

• 〈α, ρ, E, K〉 is consistent iff

1. E occurs in the program;

2. fv(E) ⊆ dom(ρ);

3. ∀β if β:〈. . .〉 ∈ ran(ρ) then β < α (in the lexicographic order);

4. crtime(K) is a prefix of α; and

5. K is consistent.

• 〈α, ρ, v, K〉 is consistent iff

1. if v = β:〈bv, . . .〉 then β < α or α is a prefix of β;

2. ∀β if β:〈. . .〉 ∈ ran(ρ) then β < α;

3. crtime(K) is a prefix of α; and

4. K is consistent.

• 〈α, ρ, θ:φ(v1 . . . vi−1, Ei, . . . , En), K〉 is consistent iff

1. ∃E1, . . . , Ei−1 such that θ:φ(E1, . . . , Ei−1, Ei, . . . , En) occurs in the program;

2. ∀j ∈ {i, . . . , n} fv(Ej) ⊆ dom(ρ);

3. ∀j ∈ {1, . . . , i− 1} if vj = β:〈. . .〉 then β < α or (α.j) is a prefix of β;

4. ∀β if β:〈. . .〉 ∈ ran(ρ) then β < α;

5. crtime(K) is a prefix of α; and

6. K is consistent.
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• 〈α, ρ, θ: if v then E1 else E2, K〉 is consistent iff

1. ∃E0 such that θ: if E0 then E1 else E2 occurs in the program;

2. fv(E1) ∪ fv(E2) ⊆ dom(ρ);

3. if v = β:〈. . .〉 (a type error, since v should be a boolean), then β < α or

(α.1) is a prefix of β;

4. ∀β if β:〈. . .〉 ∈ ran(ρ) then β < α;

5. crtime(K) is a prefix of α; and

6. K is consistent.

• halt is consistent.

• 〈α, ρ, θ:φ(v1 . . . vi−1, [ ], Ei+1, . . . , En), K〉 is consistent iff there exists an expres-

sion Ei such that the configuration

〈α, ρ, θ:φ(v1 . . . vi−1, Ei, Ei+1, . . . , En), K〉
is consistent.

• 〈α, ρ, θ: if [ ] then E1 else E2, K〉 is consistent iff there exists an expression E0

such that the configuration 〈α, ρ, θ: if E0 then E1 else E2, K〉 is consistent.

To understand this definition, consider the clause for a configuration of the

form 〈α, ρ, θ:φ(v1 . . . vi−1, Ei, . . . , En), K〉. This configuration describes the situation

at computation address α, during evaluation of the arguments to a function φ. The

clause says that:

1. The partially reduced expression is obtained by taking a labelled expression

from the original program and replacing the first i− 1 subexpressions by their

values.

2. There are no unbound variables in the unevaluated expressions.

3. For each evaluated argument, the value was either created prior to starting to

evaluate these arguments, or else it was created during the evaluation of the

corresponding actual parameter.

4. All the array values in ρ were created before starting to evaluate these argu-

ments.

5. The embedded continuation K was created prior to α.

6. Finally, the embedded continuation K is similarly consistent.

Lemma 12 (Preservation of Consistency)

Consistency is preserved by the environment semantics.

Proof

By tedious examination of the reduction rules. The most interesting cases involve

the [return] and [call] rules.

Suppose the left hand side of the [return] rule is consistent:

〈α, ρ, v, 〈α′, ρ′, R, K〉〉 → 〈α′, ρ′, R[v], K〉
Since the continuation 〈α′, ρ′, R, K〉 is consistent, there exists an expression E

for which 〈α′, ρ′, R[E], K〉 is a consistent configuration. To show 〈α′, ρ′, R[v], K〉
consistent, there remains only to show that if v is a labelled value β:〈bv, . . .〉, then

β < α′ or α′ is a prefix of β. By consistency of the left-hand side, we know that

https://doi.org/10.1017/S0956796801003938 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801003938


332 M. Wand and W. D. Clinger

β < α or α is a prefix of β. We also know that crtime(〈α′, ρ′, R, K〉) is a prefix of

α, which implies that α′ is a proper prefix of α. By lexicographic ordering it follows

that if β < α, then β < α′ or α′ is a prefix of β. If α is a prefix of β, then so is α′.
Hence β < α′ or α′ is a prefix of β.

Suppose the left hand side of the [call] rule is consistent:

〈α, ρ, θ: fk(v1, . . . , vn), K〉 → 〈α.(n+ 1), ρ′, Fk, K〉
where ρ′ = {xk:1 7→ v1, . . . , xk:n 7→ vn}. From the consistency of the left hand side it

follows that

∀β if β:〈. . .〉 ∈ ran ρ′, then β < (α.(n+ 1)),

that crtime(K) is a prefix of α, hence of (α.(n+ 1)), and that K is consistent. q

A configuration of the store semantics is consistent iff its store elimination is

consistent and every allocated location was allocated at the same time or before its

most recent update. Formally:

Definition 13 (Store Consistency)

A store configuration SC = 〈α, ρ, G, K, Σ〉 is consistent iff

• Elim SC is defined; that is, none of its components refer to unallocated

locations in the store;

• Elim SC is consistent; and

• for all α ∈ dom Σ if Σ(α) = β:〈. . .〉 then α 6 β.

Although consistency is an invariant of reduction in the environment semantics,

the store semantics does not necessarily preserve consistency. Part of the proof of

our main theorem (Theorem 9) therefore involves showing that, for both the original

and transformed program, every reachable configuration is consistent.

In Lemma 15 we show that the [upd!] rule is the only rule that can destroy

consistency. First we must show that the computation address of a consistent store

configuration represents a fresh (unallocated) location.

Lemma 14

If 〈α, ρ, G, K, Σ〉 is consistent, and β occurs in K , then β < α.

Proof

By structural induction on K . No locations occur in halt, so the base case is trivial.

Let K = 〈α′, ρ′, R, K ′〉, where any location β that occurs in K ′ satisfies β < α.

Let l be a location that occurs in K . There are three cases.

If l occurs in R, then θ:φ(v1, . . . , vi−1, [ ], Ei+1, . . . , En) and l = vj for some j with

1 6 j < i. Let Σ(l) = γ:〈. . .〉. By consistency, we know that (α′.i) is a prefix of α,

l 6 γ, and either γ < α′ or (α′.j) is a prefix of γ. Either way, l 6 γ < α.

If ρ′(x) = l then consistency tells us that l < α′ < α.

If l occurs in K ′, then l < α by the induction hypothesis. q

Lemma 15 (Preservation of Store Consistency)

If SC is a consistent store configuration, and SC → SC ′ by any rule other than

[upd!], then SC ′ is consistent and Elim SC → Elim SC ′.
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Proof

Let SC be consistent. Then Elim SC is consistent. By examination of the rules, if

SC → SC ′ by any rule other than [upd!], and Elim SC is consistent, then SC ′ is

consistent. If Elim SC → Elim SC ′, then Elim SC ′ is consistent by Lemma 12.

It therefore suffices to prove that Elim SC → Elim SC ′. This is trivial if SC → SC ′

by any rule that leaves the store unchanged, leaving [new-s] and [upd-s] as the only

rules for which we must prove Elim SC → Elim SC ′. Consider the rule [new-s]:

SC = 〈α, ρ, θ: NEW(n, bv), K, Σ〉
→ 〈α, ρ, α, K, Σ′〉
= SC ′

where Σ′ = Σ[α 7→ α:〈bv, . . . , bv〉]. By consistency of SC , α does not occur in ρ or in

K , so Elim ρΣ′ = Elim ρΣ and Elim KΣ′ = Elim KΣ. Therefore Elim SC → Elim SC ′.
The proof for [upd-s] is similar. q

Recall that → indicates reduction using the original program, which contains no

occurrences of UPD!.

Corollary 16 (Simulation)

Let SC0 be an initial store configuration, and let SC0 →n SC . Then Elim SC0 →n

Elim SC .

Most of our proofs are by induction on the length of a computation in a small-step

semantics, as in Corollary 16, or by induction on the structure of a continuation,

as in Lemma 14. Occasionally, however, we will need the more global view that a

big-step semantics would provide. We conclude this section with an interpolation

theorem that allows us to look at the global structure of a computation in the

environment semantics.

Theorem 17 (Interpolation Theorem)

1. If 〈α, ρ, θ: fk(E1, . . . , En), K〉 →∗ 〈α′, ρ′, v, K〉, then there exist values v1, . . . ,

vn such that

〈α, ρ, θ: fk(E1, . . . , En), K〉
→∗ 〈α, ρ, θ: fk(v1, E2, . . . , En), K〉
→∗ 〈α, ρ, fk(v1, v2, E3, . . . , En), K〉
. . .

→∗ 〈α, ρ, fk(v1, . . . , vn), K〉
→∗ 〈α′, ρ′, v, K〉

2. If 〈α, ρ, θ: if E0 then E1 else E2, K〉 →∗ 〈α′, ρ′, v, K〉, then there exists a value

v′ such that

〈α, ρ, θ: if E0 then E1 else E2, K〉
→∗ 〈α, ρ, θ: if v′ then E1 else E2, K〉
→∗ 〈α, ρ′, v, K〉.
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Proof

Observe that the rules treat the continuation as a stack, with [push] and [push-test]

as the pushing operations and [return] as the matching pop operation. So the

computation sequence

〈α, ρ, θ: fk(E1, . . . , En), K〉 →∗ 〈α′, ρ′, v, K〉
must contain some number of matching push/pop pairs. The computation must

look like

〈α, ρ, fk(E1, . . . , En), K〉
→ 〈α.1, ρ, E1, 〈α, ρ, fk([ ], E2, . . . , En), K〉〉
→∗ 〈β1, ρ1, v1, 〈α, ρ, fk([ ], E2, . . . , En), K〉〉
→ 〈α, ρ, fk(v1, E2, . . . , En), K〉
→ 〈α.2, ρ, E2, 〈α, ρ, fk(v1, [ ], E2, . . . , En), K〉〉
→∗ 〈β2, ρ2, v2, 〈α, ρ, fk(v1, [ ], E2, . . . , En), K〉〉
→ 〈α, ρ, fk(v1, v2, E3, . . . , En), K〉
. . .

→∗ 〈α, ρ, fk(v1, v2, . . . , vn), K〉
→∗ 〈α′, ρ′, v, K〉

The case for conditionals is similar. q

This interpolation theorem is a surrogate for a big-step (or ‘natural’) semantics in

which the nodes of the computation tree might take the form

α : ρ ` θ:E → v

signifying that θ:E, started with environment ρ, terminates with value v; α then

becomes the address of this node in the tree.

6 Propagation analysis

The propagation analysis determines whether the value of an expression is the same

as that of one of its free variables. ‘Sameness’ is measured using the array labels (time

stamps). This is yet another place where we take advantage of the instrumentation

in our environment semantics.

Definition 18 (Propagation Analysis)

A propagation analysis P[[−]] is a map from expressions to sets of variables. A

propagation analysis P[[−]] is sound iff whenever 〈α, ρ, E, K〉 is consistent and

〈α, ρ, E, K〉 →∗ 〈α′, ρ′, β:〈bv . . .〉, K〉 then either

1. β:〈bv, . . .〉 ∈ {ρ(x) | x ∈ P[[E]]} or

2. α is a prefix (not necessarily proper) of β.

These two conditions say that if E evaluates to an array, then either the array is

the value of one of the variables in P[[E]], or it was created during the execution

of E.

To find the sets P[[−]], we solve the constraints in Figure 6. Note that there is

no constraint generated for any call to a primitive g(E1, . . . , En), so in the smallest
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P1. P[[x]] ⊇ {x}.
P2. P[[if E0 then E1 else E2]] ⊇ P[[E1]] ∪P[[E2]].

P3. If xk:i ∈ P[[Fk]], then P[[fk(E1, . . . , En)]] ⊇ P[[Ei]]

Fig. 6. Set constraints for P[[−]].

solution P[[g(E1, . . . , En)]] will be empty. This is reasonable, since any such term

always produces a fresh value; there are no destructive updates in the source

program.

A straightforward fixed-point iteration suffices to find the smallest solution to the

constraints. However, any solution to the constraints is a sound analysis:

Theorem 19 (Correctness of P[[−]])

Any solution to the constraints P1–P3 is a sound propagation analysis.

Proof

We check the conditions for all E simultaneously, by induction on the length of the

computation 〈α, ρ, E, K〉 →∗ 〈α′, ρ′, β:〈. . .〉, K〉. The induction step will proceed by

cases on E.

1. If E is a variable x, then we must have ρ(x) = β:〈. . .〉 and x ∈ P[[x]]. Therefore

β:〈. . .〉 ∈ {ρ(y) | y ∈ P[[x]]}.
2. If E is a primitive g(E1, . . . , En), then it must be that g is either NEW or UPD,

since all other primitives return basic values (by assumption). In either case

β = α, so α is a prefix of β.

3. If E is of the form fk(E1, . . . , En), then by Theorem 17 (Interpolation Theorem)

the calculation must look like

〈α, ρ, fk(E1, . . . , En), K〉
→∗ 〈α, ρ, fk(v1, E2, . . . , En), K〉
→∗ 〈α, ρ, fk(v1, v2, E3, . . . , En), K〉
. . .

→∗ 〈α, ρ, fk(v1, . . . , vn), K〉
→ 〈α.(n+ 1), {xk:1 = v1, . . . , xk:n = vn}, Fk, K〉
→∗ 〈α′, ρ′, β:〈. . .〉, K〉

Let ρ∗ denote the environment {xk:1 = v1, . . . , xk:n = vn}.
The last calculation is shorter than the original, and it begins in a consistent

state, so the induction hypothesis applies. Hence either α.(n+ 1) is a prefix of

β, so α is also a prefix of β, or else

β:〈. . .〉 ∈ {ρ∗(x) | x ∈ P[[Fk]]}
= {vi | xk:i ∈ P[[Fk]]}

If α is a prefix of β, we are done. So consider the second alternative. There

exists an i such that xk:i ∈ P[[Fk]] and β:〈. . .〉 = vi. Since xk:i ∈ P[[Fk]], we know
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that P[[Ei]] ⊆ P[[fk(E1 . . . En)]] by P3. So now consider the subcomputation

〈α, ρ, fk(v1, . . . , vi−1, Ei, . . . , En), K〉
→ 〈α.i, ρ, Ei, 〈α, ρ, fk(v1, . . . , vi−1, [ ], Ei+1, . . . , En), K〉〉
→∗ 〈βi, ρi, β:〈. . .〉, 〈α, ρ, fk(v1, . . . , vi−1, [ ], Ei+1, . . . , En), K〉〉

Applying the induction hypothesis to the last part of this subcomputation, we

deduce that either α.i is a prefix of β, so α is a prefix of β and we are done, or

else

β:〈. . .〉 ∈ {ρ(x) | x ∈ P[[Ei]]}
⊆ {ρ(x) | x ∈ P[[fk(E1, . . . , En)]]} by P3

4. The calculation for conditionals is similar. q

7 Alias analysis

The propagation analysis determines when the output of a procedure can be the

same array (or location) as one of its inputs. In our next analysis, we use the results

of this analysis to determine when two of the inputs to a procedure can be the same.

Definition 20 (Alias Analysis)

An alias set A is a subset of Var ×Var .

To characterize the soundness of an alias analysis A, we define a proposition

〈α, ρ, G, K〉 |= A that relates A to configurations of the environment semantics.

Informally, this proposition says that if two variables x and y denote the same array

value within some environment that appears anywhere within the configuration, then

(x, y) ∈ A; and similarly that if two actual parameters denote the same array value

within some partially reduced expression or return context, and the corresponding

formal parameters are x and y, then (x, y) ∈ A.

Definition 21 ((−) |=A)

• 〈α, ρ, G, K〉 |=A iff

1. ρ |=A,

2. G |=A, and

3. K |=A.

• ρ |=A iff ρ(x) = ρ(y) =⇒ (x, y) ∈ A.

• G |=A iff one of the following holds:

1. G is an expression E.

2. G is a value v.

3. G = θ: fk(v1, . . . , vi−1, Ei, . . . , En) and for all j, j ′ ∈ [1, i − 1], vj = vj ′ =

β:〈bv1, . . .〉 =⇒ (xk:j , xk:j ′) ∈ A.

4. G = θ: if v then E1 else E2.

• halt |=A always.

• 〈α, ρ, R, K〉 |=A iff

1. ρ |=A,

2. R |=A, and

3. K |=A.
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A1. A is an equivalence relation.

A2. For each call fk(E1, . . . , En) that occurs in the program, if

A ?P[[Ej]] ∩A ?P[[Ej′ ]] 6= ∅
then (xk:j , xk:j′ ) ∈ A.

Fig. 7. Set constraints for A.

• fk(v1, . . . , vi−1, [ ], Ei+1, . . . , En) |= A iff for all j, j ′ ∈ [1, i − 1], vj = vj ′ =⇒
(xk:j , xk:j ′) ∈ A.

• g(v1, . . . , vi−1, [ ], Ei+1, . . . , En) |=A always.

• if [ ] then E1 else E2 |=A always.

An alias analysis is sound if it predicts all of the aliasing that can actually occur

during the execution of the program:

Definition 22 (Soundness of A)

A is a sound alias analysis iff 〈α, ρ, G, K〉 |= A for every reachable configuration

〈α, ρ, G, K〉.

For S ⊆ Var , define

A ? S = {x | (x, y) ∈ A∧ y ∈ S}
The constraints for A are given in figure 7. Once again, these constraints take

the form of closure conditions, so the smallest solution can be found by iterating to

find the least fixed point.

Theorem 23 (Correctness of A)

If P[[−]] is a sound propagation analysis and A satisfies the constraints A1–A2,

then A is a sound alias analysis.

Proof

By induction on the number of steps taken to get from an initial configuration

〈α0, E0, ρ0, K0〉 to EC = 〈α, ρ, G, K〉. By the definition of (−) |=A, we need only

be concerned with rules that change the environment component of a configuration

([call]) or create or change a partially reduced call or call-like return context that

involves a function symbol fk ([push], [return]). It is easy to see that the [call]

and [push] rules preserve A. So consider a step that returns to a return context for

a call to fk . By Theorem 17 (Interpolation Theorem), the computation through this

step must look like:
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〈α0, E0, ρ0, K0〉
→∗ 〈α, ρ, θ: fk(E1, . . . , En), K〉
→ 〈α.1, ρ, E1, 〈α, ρ, θ: fk([ ], E2, . . . , En), K〉〉
→∗ 〈α1, ρ1, v1, 〈α, ρ, θ: fk([ ], E2, . . . , En), K〉〉
→ 〈α, ρ, θ: fk(v1, E2, . . . , En), K〉
→ 〈α.2, ρ, E2, 〈α, ρ, θ: fk(v1, [ ], E3, . . . , En), 〉〉
. . .

→∗ 〈αi, ρi, vi, 〈α, ρ, θ: fk(v1 . . . vi−1, [ ], Ei+1, . . . , En), K〉〉
→ 〈α, ρ, θ: fk(v1, . . . , vi, Ei+1, . . . , En), K〉

We assume by induction that all but the last of these configurations satisfy A.

We need to show that the last configuration also satisfies A. All of the conditions

for EC |= A are satisfied, except perhaps for vj = vj ′ =⇒ (xk:j ′ , xk:j ′ ) ∈ A. To

check this, we observe that the conditions for the propagation analysis are satisfied

at each α.j, so we know that if vj = β:〈. . .〉, then either α.j is a prefix of β, or

β:〈. . .〉 ∈ {ρ(x) | x ∈ P[[Ej]]}.
So assume that vj = vj ′ = β:〈. . .〉. We must establish that (xk:j , xk:j ′) ∈ A. There

are three cases:

1. α.j and α.j ′ are both prefixes of β. Then j = j ′. Therefore (xk:j , xk:j ′) ∈ A,

since A is an equivalence relation.

2. α.j is a prefix of β and β:〈. . .〉 ∈ {ρ(x) | x ∈ P[[Ej ′]]}. Then β < α by

consistency, yielding the contradiction (α.j) 6 β < α. So this case is impossible.

3. β:〈. . .〉 ∈ {ρ(x) | x ∈ P[[Ej]]} ∩ {ρ(x) | x ∈ P[[Ej ′]]}.
In the third case, β:〈. . .〉 ∈ {ρ(x) | x ∈ P[[Ej]]}. Therefore there exists a y ∈ P[[Ej]]

such that ρ(y) = β:〈. . .〉. Since ρ |= A, if ρ(x) = β:〈. . .〉, then (x, y) ∈ A. Therefore

{x | ρ(x) = β:〈. . .〉} ⊆ A ? P[[Ej]]. Similarly, {x | ρ(x) = β:〈. . .〉} ⊆ A ? P[[Ej ′]].

Therefore

{x | ρ(x) = β:〈. . .〉} ⊆ A ?P[[Ej]] ∩A ?P[[Ej ′]]

Since the left-hand side of this inequality is nonempty, so is the right-hand side.

Hence, by constraint A2, (xk:j , xk:j ′ ) ∈ A. q

8 Live variable analysis

With the propagation and alias analyses in hand, we can now proceed to the

live variable analysis. By Definition 7, which characterizes the soundness of a live

variable analysis, our goal is to find sets L[[θ]] such that for every reachable state

of the form 〈α, ρ, θ:T , K, Σ〉,
if ρ(x) is live in K , then x ∈ L[[θ]]

To motivate the constraints for L[[−]], observe that if θ occurs in the program as

θ′:φ(E1, . . . , Ei−1, θ:T ,Ei+1, . . . , En)
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L1. If θ occurs in the context

θ′:φ(E1, . . . , Ei−1, θ:T ,Ei+1, . . . , En)

then

L1.1 A ?P[[Ej]] ⊆ L[[θ]] for each j ∈ [1, i− 1].

L1.2 A ? fv(Ej) ⊆ L[[θ]] for each j ∈ [i+ 1, n].

L1.3 L[[θ′]] ⊆ L[[θ]].

L2a. If θ occurs in the context

θ′: if θ:T then E1 else E2

then

L2a.1 A ? fv(Ej) ⊆ L[[θ]] for each j ∈ [1, 2].

L2a.2 L[[θ′]] ⊆ L[[θ]].

L2b. If θ occurs in a context of the form

θ′: if E0 then θ:T else E2

or

θ′: if E0 then E1 else θ:T

then L[[θ′]] ⊆ L[[θ]].

L3. If θ is the label of a procedure body Fk , then for each call

θ′: fk(E1, . . . , En)

in the program,

L[[θ′]] ∩P[[Ei]] 6= ∅ =⇒ xk:i ∈ L[[θ]]

Fig. 8. Set constraints for L[[−]].

and if 〈α, ρ, θ:T , K, Σ〉 is reachable, then K must be of the form

〈α, ρ, θ′:φ(v1, . . . , vi−1, [ ], Ei+1, . . . , En), K
′〉

A location may be live in this continuation in one of three ways:

1. it might be one of the vj ’s, for 1 6 j < i;

2. it might be the value of a variable free in one of the Ej ’s (for i < j 6 n);

3. it might be live in K ′.

Hence, a variable in ρ might be bound to a live location in one of three ways:

1. it might be (or be aliased to) a variable whose value is returned by one of the

Ej (1 6 j < i);

2. it might be (or be aliased to) a variable that is free in one of the Ej ’s (i < j 6 n);

3. it might be bound to a location that is live in K ′.

These considerations correspond to the first group of set constraints L1 in figure 8.

The second group L2 is analogous. L3 says that for a procedure call θ′: fk(E1, . . . , En),

if the value of some variable that is live at θ′ can appear as the result of some

actual parameter Ei, then in the analysis of the procedure body θ:Fk we must treat
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the corresponding formal parameter xk:i as live. This reflects the fact that this is

an interprocedural analysis; a non-interprocedural analysis would have to take the

conservative approach of regarding all formal parameters as live at θ.

Theorem 24 (Correctness of L[[−]])

If P[[−]] is a sound propagation analysis, A is a sound alias analysis, and L[[−]]

satisfies constraints L1–L3, then L[[−]] is sound.

Proof

We proceed by induction on the length of the computation to the reachable state.

The induction step proceeds by cases on how θ appears in the program.

1. If θ occurs in the context

θ′:φ(E1, . . . , Ei−1, θ:T ,Ei+1, . . . , En)

then the only way in which θ:T can appear as the expression component of

a store configuration is by a computation of the form

〈α0, ρ0, E0, K0, Σ0〉
→∗ 〈α, ρ, θ′:φ(E1, . . . , Ei−1, θ:T ,Ei+1, . . . , En), K

′, Σ〉
→ 〈α.1, ρ, E1, 〈α, ρ, θ′:φ([ ], E2, . . . , Ei−1, θ:T ,Ei+1, . . . , En), K

′〉, Σ〉
→∗ 〈α1, ρ1, v1, 〈α, ρ, θ′:φ([ ], E2, . . . , Ei−1, θ:T ,Ei+1, . . . , En), K

′〉, Σ1〉
→ 〈α, ρ, θ′:φ(v1, E2, . . . , Ei−1, θ:T ,Ei+1, . . . , En), K

′, Σ1〉
. . .

→ 〈α.i, ρ, θ:T , 〈α, ρ, θ′:φ(v1, v2, . . . , vi−1, [ ], Ei+1, . . . , En), K
′〉, Σi−1〉

Let SC denote the last configuration in this computation. By Corollary 16

(Simulation), the sequence obtained by taking the Elim of each configuration

in this store computation is an environment computation. Furthermore the

Elim of each state is consistent and reachable. Also, by the soundness of A,

Elim SC |=A. Let K denote the store continuation

〈α, ρ, θ′:φ(v1, v2, . . . , vi−1, [ ], Ei+1, . . . , En), K
′〉

We need to check that if ρ(x) is live in K , then x ∈ L[[θ]]. We proceed by

cases on the definition of ρ(x) live in K , assuming in each case that ρ(x) is a

location:

(a) There exists a j ∈ [1, i − 1] such that ρ(x) = vj and vj is a location. Let

Σ(vj) = β:〈. . .〉. By the soundness of P[[−]] (in the underlying environment

computation) either

(i) α.j is a prefix of β, and therefore α < α.j 6 β. But consistency requires

that β < α. So this case is impossible.

(ii) there exists a y such that ρ(y) ∈ P[[Ej]] and Σ(ρ(y)) = β:〈. . .〉. Since

Σ(ρ(x)) = Σ(ρ(y)) and Elim SC |=A, it follows that (x, y) ∈ A. There-

fore x ∈ A ?P[[Ej]] ⊆ L[[θ]].

(b) There exists a j ∈ [i + 1, n] and y ∈ dom(ρ) such that ρ(x) = ρ(y) and

y ∈ fv(Ej). Therefore x ∈ A ? fv(Ej) ⊆ L[[θ]].
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(c) ρ(x) is live in K ′. By the induction hypothesis (applied at the second line

in the calculation above), x ∈ L[[θ′]] ⊆ L[[θ]].

2. The cases for conditionals are similar: The case in which θ appears in the test

is just like the evaluation of the first actual parameter of a procedure call. The

case in which θ appears in one of the consequents is simpler; the only way in

which θ can appear as the expression component of a configuration is by a

computation of the form

〈α0, ρ0, E0, K0, Σ0〉
→∗ 〈α, ρ, θ′: if E then θ:T else E2, K

′, Σ〉
→ 〈α.1, ρ, E, 〈α, ρ, θ′: if [ ] then θ:T else E2, K

′〉, Σ〉
→∗ 〈α.1, ρ, true, 〈α, ρ, θ′: if [ ] then θ:T else E2, K

′〉, Σ〉
→ 〈α, ρ, θ′: if true then θ:T else E2, K

′, Σ〉
→ 〈α.2, ρ, θ:T , K ′, Σ〉

If ρ(x) is live in K ′, it must be that x ∈ L[[θ′]] (applying the induction

hypothesis at the second line), hence x ∈ L[[θ]] by L2b.1.

3. If θ is the label of a procedure body Fk , then the only way in which θ can

appear is by a computation of the form:

〈α0, ρ0, E0, K0, Σ0〉
→∗ 〈α, ρ, θ′: fk(E1, . . . , En), K, Σ〉
→∗ 〈α, ρ, θ′: fk(v1, . . . , vn), K, Σ′〉
→ 〈α.(n+ 1), {xk:1 = v1, . . . , xk:n = vn}, θ:Fk, K, Σ′〉

Furthermore, applying the induction hypothesis at the next-to-last line, if ρ(x)

is live in K , then x ∈ L[[θ′]].
Now, by the soundness of P[[−]], each vi is either

(a) a basic value

(b) a location with α.i as a prefix, or

(c) an element of {ρ(x) | x ∈ P[[Ei]]}.
If vi is a basic value, then it is not a location live in K . If it is a location

with α.i as a prefix, then it cannot be live in K because that would violate

consistency. In the last case, there must be some x such that vi = ρ(x) and

x ∈ P[[Ei]]. But if vi = ρ(x), then x ∈ L[[θ′]] by the induction hypothesis.

Hence P[[Ei]] ∩L[[θ′]] is non-empty, and therefore xk:i ∈ L[[θ]], as required.

4. The final possibility is that θ is the label of F0, the body of the program. In this

case, θ appears only with the initial continuation K0, in which no locations

are free, so soundness is satisfied trivially. q

9 Proof of main theorem

We now present the proof of our main theorem (Theorem 9). Recall that →
indicates reduction using the original program and ⇒ indicates reduction using the

transformed program.
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Proof

LetL[[−]] be a sound live variable analysis, and let 〈α0, ρ0, F0, halt, Σ0〉 be an initial

configuration. The proof proceeds by induction on n with induction hypothesis: If

〈α0, ρ0, F0, halt, Σ0〉 →n 〈α, ρ, G, K, Σ〉
and

〈α0, ρ0, F
∗
0 , halt, Σ0〉 ⇒n 〈α′, ρ′, G′, K ′, Σ′〉,

then

Elim〈α, ρ, G, K, Σ〉 ∼= Elim〈α′, ρ′, G′, K ′, Σ′〉
Elim F∗0 Σ ≡ F0 so the base case is trivial.

Assume the induction hypothesis for n, and suppose

〈α0, ρ0, F0, halt, Σ0〉 →n 〈α, ρ, G, K, Σ〉 → 〈α′′, ρ′′, G′′, K ′′, Σ′′〉
and

〈α0, ρ0, F
∗
0 , halt, Σ0〉 ⇒n 〈α′, ρ′, G′, K ′, Σ′〉 ⇒ 〈α′′′, ρ′′′, G′′′, K ′′′, Σ′′′〉

Since Elim G Σ = Elim G′ Σ′, either the same rule is applied in both transitions or

else the [upd-s] rule is applied in the → transition and the [upd!] rule is applied

in the ⇒ transition. By Corollary 16, Elim〈α, ρ, G, K, Σ〉 is consistent. Therefore

Elim〈α′, ρ′, G′, K ′, Σ′〉 would be consistent if not for the values of some dead

variables, by the definition of congruence. Congruence also implies that α = α′,
whence α′′ = α′′′.

Suppose the same rule is applied in both transitions. This rule cannot be the

[upd!] rule because there are no destructive updates in the original program. By

Lemma 15 (Preservation of Store Consistency), Elim〈α′′, ρ′′, G′′, K ′′, Σ′′〉 is consistent

and

Elim〈α, ρ, G, K, Σ〉 → Elim〈α′′, ρ′′, G′′, K ′′, Σ′′〉
By Lemma 3 (Preservation of Congruence),

Elim〈α′, ρ′, G′, K ′, Σ′〉 ⇒ Elim〈α′′′, ρ′′′, G′′′, K ′′′, Σ′′′〉
and

Elim〈α′′, ρ′′, G′′, K ′′, Σ′′〉 ∼= Elim〈α′′′, ρ′′′, G′′′, K ′′′, Σ′′′〉
The above use of ⇒ instead of → is justified by the fact that for all E, Σ, and Σ′,
Elim(θ:E) Σ ≡ Elim(θ:E∗) Σ′.

Suppose the [upd-s] rule is applied in the → transition and the [upd!] rule is

applied in the ⇒ transition. Then

〈α, ρ, G, K, Σ〉
= 〈α, ρ, θ: UPD(β, j, bv′), K, Σ〉
→ 〈α, ρ, α, K, Σ′′〉

where Σ(β) = β:〈bv1, . . . , bvj , . . . , bvn〉 and Σ′′ = Σ[α 7→ α:〈bv1, . . . , bv
′, . . . , bvn〉]. Also

〈α′, ρ′, G′, K ′, Σ′〉
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= 〈α, ρ′, θ: UPD(γ, j, bv′), K ′, Σ′〉
⇒ 〈α, ρ′, γ, K ′, Σ′′′〉

where Σ′(γ) = β:〈bv1, . . . , bvj , . . . , bvn〉 and Σ′′′ = Σ′[γ 7→ α:〈bv1, . . . , bv
′, . . . , bvn〉].

Clearly Elim α Σ′′ = Elim γ Σ′′′. By Definition 8 there exists a variable x such

that θ: UPD(x, E1, E2) is in the original program and x 6∈ L[[θ]]. By Theorem 24,

ρ(x) = β is not live in K , so there is no occurrence of Σ(β) = β:〈bv1, . . . , bvj , . . . , bvn〉
in Elim KΣ except possibly as the value of some dead variable that is ignored by the

congruence relation. If γ were live in K ′, then Σ(γ) = β:〈bv1, . . . , bvj , . . . , bvn〉 would

be live in Elim K ′ Σ′, which would contradict Elim K Σ ∼= Elim K ′ Σ′. Hence γ is not

live in K ′. Furthermore α is not live in K , by Lemma 14. Now we can deduce:

Elim K Σ′′
∼= Elim K Σ since α is not live in K
∼= Elim K ′ Σ′ from IH
∼= Elim K ′ Σ′′′ since γ is not live in K ′ q

10 Computational complexity

For each analysis, we now calculate an upper bound for the worst-case time required

to find the least fixed point of its set constraints. Let m be the size of the program’s

abstract syntax tree, let nk be the arity of Fk , and let n = n1 + · · · + nN be the

total number of local variables in the program. (In a typed language, we would

only consider variables whose type is an array type.) We assume that each union or

intersection requires time proportional to the size of its universe, as when sets are

represented by bitvectors. This implies that each set operation requires O(nj) time

for some j.

The least fixed point of the set constraints for Propagation Analysis will be found

in at most n iterations, where each iteration computes O(m) unions of size nj for

some j. The worst-case time for Propagation Analysis is therefore O(mn2).

The least fixed point of the set constraints for Alias Analysis will be found in

at most n iterations, where each iteration computes O(mn2
k) intersections of size nj

for some j. The cost of merging equivalence classes is less than this, so it can be

ignored. The worst-case time for Alias Analysis is therefore O(mn4).

The least fixed point of the set constraints for Liveness Analysis will be found

in less than mn iterations, where each iteration computes at most 2m unions or

intersections of size nj for some j. The worst-case time for Liveness Analysis is

therefore O(m2n2).

Hence the set constraints can be solved in polynomial time using standard tech-

niques. The worst-case asymptotic bounds that we have calculated are comparable

to the worst-case bounds for standard flow analyses (Aho et al., 1986). For typical

programs, a prototype implementation of the earlier (and less obviously efficient)

formulation of these analyses appears to run in near-linear time (Sastry and Clinger,

1994).
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11 Related work

Our optimization is based on the analysis of Sastry et al. (1993). We add to that

paper by providing a proof of correctness for the transformation. The present

analysis differs from that of Sastry et al. (1993) in a number of ways:

The analysis of Sastry et al. (1993) was presented as a sequence of abstract inter-

pretations. This framework led to a formulation for which a naive implementation

would lead to an exponential algorithm. The algorithm was reduced to polynomial

complexity by computing the propagation analysis symbolically. The current formu-

lation builds these symbolic representations into the analyses, so no sophisticated

implementation techniques are necessary.

The analysis of Sastry et al. (1993) contains two phases not included in this

paper: a selects-and-updates analysis and an order-of-evaluation analysis. The order-

of-evaluation analysis chooses an order for the evaluation of arguments at each

procedure call, seeking to minimize live variables. The selects-and-updates analysis

computes quantities that are used in the order-of-evaluation analysis. Such analyses

could easily be added, because reordering the evaluation of actual parameters would

not change the soundness of either P[[−]] orA; we chose not to use A-normal form

(Flanagan and Felleisen, 1995) in order to make this invariance clear.

Work on destructive update analysis goes back to Hudak and Bloss (1985) and

Hudak (1986). These early analyses required exponential or doubly exponential time

in the worst case, and were less effective than the combination of an order-of-

evaluation analysis with the algorithm considered here (Sastry et al., 1993; Sastry

and Clinger, 1994).

Of more recent work, our analysis appears most similar to that of Draghicescu and

Purushothaman (1993). Like us, they present an update optimization based on live

variable analysis for first-order functional languages with flat arrays. Their analysis

works for non-strict languages, however, and has exponential time complexity. As

in most work of this kind, they prove the soundness of their analyses but do not

prove the correctness of any program transformations.

The style of analysis as constraint-generation is drawn from Palsberg & Schwartz-

bach (1995), which in turn drew on several previous papers (Jones and Muchnick,

1982; Sestoft, 1988; Jones, 1981; Shivers, 1991). Steckler and Wand (1997) used

similar ideas to prove the correctness of a closure-conversion algorithm. Flanagan

and Felleisen (1995) used the same set of ideas to eliminate type-checks in Scheme

programs. Their proof also used an architecture quite similar to ours.

A competing paradigm for finding safety properties is abstract interpretation

(Cousot and Cousot, 1977). In this framework, the soundness of analyses like our

P[[−]] may be regarded as the correctness of a second-order collecting interpretation

(Nielson, 1985; Schmidt, 1998). Set constraints avoid the complications of collecting

interpretations. They are also a more direct generalization of the flow analysis that

is familiar to compiler writers (Aho et al., 1986). It does not appear possible to prove

the correctness of the program transformation using abstract interpretation of the

original program alone, because the store-free semantics of the original functional

program cannot express the side effects of the imperative program that results from

the transformation.
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All the analyses here generate conditional constraints, which can be solved us-

ing standard closure algorithms (Aiken et al., 1993; Heintze, 1992; Palsberg and

Schwartzbach, 1994).

The idea of using a time stamp to model sharing in a store-free model goes back

at least to section V.4 of Clinger’s PhD thesis (1981), which constructed process

identifiers from process identifiers and local time. This idea was suggested by Carl

Hewitt.

12 Variations and extensions

A similar proof could be developed using big-step semantics. In such a proof, our

use of non-local references to the structure of the computation, for which we have

relied on Theorem 17 (Interpolation Theorem), would be replaced by references to

the immediate predecessors of a node. However, the information we have localized

in the continuation component would become distributed through the tree.

It is possible to allow arrays in initial configurations by parameterizing the analysis

on the alias analysis A, and by admitting any initial configuration that satisfies A.

All of our results extend directly to this case.

Sastry and Clinger (1994) extended the analysis of Sastry et al. (1993) to par-

allel computation regimes. It would clearly be desirable to extend our proofs of

correctness as well.

Currently, our analysis works only for arrays containing scalar data. It would be

desirable to extend this to allow arrays containing compound data, including other

arrays. It would also be desirable to remove the restriction to first-order programs

by allowing data to reside inside closures.
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