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Abstract

Let I" be a finite connected undirected vertex transitive locally primitive graph of prime-power order. It is
shown that either I" is a normal Cayley graph of a 2-group, or I" is a normal cover of a complete graph, a
complete bipartite graph, or £*/, where £ =K pm with p prime or X is the Schléfli graph (of order 27).
In particular, either I is a Cayley graph, or I' is a normal cover of a complete bipartite graph.
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1. Introduction

This is an application of Praeger’s fundamental theory of symmetric graphs to the
study of a class of locally primitive graphs.

Let I be a digraph with vertex set V. For G < Aut I', a group of automorphisms, I"
is called G-vertex transitive if G is transitive on V. For a vertex v, let I' (v) be the set of
vertices to which v is adjacent, and let G, = {g € G | v = v}. A G-vertex transitive
digraph I is called G-locally primitive (or simply called locally primitive) if G, acts
primitively on I"(v) for all vertices v. As usual, the number of vertices of a digraph is
called the order, and the size |I"(v)| is called the out-valency if T is regular. By I' ™ (v)
we mean the set of vertices that are adjacent to v. Then |I"(v) U T~ (v)] is called the
valency of T" for I' regular. If, for any vertices u, v of I', u is adjacent to v if and
only if v is adjacent to u, then I" is called undirected. This paper aims to characterize
undirected vertex transitive locally primitive graphs of prime-power order.

There are some typical examples of locally primitive graphs: the complete graphs
K,,, and the complete bipartite graphs K, ,. In particular, K,» with p prime and

This work forms a part of the PhD project of Jiangmin Pan. It was partially supported by a NNSF and an
ARC Discovery Project Grant.
© 2009 Australian Mathematical Society 1446-7887/2009 $16.00

111

https://doi.org/10.1017/5144678870800089X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870800089X

112 C.H. Li, J. Pan and L. Ma 2]

Kom om are of prime-power order. More examples can be recursively constructed
by direct product. Given digraphs I'; with vertex sets V; for 1 <i </, their direct
product, denoted by I'y x - - - x I', is the digraph I" with the vertex set Vi x - - - X V;
(Cartesian product) such that (uy, ..., u;) is adjacent to (vy, . . ., vy) if u; is adjacent
in I'; to v; for each i. In the special case where I'y = - - - = I', the direct product is
simply denoted by FIXI :

The direct product I' x K; has vertex set V x {1, 2} such that (u, 1) is adjacent
to (v, 2) if and only if u, v are adjacent in I". Hence I x K is actually the so-called
standard double cover of I'. In particular, K,, x Ky =K, , — nKj, the graph obtained
by deleting a 1-factor from K, ,,.

The Schldfli graph is the graph on isotropic lines in the U(4, 2) geometry, adjacent
when disjoint; refer to [2] or ‘http://www.win.tue.nl/~aeb/graphs’. It is a strongly
regular graph of valency 16, and its automorphism group is U(4, 2).2. Also, it is a
locally primitive Cayley graph of Zg:Z3; see Lemma 2.6.

A digraph I' = (V, E) is called a Cayley graph of a group G if there is a
nonempty set S of G such that V=G and E = {{g, sg} | g € G, s € S}, which is
denoted by Cay(G, S). Obviously, Cay(G, S) is undirected if and only if S = S~! :=
{s~!|s € S}. It is known that a digraph I" is a Cayley graph of a group G if and only if
Aut I" contains a subgroup that is isomorphic to G and regular on the vertex set; see [1,
Proposition 16.3]. For convenience, this regular subgroup of Aut I' is still denoted by
G in this paper. If AutI" has a normal subgroup that is regular and isomorphic to G,
then I' is called a normal Cayley graph of G. Refer to [10, 15, 16] for various nice
properties of normal Cayley graphs.

Assume that I' is a G-vertex transitive digraph. Let N be a normal subgroup of G.
Denote by Vi the set of N-orbits in V. The normal quotient T’y of I' induced by N is
defined as the digraph with vertex set Vi ; and two vertices B, C € Vy are adjacent if
there exist u € B and v € C that are adjacent in I'. If I" and I"y have the same valency,
then I' is called a normal cover of I'y. Obviously, if T" is a cover of 'y, then T is
undirected if and only if sois ['y.

A triple of distinct vertices of an undirected graph is called a 2-arc if one of them
is adjacent to the other two. An undirected graph I' is called (G, 2)-arc transitive if
G < Aut T is transitive on the set of 2-arcs of I". It easily follows that an undirected
regular (G, 2)-arc transitive graph is G-vertex transitive and G-locally primitive.

In the literature, the classes of 2-arc transitive graphs and locally primitive
graphs have been extensively studied; see [1, 11, 14] and references therein. In
particular, undirected vertex primitive and vertex biprimitive 2-arc transitive Cayley
graphs of elementary abelian p-groups are classified by Ivanov and Praeger [7]; a
characterization of undirected 2-arc transitive graphs of prime-power order is given by
the first author [8]. The main result of this paper is to extend the result of [8] to the
class of undirected vertex transitive locally primitive graphs.

THEOREM 1.1. Let T be a connected undirected graph of order p" and valency at
least three, with p prime. Assume that I" is vertex transitive and locally primitive.
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Then one of the following statements holds:

(1) T is a normal Cayley graph of a 2-group;

(i) T is a normal cover of <!, where 1 > 1 and © = K, or is the Schlifli graph;
in particular, T is a Cayley graph, or

(iii) I is a normal cover of Kom om.

This tells us that an undirected locally primitive graph of prime-power order is either
a Cayley graph, or a normal cover of a complete bipartite graph. In particular, we have
the following interesting corollary.

COROLLARY 1.2.

(1) A connected undirected locally primitive graph of order a power of an odd prime
is a Cayley graph.

(ii) A connected undirected locally primitive graph of order p™ with p > 5 prime is
a normal cover of K;,f,

Stimulated by Theorem 1.1, some further research problems naturally arise.

PROBLEM.

(1) Are all locally primitive normal covers of Kon om Cayley graphs?

(2) Characterize normal Cayley graphs of 2-groups that are locally primitive.

(3)  Study locally primitive normal covers of £*/, where ¥ is a complete graph or
the Schlifli graph.

2. Vertex quasiprimitive case

A permutation group G < Sym(2) is called quasiprimitive if each nontrivial normal
subgroup of G is transitive on 2. In this section, we deal with the vertex quasiprimitive
case. First, we give a characterization of quasiprimitive permutation groups of prime-
power degree.

Let X be a quasiprimitive permutation group on 2 of degree p", where p is a
prime. Let N be a minimal normal subgroup of X. Then N = T, where [ > 1 and T
is a simple group. Since X is quasiprimitive on €2, N is transitive on 2.

If T is abelian, then T =Z,, [ =n, and N = Z;l, is regular on €. Further,
Z’; < X < AGL(n, p).

If /=1 and T is nonabelian, then X is an almost simple group, and for « € , T,
has index p" in T. The following theorem of Guralnick [5] presents the nonabelian
simple groups with a subgroup of prime-power index.

THEOREM 2.1 [5]. Let T be a nonabelian simple group that has a subgroup H of

index p” with p prime. Then one of the following holds:

i) T=Ap,and H=A,-1;

(i) T=PSL,q), H is a maximal parabolic subgroup of T, and
Pr=@'=1/g-1);

(iii) T =PSL(2, 11), H = As, and p" =11;
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(v) T =My, H =M, and p" =11;
(v) T =My3, H= My, and p" =23; or
(vi) T =PSU@4,2), H=Zj:Asand p" =27.

Next we assume that N is nonabelian and [ > 2. We will show that X is primitive
of product action type. Let H be a group acting on A, and P a subgroup of the
symmetric group S;. Let G = H : P be the wreath product of H by P. Then G

acts naturally on Q := Al called product action, as follows: for (61, ..., 8) € €,
x=(h1,....,h))e H and o € P,
h -
1, ..., 8T — (g1 e whereg =8 .
lU

It is known that G is primitive on €2 if and only if H acts primitively but not regularly
on A, and P is a transitive subgroup of S;; see [4, Lemma 2.7A].

A primitive permutation group is quasiprimitive, but the inverse is not necessarily
true. In [9] and [10], it is shown that a quasiprimitive permutation group containing
an abelian regular subgroup or a dihedral regular subgroup is primitive. The following
theorem shows that a similar result holds for quasiprimitive permutation groups of
prime-power degree.

THEOREM 2.2. Let X be a quasiprimitive permutation group on 2 of degree p" with
p prime. Let N be a minimal normal subgroup of X. Then X is primitive, and one of
the following holds:

(1) X is an affine group, N = Z;, and X < AGL(l, p), wherel > 1;

(1) X is an almost simple group, and N =T is as in Theorem 2.1; in particular,
either X is 2-transitive, or X =PSU4, 2) or PSU4, 2).Z,; or

(iii) X is of product action type, N = T' with | > 2, and T lies in the list of Theorem
2.1.

Moreover, if |2| is a power of 2 and N is nonabelian, then N = T! with | > 1, and
T = Ay or PSL(2, p) with p+1=2° for s >3 and p=3 (mod 4), and N has a
subgroup that is regular on Q.

PROOF. Since N is a minimal normal subgroup of X, N = T for some simple group
T and [ > 1. Since X is quasiprimitive, N is transitive on 2. If N is abelian, it is
known and easily shown that X is primitive and part (i) holds.

Thus we assume that N is nonabelian. If N =T is simple, then the stabilizer
Ny, where o € 2, has index p™ in N. Hence by Theorem 2.1, N =T is listed in
Theorem 2.1, and N, is maximal in N. So N and X are primitive on €.

Now, we further assume that N is not simple. Then N=T7T; x--- x T} = T!,
where /[ > 2 and T is a nonabelian simple group. Since |N : Ny| = || = p™ and
[T : (T)| =N : ((T1)g X Ty x -+ x Tp)| divides |N : Ny|, we conclude that (T})y
has index p-power in 7. Hence by Theorem 2.1, (T7)4 is a maximal subgroup of 77.
Similarly, for all i with 1 <i <[, (T;), is maximal and has index p-power in 7;. By
the O’Nan-Scott theorem (see [4]), X is primitive of product action type.
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Next suppose that |2| is a power of 2. Since T is a normal subgroup of N, we
conclude that T is half-transitive on €, so |T : T,| divides 2¢. By Theorem 2.1,
T = Ajs or PSL(d, g) and (qd —1)/(g — 1) =2° for some s. Suppose that T =
PSL(d, ¢) with d > 3. Then (g, d) # (2, 6), and hence ¢? — 1 has a primitive prime
divisor r, that is, r divides qd — 1 but not qi — 1 for each i < d; see [6, p. 508]. It
follows that (g¢ — 1)/(g — 1) is not a power of 2, which is not possible. Hence d = 2.
Now, g + 1= (¢g> — 1)/(g — 1) = 2%, and it then follows that g = 2° — 1 is a prime. O

The following result was proved by Praeger [13].

LEMMA 2.3 [13, Theorem 2.1(a)]. Let X < H S; be a primitive permutation group
of product action type on = Al, where H is almost simple and primitive on A.
Let a = (y,...,y) € Al. Suppose that A is an Xy-orbit on Q\ {a}, and X, is
quasiprimitive on A. Then A = A(y)!, where A(y) is an orbit of H, on A.

The next lemma shows that the direct product of locally primitive graphs is locally
primitive.

LEMMA 2.4. Let X be a Y-locally primitive digraph with vertex set A, where
Y < Aut X is almost simple and primitive on A. Let T = £ with vertex set AL,
Let X =Y'.P <Y :S; act on A' in product action, where P is a transitive subgroup
of the symmetric group S;. Then X < Aut " and T is an X-locally primitive digraph.

Further, if ¥ is a Cayley graph of a group H, then I' is a Cayley graph of the
group H L

PROOF. Let V = Al. Tt is easily shown that X < AutI', and X is transitive on V.
Further, for v=(5,...,8) € V, we have X, = (¥5)'.P. Since ¥ is a Y-locally
primitive graph, Ys is primitive on X(§). By [4, Lemma 2.7A], X, is primitive on
I"(v) as P is a transitive subgroup of S;. So I' is an X-locally primitive digraph.
Further, suppose that X is a Cayley graph of a group H. Then H < Aut X is regular
on A, so H < (AutX)'.P < AutT and is regular on V. Therefore, I' is a Cayley
graph of the group H'. O

The socle of a group X is the normal subgroup generated by all minimal normal
subgroups of X, denoted by soc(X).

LEMMA 2.5. LetT" be an X-locally primitive digraph with vertex set V. Suppose that
X is a primitive permutation group on 'V of product action type. Suppose further that
soc(X) =PSL(d, ¢)! withl > 1, and |V| = ((q% — 1)/(q — 1)) Thend = 2.

PROOF. It is easily shown that X is almost simple or of product action type. Let

N =soc(X), T =PSL(d, g),and O = X/N.
Suppose that X is almost simple, and d > 3. For u, v € V, the stabilizers

~

N (Zig-1)/ta.q-1)-PGL — 1, @),

1, 7]
Tuw = 197712 (Zg-1)/ta.q-1)-Lg—1 PGLW — 2, q)),
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and X, =7T,.0, X,, = T,,.0. Then there exists a group
H=0,(T,)Tuw = [¢** 1 (Zg-1)/a.4-1)-Zg—1.PGL( — 2, q))

such that X,, < H.O < X,,. Thus, X,,, is not a maximal subgroup of X, which is

impossible as X, is primitive on I"(«). Thus, if X is almost simple, then d = 2.
Assume now that X is of product action type. Then X, = T!.0 and X,, = T%,.0.

Therefore, if d >3, we have X,, < H.O < X,,, which is impossible as X, is

primitive on I'(#). Sod = 2. g

For a digraph I' and X < AutI', the action of the vertex stabilizer X, on I'(v)
may be unfaithful. As usual, the kernel of X, on I'(v) is denoted by X El]. Then
F@) ~ (1]
X E X/ Xy

LEMMA 2.6. Let I" be a Y-locally primitive digraph with vertex set V. Assume that
Y is primitive on V, |V| =27, and soc(Y) = PSU(4, 2). Then T is the Schliifli graph,
which is a locally primitive Cayley graph of Z9:73 of valency 16.

PROOF. It is known that ¥ =PSU(4, 2).0 with O <Zj,, Y has rank 3, and Y, =
Z;‘:A5 or Zg:Ss; see the Atlas [3]. Further, the two orbital graphs are the Schlifli
graph I' and its complement, X say; refer to [2]. Then ¥ has valency 10. We claim
that X is not locally primitive. Suppose that Y, UE ©) jg primitive. Then Y, is unfaithful
on X (v) and the kernel Yv[l] = Z%. So sz(v) = As. Since |2 (v)| = 10, we conclude

that Y2V 2 S5, where w € = (v). Hence

L (rIHZ0) qyrm =g,

and thus (YlE”)E(w) is a normal 2-subgroup of S3. However, S3 has no normal
2-subgroup, which is a contradiction.

For the Schléfli graph I, Y, = Zé:As.O is faithful on I (v). Since (Yy)y = As5.0 is
a maximal subgroup of Y,, where w € I' (v), Y,F @ s primitive. Hence I' is a Y -locally
primitive graph. Further, it follows from [12] that Y contains a 3-group Zg:Z3, which
is regular on V, so I' is a Y-locally primitive Cayley graph of Zg:Zs3. O

The final lemma of this section shows that locally primitive digraphs of prime-
power order in the vertex quasiprimitive case are all Cayley graphs.

LEMMA 2.7. LetT' = (V, E) be a connected X -locally primitive digraph of order p",

where p is a prime. Assume further that X is quasiprimitive on V. Then X is primitive

on 'V and has a subgroup that is regular on V, and I is a Cayley graph. Moreover,

one of the following statements holds:

(1) T is a normal Cayley graph of an elementary abelian p-group, and further I is
undirected if and only if p = 2;

(i) T =Kpn, Aut' =S, and either p =2 and X is a 2-primitive affine group, or
soc(X) =PSL(2, 11), My1, Ma3, Apn or PSL(2, g);
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(i) I'= K;,l withl>2 and n =rl, and AutT’ =S ,r 2 Sy, and X is a blow-up of a
2-primitive group as in part (ii); or

(iv) T=3%X, where | >1 and X is the Schlifli graph, and PSU4,2)! < X <
AutT" = (PSU4, 2).2):S;.

In particular, all graphs T that appear in parts (ii)—(iv) are undirected.

PROOF. Let N be a minimal normal subgroup of X, and let ¥ =AutI". By
Theorem 2.2, X is primitive on V, and thus Y is primitive on V.

Suppose that N is nonabelian simple. Then by Theorem 2.1 and Lemma 2.5,
N =PSL(2, 11), My, Mp3, PSU4, 2), A, or PSL(2, g). In the first five cases, N
has a regular subgroup that is isomorphic to Z11, Z1, Z23, Z.9:Z3, or Z;, respectively.
Suppose that N = PSL(2, ¢). If g is even, then N = PSL(2, ¢) = PGL(2, ¢) contains
a regular subgroup Z,41. If ¢ is odd, as ¢ + 1= p’, it follows that p =2 and
g =3 (mod 4), so N contains a regular subgroup D, . Further, by Theorem 2.2(ii),
either I" is a complete graph, or I" is the Schléfli graph, as in part (ii) or part (iv) with
[ =1, respectively. In particular, I" is undirected.

Suppose next that X is nonabelian and nonsimple. Then by Theorem 2.2, XV is of
product action type. Thus, V = Al'and N = T! with [ > 2, such that T = PSL(2, 11),
My, Ma3, PSU4, 2), A, or PSL(2, g), and |A| =11, 11, 23, 27, p" or g + 1,
respectively. The previous paragraph shows that 7 has a subgroup G that is regular
on A. Thus G' is a subgroup of N and regular on V, and I" is a Cayley graph.

For a vertex« = (6, ..., 8) € V, since XE("‘) is primitive, we have that I'(«) is an
orbit of X, on V \ {«}. By Lemma 2.3, I'(@) = A(8)!, where A(8) is an orbit of Hj
in A\ {6}. It follows that ' = X <l Moreover, since either T is 2-transitive on A, or
T =PSU(4, 2), we conclude that either ¥ is a complete graph, or X is the Schléfli
graph, as in part (iii) or part (iv) with [ > 2, respectively. In particular, I" is undirected.

Finally, assume that N is abelian. Then N is regular on V, and I" can be expressed
as a Cayley graph of N. It follows since I" is X-locally primitive that I" is undirected if
and only if N is a 2-group. Further, by Theorem 2.2, the primitive permutation group
Y = Aut I is affine, almost simple, or of product action type. If Y is affine, then " is a
normal Cayley graph, as in part (i). If Y is almost simple, then Y is 2-transitive on V,
as in part (ii). If ¥ is of product action type, then Y is a blow-up of the almost simple
group case, as in part (iii). O

3. Bi-quasiprimitive case

A transitive permutation group X on 2 is called bi-quasiprimitive if each nontrivial
normal subgroup of X has at most two orbits, and there exists a normal subgroup of
X that has two orbits on 2. Further, X is called biprimitive if Q2 has a nontrivial
X-invariant partition Q2 = U U W such that Xy = Xy is primitive on U and W. Let
Xt = Xy = Xw. Then X is a normal subgroup of ¥ of index 2.

The next result, proved in [11, Theorems 1.4 and 1.5], gives some properties of
bi-quasiprimitive permutation groups.
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THEOREM 3.1. Let X be a bi-quasiprimitive permutation group on 2. Then either:

() X7 acts unfaithfully on U and W; or
() X7 acts faithfully on U and W, and one of the following holds:

(@) X7 is quasiprimitive on U and W, or

(b) X has two minimal normal subgroups My and M, that are conjugate in
X and semiregular on 2; moreover, (M, M) = My x M» is a minimal
normal subgroup of X and transitive on both U and W.

We need the following special case.

COROLLARY 3.2. Let X be a bi-quasiprimitive permutation group on 2 with
bipartition Q = U U W, where || = 2™. Suppose further that X acts faithfully on
U and W. Then either X is primitive and has a subgroup that is regular on U and
W, or X has a normal elementary abelian 2-group that is regular on both U and W.

PROOF. If X is quasiprimitive on both U and W, by Theorem 2.2, X is primitive
on both U and W and has a regular subgroup. If XT is not quasiprimitive,
by Theorem 3.1(ii)(b), X has two minimal normal subgroups M;, M, that are
semiregular on 2. Thus M, M, are both 2-groups, and so M| and M, are elementary
abelian 2-groups. It then follows that (M, M>) is a normal elementary abelian 2-group
and regular on both U and W. g

A permutation group G < Sym(S2) is called biregular if it is semiregular and has
exactly two orbits on €.

LEMMA 3.3. Let " = (V, E) be a connected undirected X-locally primitive graph of
order 2. Assume that X is transitive and bi-quasiprimitive on V, associated with the
bipartition V. =U UW. Then X has a subgroup G that is biregular on V, and one
of the following statements holds:

1) T =Kpn-i g1y

(ii) X is faithful on both U and W, and G is an elementary normal 2-subgroup; or
(i) X7 is faithful and primitive on both U and W.

PROOF. Since X is bi-quasiprimitive on V, the graph I' is bipartite with biparts U and
W, say.

Suppose that X is unfaithful on U. Let K| be the kernel of X acting on U.
Then K1 # 1 and K acts faithfully on W. For an edge {«, B} of I, where o € U and
B € W, let B be the K-orbit of 8 in W. Since K fixes «, we conclude that B C I'(«).
Further, as

14 Klr(a) 4 (X;—)F(ot) _ Xg((x)

and X(l; @ s primitive, we obtain B =I'(«). Since this holds for every vertex o

adjacent to a vertex of B, by the connectivity of I', it is easily shown that B = W.
It then follows that I' = Kyn-1 5n-1, as in part (i). Noting that Xg @ is now a primitive

permutation group of degree 2"~!, by Lemma 2.7, we have that X 5 © has a subgroup
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that is regular on I'() = W. It follows that K; has a regular subgroup G; on W.
Similarly, K has a regular subgroup G, on U. Since K| = K3, we may assume that
G1 = Gj. Let ¢ be an isomorphism between G| and G. Then X has a biregular
subgroup G = {(x, x?) | x € G1}.

Assume now that X is faithful on U and W. Then by Corollary 3.2, either X is
primitive and has a subgroup that is regular on both U and W, as in part (iii), or X
has a normal elementary abelian 2-group that is regular on both U and W. For the
latter case, by Lemma 4.2, either I' = Kyu-1 501, as in part (i), or X * is faithful on
both U and W, as in part (ii). d

4. Proof of Theorem 1.1

To prove Theorem 1.1, we need a lemma regarding the normal quotient, which is a
generalization of [14, Theorem 4.1] and whose proof is easy and omitted.

LEMMA 4.1. Let " be an undirected X -locally primitive graph, and let N <\ X have
at least three orbits on V. Then 'y is X/N-locally primitive and U is a normal cover

OfFN.

A graph I is called the bi-Cayley graph of a group G, denoted by BiCay(G, S), if
there is a nonempty set S of G such that the vertex setof I'is {(g, i) | g € G, i =1, 2};
and two vertices (g, i), (h, j) are adjacent if and only if g~ € S and i # j. It easily
follows that BiCay(G, S§) is the standard double cover of the Cayley graph Cay(G, S),
and so BiCay(G, S) = Cay(G, S) x Kj.

LEMMA 4.2. Let I = (V, E) be a connected undirected bipartite graph with biparts
U U W that is not a complete bipartite graph. Let X = Aut T, and X = Xy = Xy.
Suppose that X has a subgroup G that is regular on both U and W. Then the
following statements hold:

(i) T =BiCay(G, S) = Cay(G, S) x K, for some subset S of G;

(ii) letting ¥ = Cay(G, S), we have Aut L = X

(iii) if T is locally primitive, then so is Cay(G, S); and

(iv) if Cay(G, S) is undirected, then X = X x Zs, and T is a Cayley graph of

G x 7.
PROOF. Since I' is not a complete bipartite graph, there exist vertices u € U and
w € W that are not adjacent in I". Label the elements of G as g1, g2, ..., g With

g1 = 1. Then label the vertices in U as u; = u®i, and the vertices in W as wj = wéi,
forj=1,2,...,n. LetS={g; € G| (u, w$) € E}. Then

{uj, wj}e E <— {u¥, wd¥}eE
= {u. w9 }eE
4 gjgl.’l es
— (g, 1)~ (gj,2)inBiCay(G, S).
Thus, I' = BiCay(G, §) = Cay(G, S) x Kb, as in part (i).
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Let ¥ = Cay(G, S). By definition, for any elements g;, g; of G, the vertices g;, g;
of Cay(G, S) are adjacent if and only if the vertices (g;, 1) and (g;, 2) of BiCay(G, S)
are adjacent. For any permutation x of U and any edge {g;, g;} of X, we have that
(gi, 1) and (g;, 2) are adjacent in BiCay(G, S), and

xeXt (gi, D* ~ (gj, 2)" in BiCay(G, S)

(g, 1)~ (g}, 2) in BiCay(G, 5)
gigH'es

g ~ gj inCay(G, S)

x € Aut 2.

111171

So X+ = Aut X, as in part (ii).

Identify elements g; € G with points (g;, 1) of U, and identify u with the identity
of G. We have Z(u)=S={g; € G |{u, w8} e E}, and I'(w) ={(gj, 1) | gj € S}.
If T is locally primitive, then X, = X;} acts primitively on I'(w). It follows that X"
acts primitively on X (1), and ¥ is X T-locally primitive.

Finally, suppose that Cay(G, S) is undirected. It is easily shown that the map

T:(g,j)—~> (g, 3—j), forgeGandj=1or2,

is an automorphism of I". Further, t is an involution and centralizes X +, and it then
follows that X = X1 x (1) = X1 x Z,. O

Now, we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let I' be a connected undirected vertex transitive and
locally primitive graph with vertex set V, such that |V| = p" with p prime.

Let X = AutTI', and let N <1 X be maximal subject to the condition that N has at
least three orbits on V. Let X = X /N, and Vy the set of N-orbits on V. Then X is
quasiprimitive or bi-quasiprimitive on V. By Lemma 4.1, the normal quotient I'y is
X-locally primitive, and I" is a normal cover of T'y.

Assume that X is quasiprimitive on V. Then, by Lemma 2.7, X has a subgroup
G that is regular on Vy. Thus the extension N.G is regular on V, and I is a Cayley
graph. Again, by Lemma 2.7, either G is normal in X, or ['y = K;,f with [ > 2 or
»*! where [ > 1 and ¥ is the Schlifli graph. For the former, N.G is regular on V and
normal in X = Aut I, and so I" is a normal Cayley graph of the 2-group N.G. For the
latter, I is a normal cover of K;,f or <.

Assume that X is bi-quasiprimitive on Vy. Then I' is bipartite with biparts
U and W. By Lemma 3.3, X has a subgroup G that is biregular on Vy. Let
G = N.G < N.X = X. It follows that the subgroup G is biregular on V. Suppose that
I" is not a complete bipartite graph. By Lemma 4.2, T is a bi-Cayley graph of G, say
I' =BiCay(G, S) = Cay(G, S) x K; for some subset S of G. Let ¥ = Cay(G, S).
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Then X is X T-locally primitive, and Xy is Y+-locally primitive. Further, 'y and X
satisfy Lemma 3.3.

If 'y =Kaom om, as in Lemma 3.3(i), then I' is a normal cover of a complete
bipartite graph, as in Theorem 1.1(i). Thus assume next that 'y is not a complete
bipartite graph.

Suppose that X" has an elementary abelian normal 2-subgroup that is regular on
Uy . Then the normal quotient X is undirected, and so is Cay(G, S). By Lemma 4.2,
we have that X = Xt x Z, and G x Zj; is a normal subgroup of X and regular on V.
So I' is a normal Cayley graph of G x Z,, as in Theorem 1.1(ii).

Suppose that X isa primitive permutation group on Uy that is almost simple
or of product action type. By Lemma 2.7, the quotient Xy is K;rl, and so they are

undirected. Thus X is undirected, and by Lemma 4.2, X = X* x Z5. S0 G x Zy < X
is regular on V, and I is a Cayley graph of G x Z,. O
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