LOCALLY PRIMITIVE GRAPHS OF PRIME-POWER ORDER

CAI HENG LI[™], JIANGMIN PAN and LI MA

(Received 1 February 2008; accepted 9 May 2008)

Communicated by Martin W. Liebeck

Dedicated to Cheryl Praeger for her sixtieth birthday

Abstract

Let Γ be a finite connected undirected vertex transitive locally primitive graph of prime-power order. It is shown that either Γ is a normal Cayley graph of a 2-group, or Γ is a normal cover of a complete graph, a complete bipartite graph, or $\Sigma^{\times l}$, where $\Sigma = \mathbf{K}_{p^m}$ with p prime or Σ is the Schläfli graph (of order 27). In particular, either Γ is a Cayley graph, or Γ is a normal cover of a complete bipartite graph.

1991 Mathematics subject classification: primary 05C25. *Keywords and phrases*: locally primitive graphs, Cayley graphs, covers.

1. Introduction

This is an application of Praeger's fundamental theory of symmetric graphs to the study of a class of locally primitive graphs.

Let Γ be a digraph with vertex set V. For $G \leq \operatorname{Aut} \Gamma$, a group of automorphisms, Γ is called *G*-vertex transitive if G is transitive on V. For a vertex v, let $\Gamma(v)$ be the set of vertices to which v is adjacent, and let $G_v = \{g \in G \mid v^g = v\}$. A *G*-vertex transitive digraph Γ is called *G*-locally primitive (or simply called locally primitive) if G_v acts primitively on $\Gamma(v)$ for all vertices v. As usual, the number of vertices of a digraph is called the *order*, and the size $|\Gamma(v)|$ is called the *out-valency* if Γ is regular. By $\Gamma^-(v)$ we mean the set of vertices that are adjacent to v. Then $|\Gamma(v) \cup \Gamma^-(v)|$ is called the *valency* of Γ for Γ regular. If, for any vertices u, v of Γ, u is adjacent to v if and only if v is adjacent to u, then Γ is called *undirected*. This paper aims to characterize undirected vertex transitive locally primitive graphs of prime-power order.

There are some typical examples of locally primitive graphs: the complete graphs $\mathbf{K}_{n,n}$ and the complete bipartite graphs $\mathbf{K}_{n,n}$. In particular, \mathbf{K}_{p^m} with p prime and

This work forms a part of the PhD project of Jiangmin Pan. It was partially supported by a NNSF and an ARC Discovery Project Grant.

^{© 2009} Australian Mathematical Society 1446-7887/2009 \$16.00

K_{2^{*m*},2^{*m*}} are of prime-power order. More examples can be recursively constructed by direct product. Given digraphs Γ_i with vertex sets V_i for $1 \le i \le l$, their *direct product*, denoted by $\Gamma_1 \times \cdots \times \Gamma_l$, is the digraph Γ with the vertex set $V_1 \times \cdots \times V_l$ (Cartesian product) such that (u_1, \ldots, u_l) is adjacent to (v_1, \ldots, v_l) if u_i is adjacent in Γ_i to v_i for each *i*. In the special case where $\Gamma_1 = \cdots = \Gamma_l$, the direct product is simply denoted by $\Gamma_1^{\times l}$.

The direct product $\Gamma \times \mathbf{K}_2$ has vertex set $V \times \{1, 2\}$ such that (u, 1) is adjacent to (v, 2) if and only if u, v are adjacent in Γ . Hence $\Gamma \times \mathbf{K}_2$ is actually the so-called *standard double cover* of Γ . In particular, $\mathbf{K}_n \times \mathbf{K}_2 = \mathbf{K}_{n,n} - n\mathbf{K}_2$, the graph obtained by deleting a 1-factor from $\mathbf{K}_{n,n}$.

The *Schläfli graph* is the graph on isotropic lines in the U(4, 2) geometry, adjacent when disjoint; refer to [2] or 'http://www.win.tue.nl/~aeb/graphs'. It is a strongly regular graph of valency 16, and its automorphism group is U(4, 2).2. Also, it is a locally primitive Cayley graph of \mathbb{Z}_9 : \mathbb{Z}_3 ; see Lemma 2.6.

A digraph $\Gamma = (V, E)$ is called a *Cayley graph* of a group *G* if there is a nonempty set *S* of *G* such that V = G and $E = \{\{g, sg\} \mid g \in G, s \in S\}$, which is denoted by Cay(*G*, *S*). Obviously, Cay(*G*, *S*) is undirected if and only if $S = S^{-1} := \{s^{-1} \mid s \in S\}$. It is known that a digraph Γ is a Cayley graph of a group *G* if and only if Aut Γ contains a subgroup that is isomorphic to *G* and regular on the vertex set; see [1, Proposition 16.3]. For convenience, this regular subgroup of Aut Γ is still denoted by *G* in this paper. If Aut Γ has a normal subgroup that is regular and isomorphic to *G*, then Γ is called a *normal Cayley graph* of *G*. Refer to [10, 15, 16] for various nice properties of normal Cayley graphs.

Assume that Γ is a *G*-vertex transitive digraph. Let *N* be a normal subgroup of *G*. Denote by V_N the set of *N*-orbits in *V*. The *normal quotient* Γ_N of Γ induced by *N* is defined as the digraph with vertex set V_N ; and two vertices $B, C \in V_N$ are adjacent if there exist $u \in B$ and $v \in C$ that are adjacent in Γ . If Γ and Γ_N have the same valency, then Γ is called a *normal cover* of Γ_N . Obviously, if Γ is a cover of Γ_N , then Γ is undirected if and only if so is Γ_N .

A triple of distinct vertices of an undirected graph is called a 2-arc if one of them is adjacent to the other two. An undirected graph Γ is called (G, 2)-arc transitive if $G \leq \operatorname{Aut} \Gamma$ is transitive on the set of 2-arcs of Γ . It easily follows that an undirected regular (G, 2)-arc transitive graph is G-vertex transitive and G-locally primitive.

In the literature, the classes of 2-arc transitive graphs and locally primitive graphs have been extensively studied; see [1, 11, 14] and references therein. In particular, undirected vertex primitive and vertex biprimitive 2-arc transitive Cayley graphs of elementary abelian *p*-groups are classified by Ivanov and Praeger [7]; a characterization of undirected 2-arc transitive graphs of prime-power order is given by the first author [8]. The main result of this paper is to extend the result of [8] to the class of undirected vertex transitive locally primitive graphs.

THEOREM 1.1. Let Γ be a connected undirected graph of order p^n and valency at least three, with p prime. Assume that Γ is vertex transitive and locally primitive.

Then one of the following statements holds:

- (i) Γ is a normal Cayley graph of a 2-group;
- (ii) Γ is a normal cover of $\Sigma^{\times l}$, where $l \ge 1$ and $\Sigma = \mathbf{K}_{p^r}$ or is the Schläfli graph; in particular, Γ is a Cayley graph; or
- (iii) Γ is a normal cover of $\mathbf{K}_{2^m,2^m}$.

This tells us that an undirected locally primitive graph of prime-power order is either a Cayley graph, or a normal cover of a complete bipartite graph. In particular, we have the following interesting corollary.

COROLLARY 1.2.

- (i) A connected undirected locally primitive graph of order a power of an odd prime is a Cayley graph.
- (ii) A connected undirected locally primitive graph of order p^n with $p \ge 5$ prime is a normal cover of $\mathbf{K}_{p^m}^{\times l}$.

Stimulated by Theorem 1.1, some further research problems naturally arise.

PROBLEM.

- (1) Are all locally primitive normal covers of $\mathbf{K}_{2^m,2^m}$ Cayley graphs?
- (2) Characterize normal Cayley graphs of 2-groups that are locally primitive.
- (3) Study locally primitive normal covers of $\Sigma^{\times l}$, where Σ is a complete graph or the Schläfli graph.

2. Vertex quasiprimitive case

A permutation group $G \leq \text{Sym}(\Omega)$ is called *quasiprimitive* if each nontrivial normal subgroup of G is transitive on Ω . In this section, we deal with the vertex quasiprimitive case. First, we give a characterization of quasiprimitive permutation groups of prime-power degree.

Let X be a quasiprimitive permutation group on Ω of degree p^n , where p is a prime. Let N be a minimal normal subgroup of X. Then $N \cong T^l$, where $l \ge 1$ and T is a simple group. Since X is quasiprimitive on Ω , N is transitive on Ω .

If T is abelian, then $T \cong \mathbb{Z}_p$, l = n, and $N \cong \mathbb{Z}_p^n$ is regular on Ω . Further, $\mathbb{Z}_p^n \triangleleft X \leq \text{AGL}(n, p)$.

If l = 1 and T is nonabelian, then X is an almost simple group, and for $\alpha \in \Omega$, T_{α} has index p^n in T. The following theorem of Guralnick [5] presents the nonabelian simple groups with a subgroup of prime-power index.

THEOREM 2.1 [5]. Let T be a nonabelian simple group that has a subgroup H of index p^r with p prime. Then one of the following holds:

- (i) $T \cong A_{p^r}$, and $H \cong A_{p^{r-1}}$;
- (ii) $T \cong PSL(d, q)$, H^r is a maximal parabolic subgroup of T, and $p^r = (q^d 1)/(q 1)$;
- (iii) $T \cong \text{PSL}(2, 11), H \cong A_5, and p^r = 11;$

[3]

- (iv) $T \cong M_{11}$, $H \cong M_{10}$, and $p^r = 11$;
- (v) $T \cong M_{23}$, $H \cong M_{22}$, and $p^r = 23$; or
- (vi) $T = \text{PSU}(4, 2), H \cong \mathbb{Z}_2^4$: A₅ and $p^r = 27$.

Next we assume that *N* is nonabelian and $l \ge 2$. We will show that *X* is primitive of product action type. Let *H* be a group acting on Δ , and *P* a subgroup of the *symmetric group* S_l . Let $G = H \wr P$ be the *wreath product* of *H* by *P*. Then *G* acts naturally on $\Omega := \Delta^l$, called *product action*, as follows: for $(\delta_1, \ldots, \delta_l) \in \Omega$, $x = (h_1, \ldots, h_l) \in H^l$ and $\sigma \in P$,

$$(\delta_1, \ldots, \delta_l)^{(h_1, \ldots, h_l)\sigma} = (\varepsilon_1, \ldots, \varepsilon_l) \text{ where } \varepsilon_i = \delta_{i\sigma^{-1}}^{h_i\sigma^{-1}}$$

It is known that G is primitive on Ω if and only if H acts primitively but not regularly on Δ , and P is a transitive subgroup of S_l; see [4, Lemma 2.7A].

A primitive permutation group is quasiprimitive, but the inverse is not necessarily true. In [9] and [10], it is shown that a quasiprimitive permutation group containing an abelian regular subgroup or a dihedral regular subgroup is primitive. The following theorem shows that a similar result holds for quasiprimitive permutation groups of prime-power degree.

THEOREM 2.2. Let X be a quasiprimitive permutation group on Ω of degree p^n with p prime. Let N be a minimal normal subgroup of X. Then X is primitive, and one of the following holds:

- (i) *X* is an affine group, $N = \mathbb{Z}_p^l$, and $X \leq \text{AGL}(l, p)$, where $l \geq 1$;
- (ii) X is an almost simple group, and $N \cong T$ is as in Theorem 2.1; in particular, either X is 2-transitive, or X = PSU(4, 2) or $PSU(4, 2).\mathbb{Z}_2$; or
- (iii) *X* is of product action type, $N = T^{l}$ with $l \ge 2$, and *T* lies in the list of Theorem 2.1.

Moreover, if $|\Omega|$ is a power of 2 and N is nonabelian, then $N = T^l$ with $l \ge 1$, and $T = A_{2^s}$ or PSL(2, p) with $p + 1 = 2^s$ for $s \ge 3$ and $p \equiv 3 \pmod{4}$, and N has a subgroup that is regular on Ω .

PROOF. Since N is a minimal normal subgroup of X, $N \cong T^l$ for some simple group T and $l \ge 1$. Since X is quasiprimitive, N is transitive on Ω . If N is abelian, it is known and easily shown that X is primitive and part (i) holds.

Thus we assume that N is nonabelian. If $N \cong T$ is simple, then the stabilizer N_{α} , where $\alpha \in \Omega$, has index p^m in N. Hence by Theorem 2.1, $N \cong T$ is listed in Theorem 2.1, and N_{α} is maximal in N. So N and X are primitive on Ω .

Now, we further assume that N is not simple. Then $N = T_1 \times \cdots \times T_l \cong T^l$, where $l \ge 2$ and T is a nonabelian simple group. Since $|N : N_{\alpha}| = |\Omega| = p^m$ and $|T_1 : (T_1)_{\alpha}| = |N : ((T_1)_{\alpha} \times T_2 \times \cdots \times T_l)|$ divides $|N : N_{\alpha}|$, we conclude that $(T_1)_{\alpha}$ has index *p*-power in T. Hence by Theorem 2.1, $(T_1)_{\alpha}$ is a maximal subgroup of T_1 . Similarly, for all *i* with $1 \le i \le l$, $(T_i)_{\alpha}$ is maximal and has index *p*-power in T_i . By the O'Nan–Scott theorem (see [4]), X is primitive of product action type.

114

Next suppose that $|\Omega|$ is a power of 2. Since *T* is a normal subgroup of *N*, we conclude that *T* is half-transitive on Ω , so $|T:T_{\alpha}|$ divides 2^d . By Theorem 2.1, $T \cong A_{2^s}$ or PSL(d, q) and $(q^d - 1)/(q - 1) = 2^s$ for some *s*. Suppose that T = PSL(d, q) with $d \ge 3$. Then $(q, d) \ne (2, 6)$, and hence $q^d - 1$ has a primitive prime divisor *r*, that is, *r* divides $q^d - 1$ but not $q^i - 1$ for each i < d; see [6, p. 508]. It follows that $(q^d - 1)/(q - 1) = 2^s$, and it then follows that $q = 2^s - 1$ is a prime. \Box

The following result was proved by Praeger [13].

LEMMA 2.3 [13, Theorem 2.1(a)]. Let $X \leq H \wr S_l$ be a primitive permutation group of product action type on $\Omega := \Delta^l$, where H is almost simple and primitive on Δ . Let $\alpha = (\gamma, \ldots, \gamma) \in \Delta^l$. Suppose that Λ is an X_{α} -orbit on $\Omega \setminus \{\alpha\}$, and X_{α} is quasiprimitive on Λ . Then $\Lambda = \Lambda(\gamma)^l$, where $\Lambda(\gamma)$ is an orbit of H_{γ} on Δ .

The next lemma shows that the direct product of locally primitive graphs is locally primitive.

LEMMA 2.4. Let Σ be a Y-locally primitive digraph with vertex set Δ , where $Y \leq \operatorname{Aut} \Sigma$ is almost simple and primitive on Δ . Let $\Gamma = \Sigma^{\times l}$, with vertex set Δ^l . Let $X = Y^l \cdot P \leq Y \wr S_l$ act on Δ^l in product action, where P is a transitive subgroup of the symmetric group S_l . Then $X \leq \operatorname{Aut} \Gamma$ and Γ is an X-locally primitive digraph.

Further, if Σ is a Cayley graph of a group H, then Γ is a Cayley graph of the group H^l .

PROOF. Let $V = \Delta^l$. It is easily shown that $X \leq \operatorname{Aut} \Gamma$, and X is transitive on V. Further, for $v = (\delta, \ldots, \delta) \in V$, we have $X_v = (Y_\delta)^l \cdot P$. Since Σ is a *Y*-locally primitive graph, Y_δ is primitive on $\Sigma(\delta)$. By [4, Lemma 2.7A], X_v is primitive on $\Gamma(v)$ as P is a transitive subgroup of S_l . So Γ is an *X*-locally primitive digraph.

Further, suppose that Σ is a Cayley graph of a group H. Then $H \leq \operatorname{Aut} \Sigma$ is regular on Δ , so $H^l \leq (\operatorname{Aut} \Sigma)^l \cdot P \leq \operatorname{Aut} \Gamma$ and is regular on V. Therefore, Γ is a Cayley graph of the group H^l .

The *socle* of a group X is the normal subgroup generated by all minimal normal subgroups of X, denoted by soc(X).

LEMMA 2.5. Let Γ be an X-locally primitive digraph with vertex set V. Suppose that X is a primitive permutation group on V of product action type. Suppose further that $\operatorname{soc}(X) = \operatorname{PSL}(d, q)^l$ with $l \ge 1$, and $|V| = ((q^d - 1)/(q - 1))^l$. Then d = 2.

PROOF. It is easily shown that X is almost simple or of product action type. Let N = soc(X), T = PSL(d, q), and O = X/N.

Suppose that *X* is almost simple, and $d \ge 3$. For $u, v \in V$, the stabilizers

$$T_u \cong [q^{d-1}] : (\mathbb{Z}_{(q-1)/(d,q-1)}.\mathrm{PGL}(d-1,q)),$$

$$T_{uv} \cong [q^{2(d-2)}] : (\mathbb{Z}_{(q-1)/(d,q-1)}.\mathbb{Z}_{q-1}.\mathrm{PGL}(d-2,q)).$$

and $X_u \cong T_u.O, X_{uv} \cong T_{uv}.O$. Then there exists a group

$$H = \mathbf{O}_p(T_u) T_{uv} \cong [q^{2d-3}] : (\mathbb{Z}_{(q-1)/(d,q-1)} \cdot \mathbb{Z}_{q-1} \cdot \text{PGL}(d-2,q))$$

such that $X_{uv} < H.O < X_u$. Thus, X_{uv} is not a maximal subgroup of X_u , which is impossible as X_u is primitive on $\Gamma(u)$. Thus, if X is almost simple, then d = 2.

Assume now that X is of product action type. Then $X_u \cong T_u^l O$ and $X_{uv} \cong T_{uv}^l O$. Therefore, if $d \ge 3$, we have $X_{uv} < H^l O < X_u$, which is impossible as X_u is primitive on $\Gamma(u)$. So d = 2.

For a digraph Γ and $X \leq \operatorname{Aut} \Gamma$, the action of the vertex stabilizer X_v on $\Gamma(v)$ may be unfaithful. As usual, the kernel of X_v on $\Gamma(v)$ is denoted by $X_v^{[1]}$. Then $X_v^{\Gamma(v)} \cong X_v / X_v^{[1]}$.

LEMMA 2.6. Let Γ be a Y-locally primitive digraph with vertex set V. Assume that Y is primitive on V, |V| = 27, and soc(Y) = PSU(4, 2). Then Γ is the Schläfli graph, which is a locally primitive Cayley graph of $\mathbb{Z}_9:\mathbb{Z}_3$ of valency 16.

PROOF. It is known that Y = PSU(4, 2). *O* with $O \leq \mathbb{Z}_2$, *Y* has rank 3, and $Y_v = \mathbb{Z}_2^4$: A₅ or \mathbb{Z}_2^4 : S₅; see the Atlas [3]. Further, the two orbital graphs are the Schläfli graph Γ and its complement, Σ say; refer to [2]. Then Σ has valency 10. We claim that Σ is not locally primitive. Suppose that $Y_v^{\Sigma(v)}$ is primitive. Then Y_v is unfaithful on $\Sigma(v)$ and the kernel $Y_v^{[1]} \cong \mathbb{Z}_2^4$. So $Y_v^{\Sigma(v)} \cong A_5$. Since $|\Sigma(v)| = 10$, we conclude that $Y_{vw}^{\Sigma(v)} \cong S_3$, where $w \in \Sigma(v)$. Hence

$$1 \neq (Y_v^{[1]})^{\Sigma(w)} \triangleleft Y_{vw}^{\Sigma(w)} \cong \mathbf{S}_3,$$

and thus $(Y_v^{[1]})^{\Sigma(w)}$ is a normal 2-subgroup of S₃. However, S₃ has no normal 2-subgroup, which is a contradiction.

For the Schläfli graph Γ , $Y_v = \mathbb{Z}_2^4$: A₅. *O* is faithful on $\Gamma(v)$. Since $(Y_v)_w \cong$ A₅. *O* is a maximal subgroup of Y_v , where $w \in \Gamma(v)$, $Y_v^{\Gamma(v)}$ is primitive. Hence Γ is a *Y*-locally primitive graph. Further, it follows from [12] that *Y* contains a 3-group \mathbb{Z}_9 : \mathbb{Z}_3 , which is regular on *V*, so Γ is a *Y*-locally primitive Cayley graph of \mathbb{Z}_9 : \mathbb{Z}_3 .

The final lemma of this section shows that locally primitive digraphs of primepower order in the vertex quasiprimitive case are all Cayley graphs.

LEMMA 2.7. Let $\Gamma = (V, E)$ be a connected X-locally primitive digraph of order p^n , where p is a prime. Assume further that X is quasiprimitive on V. Then X is primitive on V and has a subgroup that is regular on V, and Γ is a Cayley graph. Moreover, one of the following statements holds:

- (i) Γ is a normal Cayley graph of an elementary abelian p-group, and further Γ is undirected if and only if p = 2;
- (ii) $\Gamma = \mathbf{K}_{p^n}$, Aut $\Gamma = S_{p^n}$, and either p = 2 and X is a 2-primitive affine group, or soc(X) = PSL(2, 11), M_{11} , M_{23} , A_{p^n} or PSL(2, q);

- 117
- (iii) $\Gamma = \mathbf{K}_{p^r}^{\times l}$ with $l \ge 2$ and n = rl, and Aut $\Gamma = \mathbf{S}_{p^r} \wr \mathbf{S}_l$, and X is a blow-up of a 2-primitive group as in part (ii); or
- (iv) $\Gamma = \Sigma^{\times l}$, where $l \ge 1$ and Σ is the Schläfli graph, and $PSU(4, 2)^l \triangleleft X \le$ Aut $\Gamma = (PSU(4, 2), 2) \wr S_l$.

In particular, all graphs Γ that appear in parts (ii)–(iv) are undirected.

PROOF. Let N be a minimal normal subgroup of X, and let $Y = \text{Aut } \Gamma$. By Theorem 2.2, X is primitive on V, and thus Y is primitive on V.

Suppose that *N* is nonabelian simple. Then by Theorem 2.1 and Lemma 2.5, N = PSL(2, 11), M_{11} , M_{23} , PSU(4, 2), A_{p^r} or PSL(2, q). In the first five cases, *N* has a regular subgroup that is isomorphic to \mathbb{Z}_{11} , \mathbb{Z}_{11} , \mathbb{Z}_{23} , \mathbb{Z}_9 : \mathbb{Z}_3 , or \mathbb{Z}_p^r , respectively. Suppose that N = PSL(2, q). If *q* is even, then N = PSL(2, q) = PGL(2, q) contains a regular subgroup \mathbb{Z}_{q+1} . If *q* is odd, as $q + 1 = p^r$, it follows that p = 2 and $q \equiv 3 \pmod{4}$, so *N* contains a regular subgroup D_{q+1} . Further, by Theorem 2.2(ii), either Γ is a complete graph, or Γ is the Schläfli graph, as in part (ii) or part (iv) with l = 1, respectively. In particular, Γ is undirected.

Suppose next that X is nonabelian and nonsimple. Then by Theorem 2.2, X^V is of product action type. Thus, $V = \Delta^l$ and $N = T^l$ with $l \ge 2$, such that T = PSL(2, 11), M₁₁, M₂₃, PSU(4, 2), A_p^r or PSL(2, q), and $|\Delta| = 11$, 11, 23, 27, p^r or q + 1, respectively. The previous paragraph shows that T has a subgroup G that is regular on Δ . Thus G^l is a subgroup of N and regular on V, and Γ is a Cayley graph.

For a vertex $\alpha = (\delta, ..., \delta) \in V$, since $X_{\alpha}^{\Gamma(\alpha)}$ is primitive, we have that $\Gamma(\alpha)$ is an orbit of X_{α} on $V \setminus \{\alpha\}$. By Lemma 2.3, $\Gamma(\alpha) = \Delta(\delta)^l$, where $\Delta(\delta)$ is an orbit of H_{δ} in $\Delta \setminus \{\delta\}$. It follows that $\Gamma = \Sigma^{\times l}$. Moreover, since either *T* is 2-transitive on Δ , or T = PSU(4, 2), we conclude that either Σ is a complete graph, or Σ is the Schläfli graph, as in part (iii) or part (iv) with $l \ge 2$, respectively. In particular, Γ is undirected.

Finally, assume that *N* is abelian. Then *N* is regular on *V*, and Γ can be expressed as a Cayley graph of *N*. It follows since Γ is *X*-locally primitive that Γ is undirected if and only if *N* is a 2-group. Further, by Theorem 2.2, the primitive permutation group $Y = \text{Aut } \Gamma$ is affine, almost simple, or of product action type. If *Y* is affine, then Γ is a normal Cayley graph, as in part (i). If *Y* is almost simple, then *Y* is 2-transitive on *V*, as in part (ii). If *Y* is of product action type, then *Y* is a blow-up of the almost simple group case, as in part (iii).

3. Bi-quasiprimitive case

A transitive permutation group X on Ω is called *bi-quasiprimitive* if each nontrivial normal subgroup of X has at most two orbits, and there exists a normal subgroup of X that has two orbits on Ω . Further, X is called *biprimitive* if Ω has a nontrivial X-invariant partition $\Omega = U \cup W$ such that $X_U = X_W$ is primitive on U and W. Let $X^+ = X_U = X_W$. Then X^+ is a normal subgroup of Y of index 2.

The next result, proved in [11, Theorems 1.4 and 1.5], gives some properties of bi-quasiprimitive permutation groups.

[7]

[8]

THEOREM 3.1. Let X be a bi-quasiprimitive permutation group on Ω . Then either:

- (i) X^+ acts unfaithfully on U and W; or
- (ii) X^+ acts faithfully on U and W, and one of the following holds:
 - (a) X^+ is quasiprimitive on U and W, or
 - (b) X^+ has two minimal normal subgroups M_1 and M_2 that are conjugate in X and semiregular on Ω ; moreover, $\langle M_1, M_2 \rangle = M_1 \times M_2$ is a minimal normal subgroup of X and transitive on both U and W.

We need the following special case.

COROLLARY 3.2. Let X be a bi-quasiprimitive permutation group on Ω with bipartition $\Omega = U \cup W$, where $|\Omega| = 2^m$. Suppose further that X^+ acts faithfully on U and W. Then either X^+ is primitive and has a subgroup that is regular on U and W, or X^+ has a normal elementary abelian 2-group that is regular on both U and W.

PROOF. If X^+ is quasiprimitive on both U and W, by Theorem 2.2, X^+ is primitive on both U and W and has a regular subgroup. If X^+ is not quasiprimitive, by Theorem 3.1(ii)(b), X^+ has two minimal normal subgroups M_1 , M_2 that are semiregular on Ω . Thus M_1 , M_2 are both 2-groups, and so M_1 and M_2 are elementary abelian 2-groups. It then follows that $\langle M_1, M_2 \rangle$ is a normal elementary abelian 2-group and regular on both U and W.

A permutation group $G \leq \text{Sym}(\Omega)$ is called *biregular* if it is semiregular and has exactly two orbits on Ω .

LEMMA 3.3. Let $\Gamma = (V, E)$ be a connected undirected X-locally primitive graph of order 2^n . Assume that X is transitive and bi-quasiprimitive on V, associated with the bipartition $V = U \cup W$. Then X^+ has a subgroup G that is biregular on V, and one of the following statements holds:

- (i) $\Gamma \cong \mathbf{K}_{2^{n-1}2^{n-1}};$
- (ii) X^+ is faithful on both U and W, and G is an elementary normal 2-subgroup; or
- (iii) X^+ is faithful and primitive on both U and W.

PROOF. Since X is bi-quasiprimitive on V, the graph Γ is bipartite with biparts U and W, say.

Suppose that X^+ is unfaithful on U. Let K_1 be the kernel of X^+ acting on U. Then $K_1 \neq 1$ and K_1 acts faithfully on W. For an edge $\{\alpha, \beta\}$ of Γ , where $\alpha \in U$ and $\beta \in W$, let B be the K_1 -orbit of β in W. Since K_1 fixes α , we conclude that $B \subseteq \Gamma(\alpha)$. Further, as

$$1 \neq K_1^{\Gamma(\alpha)} \lhd (X_{\alpha}^+)^{\Gamma(\alpha)} = X_{\alpha}^{\Gamma(\alpha)}$$

and $X_{\alpha}^{\Gamma(\alpha)}$ is primitive, we obtain $B = \Gamma(\alpha)$. Since this holds for every vertex α adjacent to a vertex of *B*, by the connectivity of Γ , it is easily shown that B = W. It then follows that $\Gamma \cong \mathbf{K}_{2^{n-1},2^{n-1}}$, as in part (i). Noting that $X_{\alpha}^{\Gamma(\alpha)}$ is now a primitive permutation group of degree 2^{n-1} , by Lemma 2.7, we have that $X_{\alpha}^{\Gamma(\alpha)}$ has a subgroup

119

that is regular on $\Gamma(\alpha) = W$. It follows that K_1 has a regular subgroup G_1 on W. Similarly, K_2 has a regular subgroup G_2 on U. Since $K_1 \cong K_2$, we may assume that $G_1 \cong G_2$. Let ϕ be an isomorphism between G_1 and G_2 . Then X has a biregular subgroup $G = \{(x, x^{\phi}) \mid x \in G_1\}$.

Assume now that X^+ is faithful on U and W. Then by Corollary 3.2, either X^+ is primitive and has a subgroup that is regular on both U and W, as in part (iii), or X^+ has a normal elementary abelian 2-group that is regular on both U and W. For the latter case, by Lemma 4.2, either $\Gamma \cong \mathbf{K}_{2^{n-1},2^{n-1}}$, as in part (i), or X^+ is faithful on both U and W, as in part (ii).

4. Proof of Theorem 1.1

To prove Theorem 1.1, we need a lemma regarding the normal quotient, which is a generalization of [14, Theorem 4.1] and whose proof is easy and omitted.

LEMMA 4.1. Let Γ be an undirected X-locally primitive graph, and let $N \triangleleft X$ have at least three orbits on V. Then Γ_N is X/N-locally primitive and Γ is a normal cover of Γ_N .

A graph Γ is called the *bi-Cayley graph* of a group *G*, denoted by BiCay(*G*, *S*), if there is a nonempty set *S* of *G* such that the vertex set of Γ is {(*g*, *i*) | *g* \in *G*, *i* = 1, 2}; and two vertices (*g*, *i*), (*h*, *j*) are adjacent if and only if $hg^{-1} \in S$ and $i \neq j$. It easily follows that BiCay(*G*, *S*) is the standard double cover of the Cayley graph Cay(*G*, *S*), and so BiCay(*G*, *S*) = Cay(*G*, *S*) × **K**₂.

LEMMA 4.2. Let $\Gamma = (V, E)$ be a connected undirected bipartite graph with biparts $U \cup W$ that is not a complete bipartite graph. Let $X = \text{Aut } \Gamma$, and $X^+ = X_U = X_W$. Suppose that X^+ has a subgroup G that is regular on both U and W. Then the following statements hold:

- (i) $\Gamma = \text{BiCay}(G, S) = \text{Cay}(G, S) \times \mathbf{K}_2$ for some subset S of G;
- (ii) letting $\Sigma = \operatorname{Cay}(G, S)$, we have $\operatorname{Aut} \Sigma = X^+$;
- (iii) if Γ is locally primitive, then so is Cay(G, S); and
- (iv) if Cay(G, S) is undirected, then $X = X^+ \times \mathbb{Z}_2$, and Γ is a Cayley graph of $G \times \mathbb{Z}_2$.

PROOF. Since Γ is not a complete bipartite graph, there exist vertices $u \in U$ and $w \in W$ that are not adjacent in Γ . Label the elements of G as g_1, g_2, \ldots, g_n with $g_1 = 1$. Then label the vertices in U as $u_j = u^{g_j}$, and the vertices in W as $w_j = w^{g_j}$, for $j = 1, 2, \ldots, n$. Let $S = \{g_j \in G \mid (u, w^{g_j}) \in E\}$. Then

$$\begin{split} \{u_i, w_j\} \in E & \iff & \{u^{g_i}, w^{g_j}\} \in E \\ & \iff & \{u, w^{g_j g_i^{-1}}\} \in E \\ & \iff & g_j g_i^{-1} \in S \\ & \iff & (g_i, 1) \sim (g_j, 2) \text{ in BiCay}(G, S). \end{split}$$

Thus, $\Gamma \cong \operatorname{BiCay}(G, S) = \operatorname{Cay}(G, S) \times \mathbf{K}_2$, as in part (i).

Let $\Sigma = \text{Cay}(G, S)$. By definition, for any elements g_i , g_j of G, the vertices g_i , g_j of Cay(G, S) are adjacent if and only if the vertices $(g_i, 1)$ and $(g_j, 2)$ of BiCay(G, S) are adjacent. For any permutation x of U and any edge $\{g_i, g_j\}$ of Σ , we have that $(g_i, 1)$ and $(g_j, 2)$ are adjacent in BiCay(G, S), and

$$x \in X^{+} \iff (g_{i}, 1)^{x} \sim (g_{j}, 2)^{x} \text{ in BiCay}(G, S)$$

$$\iff (g_{i}^{x}, 1) \sim (g_{j}^{x}, 2) \text{ in BiCay}(G, S)$$

$$\iff g_{j}^{x} (g_{i}^{x})^{-1} \in S$$

$$\iff g_{i}^{x} \sim g_{j}^{x} \text{ in Cay}(G, S)$$

$$\iff x \in \text{Aut } \Sigma.$$

So X^+ = Aut Σ , as in part (ii).

Identify elements $g_i \in G$ with points $(g_i, 1)$ of U, and identify u with the identity of G. We have $\Sigma(u) = S = \{g_j \in G \mid \{u, w^{g_j}\} \in E\}$, and $\Gamma(w) = \{(g_j, 1) \mid g_j \in S\}$. If Γ is locally primitive, then $X_w = X_w^+$ acts primitively on $\Gamma(w)$. It follows that X_u^+ acts primitively on $\Sigma(u)$, and Σ is X^+ -locally primitive.

Finally, suppose that Cay(G, S) is undirected. It is easily shown that the map

 $\tau : (g, j) \mapsto (g, 3 - j), \text{ for } g \in G \text{ and } j = 1 \text{ or } 2,$

is an automorphism of Γ . Further, τ is an involution and centralizes X^+ , and it then follows that $X = X^+ \times \langle \tau \rangle \cong X^+ \times \mathbb{Z}_2$.

Now, we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let Γ be a connected undirected vertex transitive and locally primitive graph with vertex set V, such that $|V| = p^n$ with p prime.

Let $X = \text{Aut } \Gamma$, and let $N \triangleleft X$ be maximal subject to the condition that N has at least three orbits on V. Let $\overline{X} = X/N$, and V_N the set of N-orbits on V. Then \overline{X} is quasiprimitive or bi-quasiprimitive on V_N . By Lemma 4.1, the normal quotient Γ_N is \overline{X} -locally primitive, and Γ is a normal cover of Γ_N .

Assume that \overline{X} is quasiprimitive on V_N . Then, by Lemma 2.7, \overline{X} has a subgroup \overline{G} that is regular on V_N . Thus the extension $N.\overline{G}$ is regular on V, and Γ is a Cayley graph. Again, by Lemma 2.7, either \overline{G} is normal in \overline{X} , or $\Gamma_N = \mathbf{K}_{p^n}^{\times l}$ with $l \ge 2$ or $\Sigma^{\times l}$ where $l \ge 1$ and Σ is the Schläfli graph. For the former, $N.\overline{G}$ is regular on V and normal in $X = \operatorname{Aut} \Gamma$, and so Γ is a normal Cayley graph of the 2-group $N.\overline{G}$. For the latter, Γ is a normal cover of $\mathbf{K}_{p^n}^{\times l}$ or $\Sigma^{\times l}$.

Assume that \overline{X} is bi-quasiprimitive on V_N . Then Γ is bipartite with biparts U and W. By Lemma 3.3, \overline{X} has a subgroup \overline{G} that is biregular on V_N . Let $G = N.\overline{G} < N.\overline{X} = X$. It follows that the subgroup G is biregular on V. Suppose that Γ is not a complete bipartite graph. By Lemma 4.2, Γ is a bi-Cayley graph of G, say $\Gamma = \text{BiCay}(G, S) = \text{Cay}(G, S) \times \mathbf{K}_2$ for some subset S of G. Let $\Sigma = \text{Cay}(G, S)$.

121

Then Σ is X^+ -locally primitive, and Σ_N is \overline{X}^+ -locally primitive. Further, Γ_N and \overline{X} satisfy Lemma 3.3.

If $\Gamma_N = \mathbf{K}_{2^m, 2^m}$, as in Lemma 3.3(i), then Γ is a normal cover of a complete bipartite graph, as in Theorem 1.1(i). Thus assume next that Γ_N is not a complete bipartite graph.

Suppose that \overline{X}^+ has an elementary abelian normal 2-subgroup that is regular on U_N . Then the normal quotient Σ_N is undirected, and so is Cay(G, S). By Lemma 4.2, we have that $X = X^+ \times \mathbb{Z}_2$, and $G \times \mathbb{Z}_2$ is a normal subgroup of X and regular on V. So Γ is a normal Cayley graph of $G \times \mathbb{Z}_2$, as in Theorem 1.1(ii).

Suppose that \overline{X}^+ is a primitive permutation group on U_N that is almost simple or of product action type. By Lemma 2.7, the quotient Σ_N is $\mathbf{K}_{p^r}^{\times l}$, and so they are undirected. Thus Σ is undirected, and by Lemma 4.2, $X = X^+ \times \mathbb{Z}_2$. So $G \times \mathbb{Z}_2 < X$ is regular on V, and Γ is a Cayley graph of $G \times \mathbb{Z}_2$.

References

- [1] N. Biggs, Algebraic Graph Theory, 2nd edn (Cambridge University Press, New York, 1992).
- [2] A. E. Brouwer and H. A. Wilbrink, 'Ovoids and fans in the generalized quadrangle GQ(4, 2)', *Geom. Dedicata* 36 (1990), 121–124.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas of Finite Groups* (Oxford University Press, London, 1985).
- [4] J. D. Dixon and B. Mortimer, *Permutation Groups* (Springer, Berlin, 1996).
- [5] R. M. Guralnick, 'Subgroups of prime power index in a simple group', J. Algebra 225 (1983), 304–311.
- [6] B. Huppert, *Finite Groups* (Springer, Berlin, 1967).
- [7] A. A. Ivanov and C. E. Praeger, 'On finite affine 2-arc transitive graphs', *European J. Combin.* 14 (1993), 421–444.
- [8] C. H. Li, 'Finite s-arc transitive graphs of prime-power order', Bull. London Math. Soc. 33 (2001), 129–137.
- [9] —, 'The finite primitive permutation groups containing an abelian regular subgroup', *Proc. London Math. Soc.* 87 (2003), 725–748.
- [10] —, 'Finite edge-transitive Cayley graphs and rotary Cayley maps', *Trans. Amer. Math. Soc.* 358 (2006), 4605–4635.
- [11] C. H. Li, C. E. Praeger, A. Venkatesh and S. Zhou, 'Finite locally-primitive graphs', Discrete Math. 246 (2002), 197–218.
- [12] M. W. Liebeck, C. E. Praeger and J. Saxl, On regular subgroups of primitive permutation groups, *Mem. Amer. Math. Soc.* to appear.
- [13] C. E. Praeger, 'Primitive permutation groups with a doubly transitive subconstituent', J. Austral. Math. Soc. Ser. A 45 (1988), 66–77.
- [14] —, 'On the O'Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs', J. London. Math. Soc. 47 (1992), 227–239.
- [15] _____, 'Finite normal edge-transitive Cayley graphs', Bull. Austral. Math. Soc. 60 (1999), 207–220.
- [16] M. Y. Xu, 'Automorphism groups and isomorphisms of Cayley digraphs', Discrete Math. 182 (1998), 309–319.

[12]

CAI HENG LI, School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia e-mail: li@maths.uwa.edu.au

JIANGMIN PAN, Department of Mathematics, Yunnan University, Kunming 650031, PR China e-mail: jmpan@ynu.edu.cn

LI MA, Department of Mathematics, Yunnan University, Kunming 650031, PR China

122