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Abstract

Let 0 be a finite connected undirected vertex transitive locally primitive graph of prime-power order. It is
shown that either 0 is a normal Cayley graph of a 2-group, or 0 is a normal cover of a complete graph, a
complete bipartite graph, or 6×l , where 6 =Kpm with p prime or 6 is the Schläfli graph (of order 27).
In particular, either 0 is a Cayley graph, or 0 is a normal cover of a complete bipartite graph.
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1. Introduction

This is an application of Praeger’s fundamental theory of symmetric graphs to the
study of a class of locally primitive graphs.

Let 0 be a digraph with vertex set V . For G ≤ Aut 0, a group of automorphisms, 0
is called G-vertex transitive if G is transitive on V . For a vertex v, let 0(v) be the set of
vertices to which v is adjacent, and let Gv = {g ∈ G | vg

= v}. A G-vertex transitive
digraph 0 is called G-locally primitive (or simply called locally primitive) if Gv acts
primitively on 0(v) for all vertices v. As usual, the number of vertices of a digraph is
called the order, and the size |0(v)| is called the out-valency if 0 is regular. By 0−(v)
we mean the set of vertices that are adjacent to v. Then |0(v) ∪ 0−(v)| is called the
valency of 0 for 0 regular. If, for any vertices u, v of 0, u is adjacent to v if and
only if v is adjacent to u, then 0 is called undirected. This paper aims to characterize
undirected vertex transitive locally primitive graphs of prime-power order.

There are some typical examples of locally primitive graphs: the complete graphs
Kn , and the complete bipartite graphs Kn,n . In particular, Kpm with p prime and
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K2m ,2m are of prime-power order. More examples can be recursively constructed
by direct product. Given digraphs 0i with vertex sets Vi for 1≤ i ≤ l, their direct
product, denoted by 01 × · · · × 0l , is the digraph 0 with the vertex set V1 × · · · × Vl
(Cartesian product) such that (u1, . . . , ul) is adjacent to (v1, . . . , vl) if ui is adjacent
in 0i to vi for each i . In the special case where 01 = · · · = 0l , the direct product is
simply denoted by 0×l

1 .
The direct product 0 ×K2 has vertex set V × {1, 2} such that (u, 1) is adjacent

to (v, 2) if and only if u, v are adjacent in 0. Hence 0 ×K2 is actually the so-called
standard double cover of 0. In particular, Kn ×K2 =Kn,n − nK2, the graph obtained
by deleting a 1-factor from Kn,n .

The Schläfli graph is the graph on isotropic lines in the U(4, 2) geometry, adjacent
when disjoint; refer to [2] or ‘http://www.win.tue.nl/∼aeb/graphs’. It is a strongly
regular graph of valency 16, and its automorphism group is U(4, 2).2. Also, it is a
locally primitive Cayley graph of Z9:Z3; see Lemma 2.6.

A digraph 0 = (V, E) is called a Cayley graph of a group G if there is a
nonempty set S of G such that V = G and E = {{g, sg} | g ∈ G, s ∈ S}, which is
denoted by Cay(G, S). Obviously, Cay(G, S) is undirected if and only if S = S−1

:=

{s−1
| s ∈ S}. It is known that a digraph 0 is a Cayley graph of a group G if and only if

Aut 0 contains a subgroup that is isomorphic to G and regular on the vertex set; see [1,
Proposition 16.3]. For convenience, this regular subgroup of Aut 0 is still denoted by
G in this paper. If Aut 0 has a normal subgroup that is regular and isomorphic to G,
then 0 is called a normal Cayley graph of G. Refer to [10, 15, 16] for various nice
properties of normal Cayley graphs.

Assume that 0 is a G-vertex transitive digraph. Let N be a normal subgroup of G.
Denote by VN the set of N -orbits in V . The normal quotient 0N of 0 induced by N is
defined as the digraph with vertex set VN ; and two vertices B, C ∈ VN are adjacent if
there exist u ∈ B and v ∈ C that are adjacent in 0. If 0 and 0N have the same valency,
then 0 is called a normal cover of 0N . Obviously, if 0 is a cover of 0N , then 0 is
undirected if and only if so is 0N .

A triple of distinct vertices of an undirected graph is called a 2-arc if one of them
is adjacent to the other two. An undirected graph 0 is called (G, 2)-arc transitive if
G ≤ Aut 0 is transitive on the set of 2-arcs of 0. It easily follows that an undirected
regular (G, 2)-arc transitive graph is G-vertex transitive and G-locally primitive.

In the literature, the classes of 2-arc transitive graphs and locally primitive
graphs have been extensively studied; see [1, 11, 14] and references therein. In
particular, undirected vertex primitive and vertex biprimitive 2-arc transitive Cayley
graphs of elementary abelian p-groups are classified by Ivanov and Praeger [7]; a
characterization of undirected 2-arc transitive graphs of prime-power order is given by
the first author [8]. The main result of this paper is to extend the result of [8] to the
class of undirected vertex transitive locally primitive graphs.

THEOREM 1.1. Let 0 be a connected undirected graph of order pn and valency at
least three, with p prime. Assume that 0 is vertex transitive and locally primitive.
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Then one of the following statements holds:

(i) 0 is a normal Cayley graph of a 2-group;
(ii) 0 is a normal cover of 6×l , where l ≥ 1 and 6 =Kpr or is the Schläfli graph;

in particular, 0 is a Cayley graph; or
(iii) 0 is a normal cover of K2m ,2m .

This tells us that an undirected locally primitive graph of prime-power order is either
a Cayley graph, or a normal cover of a complete bipartite graph. In particular, we have
the following interesting corollary.

COROLLARY 1.2.

(i) A connected undirected locally primitive graph of order a power of an odd prime
is a Cayley graph.

(ii) A connected undirected locally primitive graph of order pn with p ≥ 5 prime is
a normal cover of K×l

pm .

Stimulated by Theorem 1.1, some further research problems naturally arise.

PROBLEM.

(1) Are all locally primitive normal covers of K2m ,2m Cayley graphs?
(2) Characterize normal Cayley graphs of 2-groups that are locally primitive.
(3) Study locally primitive normal covers of 6×l , where 6 is a complete graph or

the Schläfli graph.

2. Vertex quasiprimitive case

A permutation group G ≤ Sym(�) is called quasiprimitive if each nontrivial normal
subgroup of G is transitive on�. In this section, we deal with the vertex quasiprimitive
case. First, we give a characterization of quasiprimitive permutation groups of prime-
power degree.

Let X be a quasiprimitive permutation group on � of degree pn , where p is a
prime. Let N be a minimal normal subgroup of X . Then N ∼= T l , where l ≥ 1 and T
is a simple group. Since X is quasiprimitive on �, N is transitive on �.

If T is abelian, then T ∼= Zp, l = n, and N ∼= Zn
p is regular on �. Further,

Zn
p � X ≤ AGL(n, p).
If l = 1 and T is nonabelian, then X is an almost simple group, and for α ∈�, Tα

has index pn in T . The following theorem of Guralnick [5] presents the nonabelian
simple groups with a subgroup of prime-power index.

THEOREM 2.1 [5]. Let T be a nonabelian simple group that has a subgroup H of
index pr with p prime. Then one of the following holds:

(i) T ∼= Apr , and H ∼= Apr−1;
(ii) T ∼= PSL(d, q), H is a maximal parabolic subgroup of T , and

pr
= (qd

− 1)/(q − 1);
(iii) T ∼= PSL(2, 11), H ∼= A5, and pr

= 11;
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(iv) T ∼=M11, H ∼=M10, and pr
= 11;

(v) T ∼=M23, H ∼=M22, and pr
= 23; or

(vi) T = PSU(4, 2), H ∼= Z4
2:A5 and pr

= 27.

Next we assume that N is nonabelian and l ≥ 2. We will show that X is primitive
of product action type. Let H be a group acting on 1, and P a subgroup of the
symmetric group Sl . Let G = H o P be the wreath product of H by P . Then G
acts naturally on � :=1l , called product action, as follows: for (δ1, . . . , δl) ∈�,
x = (h1, . . . , hl) ∈ H l and σ ∈ P ,

(δ1, . . . , δl)
(h1,...,hl )σ = (ε1, . . . , εl) where εi = δ

h
iσ
−1

iσ−1 .

It is known that G is primitive on � if and only if H acts primitively but not regularly
on 1, and P is a transitive subgroup of Sl ; see [4, Lemma 2.7A].

A primitive permutation group is quasiprimitive, but the inverse is not necessarily
true. In [9] and [10], it is shown that a quasiprimitive permutation group containing
an abelian regular subgroup or a dihedral regular subgroup is primitive. The following
theorem shows that a similar result holds for quasiprimitive permutation groups of
prime-power degree.

THEOREM 2.2. Let X be a quasiprimitive permutation group on � of degree pn with
p prime. Let N be a minimal normal subgroup of X. Then X is primitive, and one of
the following holds:

(i) X is an affine group, N = Zl
p, and X ≤ AGL(l, p), where l ≥ 1;

(ii) X is an almost simple group, and N ∼= T is as in Theorem 2.1; in particular,
either X is 2-transitive, or X = PSU(4, 2) or PSU(4, 2).Z2; or

(iii) X is of product action type, N = T l with l ≥ 2, and T lies in the list of Theorem
2.1.

Moreover, if |�| is a power of 2 and N is nonabelian, then N = T l with l ≥ 1, and
T = A2s or PSL(2, p) with p + 1= 2s for s ≥ 3 and p ≡ 3 (mod 4), and N has a
subgroup that is regular on �.

PROOF. Since N is a minimal normal subgroup of X , N ∼= T l for some simple group
T and l ≥ 1. Since X is quasiprimitive, N is transitive on �. If N is abelian, it is
known and easily shown that X is primitive and part (i) holds.

Thus we assume that N is nonabelian. If N ∼= T is simple, then the stabilizer
Nα , where α ∈�, has index pm in N . Hence by Theorem 2.1, N ∼= T is listed in
Theorem 2.1, and Nα is maximal in N . So N and X are primitive on �.

Now, we further assume that N is not simple. Then N = T1 × · · · × Tl ∼= T l ,
where l ≥ 2 and T is a nonabelian simple group. Since |N : Nα| = |�| = pm and
|T1 : (T1)α| = |N : ((T1)α × T2 × · · · × Tl)| divides |N : Nα|, we conclude that (T1)α
has index p-power in T . Hence by Theorem 2.1, (T1)α is a maximal subgroup of T1.
Similarly, for all i with 1≤ i ≤ l, (Ti )α is maximal and has index p-power in Ti . By
the O’Nan–Scott theorem (see [4]), X is primitive of product action type.
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Next suppose that |�| is a power of 2. Since T is a normal subgroup of N , we
conclude that T is half-transitive on �, so |T : Tα| divides 2d . By Theorem 2.1,
T ∼= A2s or PSL(d, q) and (qd

− 1)/(q − 1)= 2s for some s. Suppose that T =
PSL(d, q) with d ≥ 3. Then (q, d) 6= (2, 6), and hence qd

− 1 has a primitive prime
divisor r , that is, r divides qd

− 1 but not q i
− 1 for each i < d; see [6, p. 508]. It

follows that (qd
− 1)/(q − 1) is not a power of 2, which is not possible. Hence d = 2.

Now, q + 1= (q2
− 1)/(q − 1)= 2s , and it then follows that q = 2s

− 1 is a prime. 2

The following result was proved by Praeger [13].

LEMMA 2.3 [13, Theorem 2.1(a)]. Let X ≤ H o Sl be a primitive permutation group
of product action type on � :=1l , where H is almost simple and primitive on 1.
Let α = (γ, . . . , γ ) ∈1l . Suppose that 3 is an Xα-orbit on � \ {α}, and Xα is
quasiprimitive on 3. Then 3=3(γ )l , where 3(γ ) is an orbit of Hγ on 1.

The next lemma shows that the direct product of locally primitive graphs is locally
primitive.

LEMMA 2.4. Let 6 be a Y -locally primitive digraph with vertex set 1, where
Y ≤ Aut6 is almost simple and primitive on 1. Let 0 =6×l , with vertex set 1l .
Let X = Y l .P ≤ Y o Sl act on 1l in product action, where P is a transitive subgroup
of the symmetric group Sl . Then X ≤ Aut 0 and 0 is an X-locally primitive digraph.

Further, if 6 is a Cayley graph of a group H, then 0 is a Cayley graph of the
group H l .

PROOF. Let V =1l . It is easily shown that X ≤ Aut 0, and X is transitive on V .
Further, for v = (δ, . . . , δ) ∈ V , we have Xv = (Yδ)l .P . Since 6 is a Y -locally
primitive graph, Yδ is primitive on 6(δ). By [4, Lemma 2.7A], Xv is primitive on
0(v) as P is a transitive subgroup of Sl . So 0 is an X -locally primitive digraph.

Further, suppose that6 is a Cayley graph of a group H . Then H ≤ Aut6 is regular
on 1, so H l

≤ (Aut6)l .P ≤ Aut 0 and is regular on V . Therefore, 0 is a Cayley
graph of the group H l . 2

The socle of a group X is the normal subgroup generated by all minimal normal
subgroups of X , denoted by soc(X).

LEMMA 2.5. Let 0 be an X-locally primitive digraph with vertex set V . Suppose that
X is a primitive permutation group on V of product action type. Suppose further that
soc(X)= PSL(d, q)l with l ≥ 1, and |V | = ((qd

− 1)/(q − 1))l . Then d = 2.

PROOF. It is easily shown that X is almost simple or of product action type. Let
N = soc(X), T = PSL(d, q), and O = X/N .

Suppose that X is almost simple, and d ≥ 3. For u, v ∈ V , the stabilizers

Tu ∼= [q
d−1
] : (Z(q−1)/(d,q−1).PGL(d − 1, q)),

Tuv ∼= [q
2(d−2)

] : (Z(q−1)/(d,q−1).Zq−1.PGL(d − 2, q)),
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and Xu ∼= Tu .O , Xuv ∼= Tuv.O . Then there exists a group

H =Op(Tu)Tuv ∼= [q
2d−3
] : (Z(q−1)/(d,q−1).Zq−1.PGL(d − 2, q))

such that Xuv < H.O < Xu . Thus, Xuv is not a maximal subgroup of Xu , which is
impossible as Xu is primitive on 0(u). Thus, if X is almost simple, then d = 2.

Assume now that X is of product action type. Then Xu ∼= T l
u .O and Xuv ∼= T l

uv.O .
Therefore, if d ≥ 3, we have Xuv < H l .O < Xu , which is impossible as Xu is
primitive on 0(u). So d = 2. 2

For a digraph 0 and X ≤ Aut 0, the action of the vertex stabilizer Xv on 0(v)
may be unfaithful. As usual, the kernel of Xv on 0(v) is denoted by X [1]v . Then
X0(v)v

∼= Xv/X [1]v .

LEMMA 2.6. Let 0 be a Y -locally primitive digraph with vertex set V . Assume that
Y is primitive on V , |V | = 27, and soc(Y )= PSU(4, 2). Then 0 is the Schläfli graph,
which is a locally primitive Cayley graph of Z9:Z3 of valency 16.

PROOF. It is known that Y = PSU(4, 2).O with O ≤ Z2, Y has rank 3, and Yv =
Z4

2:A5 or Z4
2:S5; see the Atlas [3]. Further, the two orbital graphs are the Schläfli

graph 0 and its complement, 6 say; refer to [2]. Then 6 has valency 10. We claim
that 6 is not locally primitive. Suppose that Y6(v)v is primitive. Then Yv is unfaithful
on 6(v) and the kernel Y [1]v ∼= Z4

2. So Y6(v)v
∼= A5. Since |6(v)| = 10, we conclude

that Y6(v)vw
∼= S3, where w ∈6(v). Hence

1 6= (Y [1]v )6(w) � Y6(w)vw
∼= S3,

and thus (Y [1]v )6(w) is a normal 2-subgroup of S3. However, S3 has no normal
2-subgroup, which is a contradiction.

For the Schläfli graph 0, Yv = Z4
2:A5.O is faithful on 0(v). Since (Yv)w ∼= A5.O is

a maximal subgroup of Yv , wherew ∈ 0(v), Y0(v)v is primitive. Hence 0 is a Y -locally
primitive graph. Further, it follows from [12] that Y contains a 3-group Z9:Z3, which
is regular on V , so 0 is a Y -locally primitive Cayley graph of Z9:Z3. 2

The final lemma of this section shows that locally primitive digraphs of prime-
power order in the vertex quasiprimitive case are all Cayley graphs.

LEMMA 2.7. Let 0 = (V, E) be a connected X-locally primitive digraph of order pn ,
where p is a prime. Assume further that X is quasiprimitive on V . Then X is primitive
on V and has a subgroup that is regular on V , and 0 is a Cayley graph. Moreover,
one of the following statements holds:

(i) 0 is a normal Cayley graph of an elementary abelian p-group, and further 0 is
undirected if and only if p = 2;

(ii) 0 =Kpn , Aut 0 = Spn , and either p = 2 and X is a 2-primitive affine group, or
soc(X)= PSL(2, 11), M11, M23, Apn or PSL(2, q);
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(iii) 0 =K×l
pr with l ≥ 2 and n = rl, and Aut 0 = Spr o Sl , and X is a blow-up of a

2-primitive group as in part (ii); or
(iv) 0 =6×l , where l ≥ 1 and 6 is the Schläfli graph, and PSU(4, 2)l � X ≤

Aut 0 = (PSU(4, 2).2) o Sl .

In particular, all graphs 0 that appear in parts (ii)–(iv) are undirected.

PROOF. Let N be a minimal normal subgroup of X , and let Y = Aut 0. By
Theorem 2.2, X is primitive on V , and thus Y is primitive on V .

Suppose that N is nonabelian simple. Then by Theorem 2.1 and Lemma 2.5,
N = PSL(2, 11), M11, M23, PSU(4, 2), Apr or PSL(2, q). In the first five cases, N
has a regular subgroup that is isomorphic to Z11, Z11, Z23, Z9:Z3, or Zr

p, respectively.
Suppose that N = PSL(2, q). If q is even, then N = PSL(2, q)= PGL(2, q) contains
a regular subgroup Zq+1. If q is odd, as q + 1= pr , it follows that p = 2 and
q ≡ 3 (mod 4), so N contains a regular subgroup Dq+1. Further, by Theorem 2.2(ii),
either 0 is a complete graph, or 0 is the Schläfli graph, as in part (ii) or part (iv) with
l = 1, respectively. In particular, 0 is undirected.

Suppose next that X is nonabelian and nonsimple. Then by Theorem 2.2, X V is of
product action type. Thus, V =1l and N = T l with l ≥ 2, such that T = PSL(2, 11),
M11, M23, PSU(4, 2), Apr or PSL(2, q), and |1| = 11, 11, 23, 27, pr or q + 1,
respectively. The previous paragraph shows that T has a subgroup G that is regular
on 1. Thus Gl is a subgroup of N and regular on V , and 0 is a Cayley graph.

For a vertex α = (δ, . . . , δ) ∈ V , since X0(α)α is primitive, we have that 0(α) is an
orbit of Xα on V \ {α}. By Lemma 2.3, 0(α)=1(δ)l , where 1(δ) is an orbit of Hδ
in 1 \ {δ}. It follows that 0 =6×l . Moreover, since either T is 2-transitive on 1, or
T = PSU(4, 2), we conclude that either 6 is a complete graph, or 6 is the Schläfli
graph, as in part (iii) or part (iv) with l ≥ 2, respectively. In particular, 0 is undirected.

Finally, assume that N is abelian. Then N is regular on V , and 0 can be expressed
as a Cayley graph of N . It follows since 0 is X -locally primitive that 0 is undirected if
and only if N is a 2-group. Further, by Theorem 2.2, the primitive permutation group
Y = Aut 0 is affine, almost simple, or of product action type. If Y is affine, then 0 is a
normal Cayley graph, as in part (i). If Y is almost simple, then Y is 2-transitive on V ,
as in part (ii). If Y is of product action type, then Y is a blow-up of the almost simple
group case, as in part (iii). 2

3. Bi-quasiprimitive case

A transitive permutation group X on� is called bi-quasiprimitive if each nontrivial
normal subgroup of X has at most two orbits, and there exists a normal subgroup of
X that has two orbits on �. Further, X is called biprimitive if � has a nontrivial
X -invariant partition �=U ∪W such that XU = XW is primitive on U and W . Let
X+ = XU = XW . Then X+ is a normal subgroup of Y of index 2.

The next result, proved in [11, Theorems 1.4 and 1.5], gives some properties of
bi-quasiprimitive permutation groups.
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THEOREM 3.1. Let X be a bi-quasiprimitive permutation group on �. Then either:

(i) X+ acts unfaithfully on U and W ; or
(ii) X+ acts faithfully on U and W , and one of the following holds:

(a) X+ is quasiprimitive on U and W , or
(b) X+ has two minimal normal subgroups M1 and M2 that are conjugate in

X and semiregular on �; moreover, 〈M1, M2〉 = M1 × M2 is a minimal
normal subgroup of X and transitive on both U and W .

We need the following special case.

COROLLARY 3.2. Let X be a bi-quasiprimitive permutation group on � with
bipartition �=U ∪W , where |�| = 2m . Suppose further that X+ acts faithfully on
U and W . Then either X+ is primitive and has a subgroup that is regular on U and
W , or X+ has a normal elementary abelian 2-group that is regular on both U and W .

PROOF. If X+ is quasiprimitive on both U and W , by Theorem 2.2, X+ is primitive
on both U and W and has a regular subgroup. If X+ is not quasiprimitive,
by Theorem 3.1(ii)(b), X+ has two minimal normal subgroups M1, M2 that are
semiregular on �. Thus M1, M2 are both 2-groups, and so M1 and M2 are elementary
abelian 2-groups. It then follows that 〈M1, M2〉 is a normal elementary abelian 2-group
and regular on both U and W . 2

A permutation group G ≤ Sym(�) is called biregular if it is semiregular and has
exactly two orbits on �.

LEMMA 3.3. Let 0 = (V, E) be a connected undirected X-locally primitive graph of
order 2n . Assume that X is transitive and bi-quasiprimitive on V , associated with the
bipartition V =U ∪W . Then X+ has a subgroup G that is biregular on V , and one
of the following statements holds:

(i) 0 ∼=K2n−1,2n−1;
(ii) X+ is faithful on both U and W , and G is an elementary normal 2-subgroup; or
(iii) X+ is faithful and primitive on both U and W .

PROOF. Since X is bi-quasiprimitive on V , the graph 0 is bipartite with biparts U and
W , say.

Suppose that X+ is unfaithful on U . Let K1 be the kernel of X+ acting on U .
Then K1 6= 1 and K1 acts faithfully on W . For an edge {α, β} of 0, where α ∈U and
β ∈W , let B be the K1-orbit of β in W . Since K1 fixes α, we conclude that B ⊆ 0(α).
Further, as

1 6= K0(α)
1 � (X+α )

0(α)
= X0(α)α

and X0(α)α is primitive, we obtain B = 0(α). Since this holds for every vertex α
adjacent to a vertex of B, by the connectivity of 0, it is easily shown that B =W .
It then follows that 0 ∼=K2n−1,2n−1 , as in part (i). Noting that X0(α)α is now a primitive

permutation group of degree 2n−1, by Lemma 2.7, we have that X0(α)α has a subgroup
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that is regular on 0(α)=W . It follows that K1 has a regular subgroup G1 on W .
Similarly, K2 has a regular subgroup G2 on U . Since K1 ∼= K2, we may assume that
G1 ∼= G2. Let φ be an isomorphism between G1 and G2. Then X has a biregular
subgroup G = {(x, xφ) | x ∈ G1}.

Assume now that X+ is faithful on U and W . Then by Corollary 3.2, either X+ is
primitive and has a subgroup that is regular on both U and W , as in part (iii), or X+

has a normal elementary abelian 2-group that is regular on both U and W . For the
latter case, by Lemma 4.2, either 0 ∼=K2n−1,2n−1 , as in part (i), or X+ is faithful on
both U and W , as in part (ii). 2

4. Proof of Theorem 1.1

To prove Theorem 1.1, we need a lemma regarding the normal quotient, which is a
generalization of [14, Theorem 4.1] and whose proof is easy and omitted.

LEMMA 4.1. Let 0 be an undirected X-locally primitive graph, and let N � X have
at least three orbits on V . Then 0N is X/N-locally primitive and 0 is a normal cover
of 0N .

A graph 0 is called the bi-Cayley graph of a group G, denoted by BiCay(G, S), if
there is a nonempty set S of G such that the vertex set of 0 is {(g, i) | g ∈ G, i = 1, 2};
and two vertices (g, i), (h, j) are adjacent if and only if hg−1

∈ S and i 6= j . It easily
follows that BiCay(G, S) is the standard double cover of the Cayley graph Cay(G, S),
and so BiCay(G, S)= Cay(G, S)×K2.

LEMMA 4.2. Let 0 = (V, E) be a connected undirected bipartite graph with biparts
U ∪W that is not a complete bipartite graph. Let X = Aut 0, and X+ = XU = XW .
Suppose that X+ has a subgroup G that is regular on both U and W . Then the
following statements hold:

(i) 0 = BiCay(G, S)= Cay(G, S)×K2 for some subset S of G;
(ii) letting 6 = Cay(G, S), we have Aut6 = X+;
(iii) if 0 is locally primitive, then so is Cay(G, S); and
(iv) if Cay(G, S) is undirected, then X = X+ × Z2, and 0 is a Cayley graph of

G × Z2.

PROOF. Since 0 is not a complete bipartite graph, there exist vertices u ∈U and
w ∈W that are not adjacent in 0. Label the elements of G as g1, g2, . . . , gn with
g1 = 1. Then label the vertices in U as u j = ug j , and the vertices in W as w j = w

g j ,
for j = 1, 2, . . . , n. Let S = {g j ∈ G | (u, wg j ) ∈ E}. Then

{ui , w j } ∈ E ⇐⇒ {ugi , wg j } ∈ E

⇐⇒ {u, wg j g−1
i } ∈ E

⇐⇒ g j g
−1
i ∈ S

⇐⇒ (gi , 1)∼ (g j , 2) in BiCay(G, S).

Thus, 0 ∼= BiCay(G, S)= Cay(G, S)×K2, as in part (i).
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Let 6 = Cay(G, S). By definition, for any elements gi , g j of G, the vertices gi , g j
of Cay(G, S) are adjacent if and only if the vertices (gi , 1) and (g j , 2) of BiCay(G, S)
are adjacent. For any permutation x of U and any edge {gi , g j } of 6, we have that
(gi , 1) and (g j , 2) are adjacent in BiCay(G, S), and

x ∈ X+ ⇐⇒ (gi , 1)x ∼ (g j , 2)x in BiCay(G, S)

⇐⇒ (gx
i , 1)∼ (gx

j , 2) in BiCay(G, S)

⇐⇒ gx
j (g

x
i )
−1
∈ S

⇐⇒ gx
i ∼ gx

j in Cay(G, S)

⇐⇒ x ∈ Aut6.

So X+ = Aut6, as in part (ii).
Identify elements gi ∈ G with points (gi , 1) of U , and identify u with the identity

of G. We have 6(u)= S = {g j ∈ G | {u, wg j } ∈ E}, and 0(w)= {(g j , 1) | g j ∈ S}.
If 0 is locally primitive, then Xw = X+w acts primitively on 0(w). It follows that X+u
acts primitively on 6(u), and 6 is X+-locally primitive.

Finally, suppose that Cay(G, S) is undirected. It is easily shown that the map

τ : (g, j) 7→ (g, 3− j), for g ∈ G and j = 1 or 2,

is an automorphism of 0. Further, τ is an involution and centralizes X+, and it then
follows that X = X+ × 〈τ 〉 ∼= X+ × Z2. 2

Now, we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let 0 be a connected undirected vertex transitive and
locally primitive graph with vertex set V , such that |V | = pn with p prime.

Let X = Aut 0, and let N � X be maximal subject to the condition that N has at
least three orbits on V . Let X = X/N , and VN the set of N -orbits on V . Then X is
quasiprimitive or bi-quasiprimitive on VN . By Lemma 4.1, the normal quotient 0N is
X -locally primitive, and 0 is a normal cover of 0N .

Assume that X is quasiprimitive on VN . Then, by Lemma 2.7, X has a subgroup
G that is regular on VN . Thus the extension N .G is regular on V , and 0 is a Cayley
graph. Again, by Lemma 2.7, either G is normal in X , or 0N =K×l

pn with l ≥ 2 or

6×l where l ≥ 1 and 6 is the Schläfli graph. For the former, N .G is regular on V and
normal in X = Aut 0, and so 0 is a normal Cayley graph of the 2-group N .G. For the
latter, 0 is a normal cover of K×l

pn or 6×l .

Assume that X is bi-quasiprimitive on VN . Then 0 is bipartite with biparts
U and W . By Lemma 3.3, X has a subgroup G that is biregular on VN . Let
G = N .G < N .X = X . It follows that the subgroup G is biregular on V . Suppose that
0 is not a complete bipartite graph. By Lemma 4.2, 0 is a bi-Cayley graph of G, say
0 = BiCay(G, S)= Cay(G, S)×K2 for some subset S of G. Let 6 = Cay(G, S).
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Then 6 is X+-locally primitive, and 6N is X
+

-locally primitive. Further, 0N and X
satisfy Lemma 3.3.

If 0N =K2m ,2m , as in Lemma 3.3(i), then 0 is a normal cover of a complete
bipartite graph, as in Theorem 1.1(i). Thus assume next that 0N is not a complete
bipartite graph.

Suppose that X
+

has an elementary abelian normal 2-subgroup that is regular on
UN . Then the normal quotient 6N is undirected, and so is Cay(G, S). By Lemma 4.2,
we have that X = X+ × Z2, and G × Z2 is a normal subgroup of X and regular on V .
So 0 is a normal Cayley graph of G × Z2, as in Theorem 1.1(ii).

Suppose that X
+

is a primitive permutation group on UN that is almost simple
or of product action type. By Lemma 2.7, the quotient 6N is K×l

pr , and so they are
undirected. Thus6 is undirected, and by Lemma 4.2, X = X+ × Z2. So G × Z2 < X
is regular on V , and 0 is a Cayley graph of G × Z2. 2
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