# LOCALLY PRIMITIVE GRAPHS OF PRIME-POWER ORDER 

# CAI HENG LI ${ }^{\boxtimes}$, JIANGMIN PAN and LI MA 

(Received 1 February 2008; accepted 9 May 2008)

Communicated by Martin W. Liebeck
Dedicated to Cheryl Praeger for her sixtieth birthday


#### Abstract

Let $\Gamma$ be a finite connected undirected vertex transitive locally primitive graph of prime-power order. It is shown that either $\Gamma$ is a normal Cayley graph of a 2 -group, or $\Gamma$ is a normal cover of a complete graph, a complete bipartite graph, or $\Sigma^{\times l}$, where $\Sigma=\mathbf{K}_{p^{m}}$ with $p$ prime or $\Sigma$ is the Schläfli graph (of order 27). In particular, either $\Gamma$ is a Cayley graph, or $\Gamma$ is a normal cover of a complete bipartite graph.


1991 Mathematics subject classification: primary 05C25.
Keywords and phrases: locally primitive graphs, Cayley graphs, covers.

## 1. Introduction

This is an application of Praeger's fundamental theory of symmetric graphs to the study of a class of locally primitive graphs.

Let $\Gamma$ be a digraph with vertex set $V$. For $G \leq$ Aut $\Gamma$, a group of automorphisms, $\Gamma$ is called $G$-vertex transitive if $G$ is transitive on $V$. For a vertex $v$, let $\Gamma(v)$ be the set of vertices to which $v$ is adjacent, and let $G_{v}=\left\{g \in G \mid v^{g}=v\right\}$. A $G$-vertex transitive digraph $\Gamma$ is called $G$-locally primitive (or simply called locally primitive) if $G_{v}$ acts primitively on $\Gamma(v)$ for all vertices $v$. As usual, the number of vertices of a digraph is called the order, and the size $|\Gamma(v)|$ is called the out-valency if $\Gamma$ is regular. By $\Gamma^{-}(v)$ we mean the set of vertices that are adjacent to $v$. Then $\left|\Gamma(v) \cup \Gamma^{-}(v)\right|$ is called the valency of $\Gamma$ for $\Gamma$ regular. If, for any vertices $u, v$ of $\Gamma, u$ is adjacent to $v$ if and only if $v$ is adjacent to $u$, then $\Gamma$ is called undirected. This paper aims to characterize undirected vertex transitive locally primitive graphs of prime-power order.

There are some typical examples of locally primitive graphs: the complete graphs $\mathbf{K}_{n}$, and the complete bipartite graphs $\mathbf{K}_{n, n}$. In particular, $\mathbf{K}_{p^{m}}$ with $p$ prime and

[^0](C) 2009 Australian Mathematical Society 1446-7887/2009 \$16.00
$\mathbf{K}_{2^{m}, 2^{m}}$ are of prime-power order. More examples can be recursively constructed by direct product. Given digraphs $\Gamma_{i}$ with vertex sets $V_{i}$ for $1 \leq i \leq l$, their direct product, denoted by $\Gamma_{1} \times \cdots \times \Gamma_{l}$, is the digraph $\Gamma$ with the vertex set $V_{1} \times \cdots \times V_{l}$ (Cartesian product) such that $\left(u_{1}, \ldots, u_{l}\right)$ is adjacent to $\left(v_{1}, \ldots, v_{l}\right)$ if $u_{i}$ is adjacent in $\Gamma_{i}$ to $v_{i}$ for each $i$. In the special case where $\Gamma_{1}=\cdots=\Gamma_{l}$, the direct product is simply denoted by $\Gamma_{1}^{\times l}$.

The direct product $\Gamma \times \mathbf{K}_{2}$ has vertex set $V \times\{1,2\}$ such that $(u, 1)$ is adjacent to $(v, 2)$ if and only if $u, v$ are adjacent in $\Gamma$. Hence $\Gamma \times \mathbf{K}_{2}$ is actually the so-called standard double cover of $\Gamma$. In particular, $\mathbf{K}_{n} \times \mathbf{K}_{2}=\mathbf{K}_{n, n}-n \mathbf{K}_{2}$, the graph obtained by deleting a 1-factor from $\mathbf{K}_{n, n}$.

The Schläfli graph is the graph on isotropic lines in the $\mathrm{U}(4,2)$ geometry, adjacent when disjoint; refer to [2] or 'http://www.win.tue.nl/~aeb/graphs'. It is a strongly regular graph of valency 16 , and its automorphism group is $\mathrm{U}(4,2) .2$. Also, it is a locally primitive Cayley graph of $\mathbb{Z}_{9}: \mathbb{Z}_{3}$; see Lemma 2.6.

A digraph $\Gamma=(V, E)$ is called a Cayley graph of a group $G$ if there is a nonempty set $S$ of $G$ such that $V=G$ and $E=\{\{g, s g\} \mid g \in G, s \in S\}$, which is denoted by $\operatorname{Cay}(G, S)$. Obviously, $\operatorname{Cay}(G, S)$ is undirected if and only if $S=S^{-1}:=$ $\left\{s^{-1} \mid s \in S\right\}$. It is known that a digraph $\Gamma$ is a Cayley graph of a group $G$ if and only if Aut $\Gamma$ contains a subgroup that is isomorphic to $G$ and regular on the vertex set; see [1, Proposition 16.3]. For convenience, this regular subgroup of Aut $\Gamma$ is still denoted by $G$ in this paper. If Aut $\Gamma$ has a normal subgroup that is regular and isomorphic to $G$, then $\Gamma$ is called a normal Cayley graph of $G$. Refer to [10,15,16] for various nice properties of normal Cayley graphs.

Assume that $\Gamma$ is a $G$-vertex transitive digraph. Let $N$ be a normal subgroup of $G$. Denote by $V_{N}$ the set of $N$-orbits in $V$. The normal quotient $\Gamma_{N}$ of $\Gamma$ induced by $N$ is defined as the digraph with vertex set $V_{N}$; and two vertices $B, C \in V_{N}$ are adjacent if there exist $u \in B$ and $v \in C$ that are adjacent in $\Gamma$. If $\Gamma$ and $\Gamma_{N}$ have the same valency, then $\Gamma$ is called a normal cover of $\Gamma_{N}$. Obviously, if $\Gamma$ is a cover of $\Gamma_{N}$, then $\Gamma$ is undirected if and only if so is $\Gamma_{N}$.

A triple of distinct vertices of an undirected graph is called a 2 -arc if one of them is adjacent to the other two. An undirected graph $\Gamma$ is called ( $G, 2$ )-arc transitive if $G \leq$ Aut $\Gamma$ is transitive on the set of $2-\operatorname{arcs}$ of $\Gamma$. It easily follows that an undirected regular ( $G, 2$ )-arc transitive graph is $G$-vertex transitive and $G$-locally primitive.

In the literature, the classes of 2 -arc transitive graphs and locally primitive graphs have been extensively studied; see [1, 11, 14] and references therein. In particular, undirected vertex primitive and vertex biprimitive 2-arc transitive Cayley graphs of elementary abelian p-groups are classified by Ivanov and Praeger [7]; a characterization of undirected 2-arc transitive graphs of prime-power order is given by the first author [8]. The main result of this paper is to extend the result of [8] to the class of undirected vertex transitive locally primitive graphs.

THEOREM 1.1. Let $\Gamma$ be a connected undirected graph of order $p^{n}$ and valency at least three, with $p$ prime. Assume that $\Gamma$ is vertex transitive and locally primitive.

Then one of the following statements holds:
(i) $\Gamma$ is a normal Cayley graph of a 2-group;
(ii) $\Gamma$ is a normal cover of $\Sigma^{\times l}$, where $l \geq 1$ and $\Sigma=\mathbf{K}_{p^{r}}$ or is the Schläfli graph; in particular, $\Gamma$ is a Cayley graph; or
(iii) $\Gamma$ is a normal cover of $\mathbf{K}_{2^{m}, 2^{m}}$.

This tells us that an undirected locally primitive graph of prime-power order is either a Cayley graph, or a normal cover of a complete bipartite graph. In particular, we have the following interesting corollary.

## Corollary 1.2.

(i) A connected undirected locally primitive graph of order a power of an odd prime is a Cayley graph.
(ii) A connected undirected locally primitive graph of order $p^{n}$ with $p \geq 5$ prime is a normal cover of $\mathbf{K}_{p^{m}}^{\times l}$.
Stimulated by Theorem 1.1, some further research problems naturally arise.

## Problem.

(1) Are all locally primitive normal covers of $\mathbf{K}_{2^{m}}, 2^{m}$ Cayley graphs?
(2) Characterize normal Cayley graphs of 2-groups that are locally primitive.
(3) Study locally primitive normal covers of $\Sigma^{\times l}$, where $\Sigma$ is a complete graph or the Schläfli graph.

## 2. Vertex quasiprimitive case

A permutation group $G \leq \operatorname{Sym}(\Omega)$ is called quasiprimitive if each nontrivial normal subgroup of $G$ is transitive on $\Omega$. In this section, we deal with the vertex quasiprimitive case. First, we give a characterization of quasiprimitive permutation groups of primepower degree.

Let $X$ be a quasiprimitive permutation group on $\Omega$ of degree $p^{n}$, where $p$ is a prime. Let $N$ be a minimal normal subgroup of $X$. Then $N \cong T^{l}$, where $l \geq 1$ and $T$ is a simple group. Since $X$ is quasiprimitive on $\Omega, N$ is transitive on $\Omega$.

If $T$ is abelian, then $T \cong \mathbb{Z}_{p}, l=n$, and $N \cong \mathbb{Z}_{p}^{n}$ is regular on $\Omega$. Further, $\mathbb{Z}_{p}^{n} \triangleleft X \leq \operatorname{AGL}(n, p)$.

If $l=1$ and $T$ is nonabelian, then $X$ is an almost simple group, and for $\alpha \in \Omega, T_{\alpha}$ has index $p^{n}$ in $T$. The following theorem of Guralnick [5] presents the nonabelian simple groups with a subgroup of prime-power index.

Theorem 2.1 [5]. Let $T$ be a nonabelian simple group that has a subgroup $H$ of index $p^{r}$ with $p$ prime. Then one of the following holds:
(i) $\quad T \cong \mathrm{~A}_{p^{r}}$, and $H \cong \mathrm{~A}_{p^{r-1}}$;
(ii) $T \cong \operatorname{PSL}(d, q), \quad H$ is a maximal parabolic subgroup of $T$, and $p^{r}=\left(q^{d}-1\right) /(q-1)$;
(iii) $\quad T \cong \operatorname{PSL}(2,11), H \cong \mathrm{~A}_{5}$, and $p^{r}=11$;
(iv) $T \cong \mathrm{M}_{11}, H \cong \mathrm{M}_{10}$, and $p^{r}=11$;
(v) $T \cong \mathrm{M}_{23}, H \cong \mathrm{M}_{22}$, and $p^{r}=23$; or
(vi) $T=\operatorname{PSU}(4,2), H \cong \mathbb{Z}_{2}^{4}: \mathrm{A}_{5}$ and $p^{r}=27$.

Next we assume that $N$ is nonabelian and $l \geq 2$. We will show that $X$ is primitive of product action type. Let $H$ be a group acting on $\Delta$, and $P$ a subgroup of the symmetric group $\mathrm{S}_{l}$. Let $G=H$ 乙 $P$ be the wreath product of $H$ by $P$. Then $G$ acts naturally on $\Omega:=\Delta^{l}$, called product action, as follows: for $\left(\delta_{1}, \ldots, \delta_{l}\right) \in \Omega$, $x=\left(h_{1}, \ldots, h_{l}\right) \in H^{l}$ and $\sigma \in P$,

$$
\left(\delta_{1}, \ldots, \delta_{l}\right)^{\left(h_{1}, \ldots, h_{l}\right) \sigma}=\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \quad \text { where } \varepsilon_{i}=\delta_{i^{\sigma^{-1}}}^{h_{i \sigma^{-1}}}
$$

It is known that $G$ is primitive on $\Omega$ if and only if $H$ acts primitively but not regularly on $\Delta$, and $P$ is a transitive subgroup of $\mathrm{S}_{l}$; see [4, Lemma 2.7A].

A primitive permutation group is quasiprimitive, but the inverse is not necessarily true. In [9] and [10], it is shown that a quasiprimitive permutation group containing an abelian regular subgroup or a dihedral regular subgroup is primitive. The following theorem shows that a similar result holds for quasiprimitive permutation groups of prime-power degree.

THEOREM 2.2. Let $X$ be a quasiprimitive permutation group on $\Omega$ of degree $p^{n}$ with $p$ prime. Let $N$ be a minimal normal subgroup of $X$. Then $X$ is primitive, and one of the following holds:
(i) $\quad X$ is an affine group, $N=\mathbb{Z}_{p}^{l}$, and $X \leq \operatorname{AGL}(l, p)$, where $l \geq 1$;
(ii) $X$ is an almost simple group, and $N \cong T$ is as in Theorem 2.1; in particular, either $X$ is 2-transitive, or $X=\operatorname{PSU}(4,2)$ or $\operatorname{PSU}(4,2) . \mathbb{Z}_{2}$; or
(iii) $X$ is of product action type, $N=T^{l}$ with $l \geq 2$, and $T$ lies in the list of Theorem 2.1.

Moreover, if $|\Omega|$ is a power of 2 and $N$ is nonabelian, then $N=T^{l}$ with $l \geq 1$, and $T=\mathrm{A}_{2^{s}}$ or $\operatorname{PSL}(2, p)$ with $p+1=2^{s}$ for $s \geq 3$ and $p \equiv 3(\bmod 4)$, and $N$ has $a$ subgroup that is regular on $\Omega$.
Proof. Since $N$ is a minimal normal subgroup of $X, N \cong T^{l}$ for some simple group $T$ and $l \geq 1$. Since $X$ is quasiprimitive, $N$ is transitive on $\Omega$. If $N$ is abelian, it is known and easily shown that $X$ is primitive and part (i) holds.

Thus we assume that $N$ is nonabelian. If $N \cong T$ is simple, then the stabilizer $N_{\alpha}$, where $\alpha \in \Omega$, has index $p^{m}$ in $N$. Hence by Theorem $2.1, N \cong T$ is listed in Theorem 2.1, and $N_{\alpha}$ is maximal in $N$. So $N$ and $X$ are primitive on $\Omega$.

Now, we further assume that $N$ is not simple. Then $N=T_{1} \times \cdots \times T_{l} \cong T^{l}$, where $l \geq 2$ and $T$ is a nonabelian simple group. Since $\left|N: N_{\alpha}\right|=|\Omega|=p^{m}$ and $\left|T_{1}:\left(T_{1}\right)_{\alpha}\right|=\left|N:\left(\left(T_{1}\right)_{\alpha} \times T_{2} \times \cdots \times T_{l}\right)\right|$ divides $\left|N: N_{\alpha}\right|$, we conclude that $\left(T_{1}\right)_{\alpha}$ has index $p$-power in $T$. Hence by Theorem 2.1, $\left(T_{1}\right)_{\alpha}$ is a maximal subgroup of $T_{1}$. Similarly, for all $i$ with $1 \leq i \leq l,\left(T_{i}\right)_{\alpha}$ is maximal and has index $p$-power in $T_{i}$. By the O'Nan-Scott theorem (see [4]), $X$ is primitive of product action type.

Next suppose that $|\Omega|$ is a power of 2 . Since $T$ is a normal subgroup of $N$, we conclude that $T$ is half-transitive on $\Omega$, so $\left|T: T_{\alpha}\right|$ divides $2^{d}$. By Theorem 2.1, $T \cong \mathrm{~A}_{2^{s}}$ or $\operatorname{PSL}(d, q)$ and $\left(q^{d}-1\right) /(q-1)=2^{s}$ for some $s$. Suppose that $T=$ $\operatorname{PSL}(d, q)$ with $d \geq 3$. Then $(q, d) \neq(2,6)$, and hence $q^{d}-1$ has a primitive prime divisor $r$, that is, $r$ divides $q^{d}-1$ but not $q^{i}-1$ for each $i<d$; see [6, p. 508]. It follows that $\left(q^{d}-1\right) /(q-1)$ is not a power of 2 , which is not possible. Hence $d=2$. Now, $q+1=\left(q^{2}-1\right) /(q-1)=2^{s}$, and it then follows that $q=2^{s}-1$ is a prime.

The following result was proved by Praeger [13].
Lemma 2.3 [13, Theorem 2.1(a)]. Let $X \leq H$ i $\mathrm{S}_{l}$ be a primitive permutation group of product action type on $\Omega:=\Delta^{l}$, where $H$ is almost simple and primitive on $\Delta$. Let $\alpha=(\gamma, \ldots, \gamma) \in \Delta^{l}$. Suppose that $\Lambda$ is an $X_{\alpha}$-orbit on $\Omega \backslash\{\alpha\}$, and $X_{\alpha}$ is quasiprimitive on $\Lambda$. Then $\Lambda=\Lambda(\gamma)^{l}$, where $\Lambda(\gamma)$ is an orbit of $H_{\gamma}$ on $\Delta$.

The next lemma shows that the direct product of locally primitive graphs is locally primitive.

Lemma 2.4. Let $\Sigma$ be a $Y$-locally primitive digraph with vertex set $\Delta$, where $Y \leq$ Aut $\Sigma$ is almost simple and primitive on $\Delta$. Let $\Gamma=\Sigma^{\times l}$, with vertex set $\Delta^{l}$. Let $X=Y^{l} . P \leq Y$ $\mathrm{S}_{l}$ act on $\Delta^{l}$ in product action, where $P$ is a transitive subgroup of the symmetric group $\mathrm{S}_{l}$. Then $X \leq$ Aut $\Gamma$ and $\Gamma$ is an $X$-locally primitive digraph.

Further, if $\Sigma$ is a Cayley graph of a group $H$, then $\Gamma$ is a Cayley graph of the group $H^{l}$.

Proof. Let $V=\Delta^{l}$. It is easily shown that $X \leq \operatorname{Aut} \Gamma$, and $X$ is transitive on $V$. Further, for $v=(\delta, \ldots, \delta) \in V$, we have $X_{v}=\left(Y_{\delta}\right)^{l} . P$. Since $\Sigma$ is a $Y$-locally primitive graph, $Y_{\delta}$ is primitive on $\Sigma(\delta)$. By [4, Lemma 2.7A], $X_{v}$ is primitive on $\Gamma(v)$ as $P$ is a transitive subgroup of $\mathrm{S}_{l}$. So $\Gamma$ is an $X$-locally primitive digraph.

Further, suppose that $\Sigma$ is a Cayley graph of a group $H$. Then $H \leq$ Aut $\Sigma$ is regular on $\Delta$, so $H^{l} \leq(\operatorname{Aut} \Sigma)^{l} . P \leq$ Aut $\Gamma$ and is regular on $V$. Therefore, $\Gamma$ is a Cayley graph of the group $H^{l}$.

The socle of a group $X$ is the normal subgroup generated by all minimal normal subgroups of $X$, denoted by $\operatorname{soc}(X)$.

Lemma 2.5. Let $\Gamma$ be an $X$-locally primitive digraph with vertex set $V$. Suppose that $X$ is a primitive permutation group on $V$ of product action type. Suppose further that $\operatorname{soc}(X)=\operatorname{PSL}(d, q)^{l}$ with $l \geq 1$, and $|V|=\left(\left(q^{d}-1\right) /(q-1)\right)^{l}$. Then $d=2$.

Proof. It is easily shown that $X$ is almost simple or of product action type. Let $N=\operatorname{soc}(X), T=\operatorname{PSL}(d, q)$, and $O=X / N$.

Suppose that $X$ is almost simple, and $d \geq 3$. For $u, v \in V$, the stabilizers

$$
\begin{aligned}
T_{u} & \cong\left[q^{d-1}\right]:\left(\mathbb{Z}_{(q-1) /(d, q-1)} \cdot \operatorname{PGL}(d-1, q)\right), \\
T_{u v} & \cong\left[q^{2(d-2)}\right]:\left(\mathbb{Z}_{(q-1) /(d, q-1)} \cdot \mathbb{Z}_{q-1} \cdot \operatorname{PGL}(d-2, q)\right),
\end{aligned}
$$

and $X_{u} \cong T_{u} . O, X_{u v} \cong T_{u v} . O$. Then there exists a group

$$
H=\mathbf{O}_{p}\left(T_{u}\right) T_{u v} \cong\left[q^{2 d-3}\right]:\left(\mathbb{Z}_{(q-1) /(d, q-1)} \cdot \mathbb{Z}_{q-1} \cdot \operatorname{PGL}(d-2, q)\right)
$$

such that $X_{u v}<H . O<X_{u}$. Thus, $X_{u v}$ is not a maximal subgroup of $X_{u}$, which is impossible as $X_{u}$ is primitive on $\Gamma(u)$. Thus, if $X$ is almost simple, then $d=2$.

Assume now that $X$ is of product action type. Then $X_{u} \cong T_{u}^{l} . O$ and $X_{u v} \cong T_{u v}^{l} . O$. Therefore, if $d \geq 3$, we have $X_{u v}<H^{l} . O<X_{u}$, which is impossible as $X_{u}$ is primitive on $\Gamma(u)$. So $d=2$.

For a digraph $\Gamma$ and $X \leq$ Aut $\Gamma$, the action of the vertex stabilizer $X_{v}$ on $\Gamma(v)$ may be unfaithful. As usual, the kernel of $X_{v}$ on $\Gamma(v)$ is denoted by $X_{v}^{[1]}$. Then $X_{v}^{\Gamma(v)} \cong X_{v} / X_{v}^{[1]}$.
Lemma 2.6. Let $\Gamma$ be a $Y$-locally primitive digraph with vertex set $V$. Assume that $Y$ is primitive on $V,|V|=27$, and $\operatorname{soc}(Y)=\operatorname{PSU}(4,2)$. Then $\Gamma$ is the Schläfli graph, which is a locally primitive Cayley graph of $\mathbb{Z}_{9}: \mathbb{Z}_{3}$ of valency 16 .

Proof. It is known that $Y=\operatorname{PSU}(4,2) . O$ with $O \leq \mathbb{Z}_{2}, Y$ has rank 3, and $Y_{v}=$ $\mathbb{Z}_{2}^{4}: \mathrm{A}_{5}$ or $\mathbb{Z}_{2}^{4}: \mathrm{S}_{5}$; see the Atlas [3]. Further, the two orbital graphs are the Schläfli graph $\Gamma$ and its complement, $\Sigma$ say; refer to [2]. Then $\Sigma$ has valency 10 . We claim that $\Sigma$ is not locally primitive. Suppose that $Y_{v}^{\Sigma(v)}$ is primitive. Then $Y_{v}$ is unfaithful on $\Sigma(v)$ and the kernel $Y_{v}^{[1]} \cong \mathbb{Z}_{2}^{4}$. So $Y_{v}^{\Sigma(v)} \cong \mathrm{A}_{5}$. Since $|\Sigma(v)|=10$, we conclude that $Y_{v w}^{\Sigma(v)} \cong \mathrm{S}_{3}$, where $w \in \Sigma(v)$. Hence

$$
1 \neq\left(Y_{v}^{[1]}\right)^{\Sigma(w)} \triangleleft Y_{v w}^{\Sigma(w)} \cong \mathrm{S}_{3},
$$

and thus $\left(Y_{v}^{[1]}\right)^{\Sigma(w)}$ is a normal 2-subgroup of $S_{3}$. However, $S_{3}$ has no normal 2-subgroup, which is a contradiction.

For the Schläfli graph $\Gamma, Y_{v}=\mathbb{Z}_{2}^{4}: \mathrm{A}_{5} . O$ is faithful on $\Gamma(v)$. Since $\left(Y_{v}\right)_{w} \cong \mathrm{~A}_{5} . O$ is a maximal subgroup of $Y_{v}$, where $w \in \Gamma(v), Y_{v}^{\Gamma(v)}$ is primitive. Hence $\Gamma$ is a $Y$-locally primitive graph. Further, it follows from [12] that $Y$ contains a 3-group $\mathbb{Z}_{9}: \mathbb{Z}_{3}$, which is regular on $V$, so $\Gamma$ is a $Y$-locally primitive Cayley graph of $\mathbb{Z}_{9}: \mathbb{Z}_{3}$.

The final lemma of this section shows that locally primitive digraphs of primepower order in the vertex quasiprimitive case are all Cayley graphs.
Lemma 2.7. Let $\Gamma=(V, E)$ be a connected $X$-locally primitive digraph of order $p^{n}$, where $p$ is a prime. Assume further that $X$ is quasiprimitive on $V$. Then $X$ is primitive on $V$ and has a subgroup that is regular on $V$, and $\Gamma$ is a Cayley graph. Moreover, one of the following statements holds:
(i) $\Gamma$ is a normal Cayley graph of an elementary abelian p-group, and further $\Gamma$ is undirected if and only if $p=2$;
(ii) $\Gamma=\mathbf{K}_{p^{n}}$, Aut $\Gamma=\mathrm{S}_{p^{n}}$, and either $p=2$ and $X$ is a 2-primitive affine group, or $\operatorname{soc}(X)=\operatorname{PSL}(2,11), \mathrm{M}_{11}, \mathrm{M}_{23}, \mathrm{~A}_{p^{n}}$ or $\operatorname{PSL}(2, q)$;
(iii) $\Gamma=\mathbf{K}_{p^{r}}^{\times l}$ with $l \geq 2$ and $n=r l$, and Aut $\Gamma=\mathrm{S}_{p^{r}}$ $\mathrm{S}_{l}$, and $X$ is a blow-up of a 2-primitive group as in part (ii); or
(iv) $\Gamma=\Sigma^{\times l}$, where $l \geq 1$ and $\Sigma$ is the Schläfli graph, and $\operatorname{PSU}(4,2)^{l} \triangleleft X \leq$ Aut $\Gamma=(\operatorname{PSU}(4,2) .2) \imath S_{l}$.

## In particular, all graphs $\Gamma$ that appear in parts (ii)-(iv) are undirected.

Proof. Let $N$ be a minimal normal subgroup of $X$, and let $Y=$ Aut $\Gamma$. By Theorem 2.2, $X$ is primitive on $V$, and thus $Y$ is primitive on $V$.

Suppose that $N$ is nonabelian simple. Then by Theorem 2.1 and Lemma 2.5, $N=\operatorname{PSL}(2,11), \mathrm{M}_{11}, \mathrm{M}_{23}, \operatorname{PSU}(4,2), \mathrm{A}_{p^{r}}$ or $\operatorname{PSL}(2, q)$. In the first five cases, $N$ has a regular subgroup that is isomorphic to $\mathbb{Z}_{11}, \mathbb{Z}_{11}, \mathbb{Z}_{23}, \mathbb{Z}_{9}: \mathbb{Z}_{3}$, or $\mathbb{Z}_{p}^{r}$, respectively. Suppose that $N=\operatorname{PSL}(2, q)$. If $q$ is even, then $N=\operatorname{PSL}(2, q)=\operatorname{PGL}(2, q)$ contains a regular subgroup $\mathbb{Z}_{q+1}$. If $q$ is odd, as $q+1=p^{r}$, it follows that $p=2$ and $q \equiv 3(\bmod 4)$, so $N$ contains a regular subgroup $\mathrm{D}_{q+1}$. Further, by Theorem 2.2(ii), either $\Gamma$ is a complete graph, or $\Gamma$ is the Schläfli graph, as in part (ii) or part (iv) with $l=1$, respectively. In particular, $\Gamma$ is undirected.

Suppose next that $X$ is nonabelian and nonsimple. Then by Theorem 2.2, $X^{V}$ is of product action type. Thus, $V=\Delta^{l}$ and $N=T^{l}$ with $l \geq 2$, such that $T=\operatorname{PSL}(2,11)$, $\mathrm{M}_{11}, \mathrm{M}_{23}, \operatorname{PSU}(4,2), \mathrm{A}_{p^{r}}$ or $\operatorname{PSL}(2, q)$, and $|\Delta|=11,11,23,27, p^{r}$ or $q+1$, respectively. The previous paragraph shows that $T$ has a subgroup $G$ that is regular on $\Delta$. Thus $G^{l}$ is a subgroup of $N$ and regular on $V$, and $\Gamma$ is a Cayley graph.

For a vertex $\alpha=(\delta, \ldots, \delta) \in V$, since $X_{\alpha}^{\Gamma(\alpha)}$ is primitive, we have that $\Gamma(\alpha)$ is an orbit of $X_{\alpha}$ on $V \backslash\{\alpha\}$. By Lemma 2.3, $\Gamma(\alpha)=\Delta(\delta)^{l}$, where $\Delta(\delta)$ is an orbit of $H_{\delta}$ in $\Delta \backslash\{\delta\}$. It follows that $\Gamma=\Sigma^{\times l}$. Moreover, since either $T$ is 2 -transitive on $\Delta$, or $T=\operatorname{PSU}(4,2)$, we conclude that either $\Sigma$ is a complete graph, or $\Sigma$ is the Schläfli graph, as in part (iii) or part (iv) with $l \geq 2$, respectively. In particular, $\Gamma$ is undirected.

Finally, assume that $N$ is abelian. Then $N$ is regular on $V$, and $\Gamma$ can be expressed as a Cayley graph of $N$. It follows since $\Gamma$ is $X$-locally primitive that $\Gamma$ is undirected if and only if $N$ is a 2-group. Further, by Theorem 2.2, the primitive permutation group $Y=$ Aut $\Gamma$ is affine, almost simple, or of product action type. If $Y$ is affine, then $\Gamma$ is a normal Cayley graph, as in part (i). If $Y$ is almost simple, then $Y$ is 2-transitive on $V$, as in part (ii). If $Y$ is of product action type, then $Y$ is a blow-up of the almost simple group case, as in part (iii).

## 3. Bi-quasiprimitive case

A transitive permutation group $X$ on $\Omega$ is called bi-quasiprimitive if each nontrivial normal subgroup of $X$ has at most two orbits, and there exists a normal subgroup of $X$ that has two orbits on $\Omega$. Further, $X$ is called biprimitive if $\Omega$ has a nontrivial $X$-invariant partition $\Omega=U \cup W$ such that $X_{U}=X_{W}$ is primitive on $U$ and $W$. Let $X^{+}=X_{U}=X_{W}$. Then $X^{+}$is a normal subgroup of $Y$ of index 2.

The next result, proved in [11, Theorems 1.4 and 1.5], gives some properties of bi-quasiprimitive permutation groups.

Theorem 3.1. Let $X$ be a bi-quasiprimitive permutation group on $\Omega$. Then either:
(i) $X^{+}$acts unfaithfully on $U$ and $W$; or
(ii) $X^{+}$acts faithfully on $U$ and $W$, and one of the following holds:
(a) $X^{+}$is quasiprimitive on $U$ and $W$, or
(b) $X^{+}$has two minimal normal subgroups $M_{1}$ and $M_{2}$ that are conjugate in $X$ and semiregular on $\Omega$; moreover, $\left\langle M_{1}, M_{2}\right\rangle=M_{1} \times M_{2}$ is a minimal normal subgroup of $X$ and transitive on both $U$ and $W$.

We need the following special case.
Corollary 3.2. Let $X$ be a bi-quasiprimitive permutation group on $\Omega$ with bipartition $\Omega=U \cup W$, where $|\Omega|=2^{m}$. Suppose further that $X^{+}$acts faithfully on $U$ and $W$. Then either $X^{+}$is primitive and has a subgroup that is regular on $U$ and $W$, or $X^{+}$has a normal elementary abelian 2-group that is regular on both $U$ and $W$.

Proof. If $X^{+}$is quasiprimitive on both $U$ and $W$, by Theorem $2.2, X^{+}$is primitive on both $U$ and $W$ and has a regular subgroup. If $X^{+}$is not quasiprimitive, by Theorem 3.1(ii)(b), $X^{+}$has two minimal normal subgroups $M_{1}, M_{2}$ that are semiregular on $\Omega$. Thus $M_{1}, M_{2}$ are both 2 -groups, and so $M_{1}$ and $M_{2}$ are elementary abelian 2-groups. It then follows that $\left\langle M_{1}, M_{2}\right\rangle$ is a normal elementary abelian 2-group and regular on both $U$ and $W$.

A permutation group $G \leq \operatorname{Sym}(\Omega)$ is called biregular if it is semiregular and has exactly two orbits on $\Omega$.

Lemma 3.3. Let $\Gamma=(V, E)$ be a connected undirected $X$-locally primitive graph of order $2^{n}$. Assume that $X$ is transitive and bi-quasiprimitive on $V$, associated with the bipartition $V=U \cup W$. Then $X^{+}$has a subgroup $G$ that is biregular on $V$, and one of the following statements holds:
(i) $\Gamma \cong \mathbf{K}_{2^{n-1}, 2^{n-1}}$;
(ii) $X^{+}$is faithful on both $U$ and $W$, and $G$ is an elementary normal 2-subgroup; or
(iii) $X^{+}$is faithful and primitive on both $U$ and $W$.

Proof. Since $X$ is bi-quasiprimitive on $V$, the graph $\Gamma$ is bipartite with biparts $U$ and $W$, say.

Suppose that $X^{+}$is unfaithful on $U$. Let $K_{1}$ be the kernel of $X^{+}$acting on $U$. Then $K_{1} \neq 1$ and $K_{1}$ acts faithfully on $W$. For an edge $\{\alpha, \beta\}$ of $\Gamma$, where $\alpha \in U$ and $\beta \in W$, let $B$ be the $K_{1}$-orbit of $\beta$ in $W$. Since $K_{1}$ fixes $\alpha$, we conclude that $B \subseteq \Gamma(\alpha)$. Further, as

$$
1 \neq K_{1}^{\Gamma(\alpha)} \triangleleft\left(X_{\alpha}^{+}\right)^{\Gamma(\alpha)}=X_{\alpha}^{\Gamma(\alpha)}
$$

and $X_{\alpha}^{\Gamma(\alpha)}$ is primitive, we obtain $B=\Gamma(\alpha)$. Since this holds for every vertex $\alpha$ adjacent to a vertex of $B$, by the connectivity of $\Gamma$, it is easily shown that $B=W$. It then follows that $\Gamma \cong \mathbf{K}_{2^{n-1}, 2^{n-1}}$, as in part (i). Noting that $X_{\alpha}^{\Gamma(\alpha)}$ is now a primitive permutation group of degree $2^{n-1}$, by Lemma 2.7, we have that $X_{\alpha}^{\Gamma(\alpha)}$ has a subgroup
that is regular on $\Gamma(\alpha)=W$. It follows that $K_{1}$ has a regular subgroup $G_{1}$ on $W$. Similarly, $K_{2}$ has a regular subgroup $G_{2}$ on $U$. Since $K_{1} \cong K_{2}$, we may assume that $G_{1} \cong G_{2}$. Let $\phi$ be an isomorphism between $G_{1}$ and $G_{2}$. Then $X$ has a biregular subgroup $G=\left\{\left(x, x^{\phi}\right) \mid x \in G_{1}\right\}$.

Assume now that $X^{+}$is faithful on $U$ and $W$. Then by Corollary 3.2, either $X^{+}$is primitive and has a subgroup that is regular on both $U$ and $W$, as in part (iii), or $X^{+}$ has a normal elementary abelian 2-group that is regular on both $U$ and $W$. For the latter case, by Lemma 4.2, either $\Gamma \cong \mathbf{K}_{2^{n-1}, 2^{n-1}}$, as in part (i), or $X^{+}$is faithful on both $U$ and $W$, as in part (ii).

## 4. Proof of Theorem 1.1

To prove Theorem 1.1, we need a lemma regarding the normal quotient, which is a generalization of [14, Theorem 4.1] and whose proof is easy and omitted.
Lemma 4.1. Let $\Gamma$ be an undirected $X$-locally primitive graph, and let $N \triangleleft X$ have at least three orbits on $V$. Then $\Gamma_{N}$ is $X / N$-locally primitive and $\Gamma$ is a normal cover of $\Gamma_{N}$.

A graph $\Gamma$ is called the bi-Cayley graph of a group $G$, denoted by $\operatorname{BiCay}(G, S)$, if there is a nonempty set $S$ of $G$ such that the vertex set of $\Gamma$ is $\{(g, i) \mid g \in G, i=1,2\}$; and two vertices $(g, i),(h, j)$ are adjacent if and only if $h g^{-1} \in S$ and $i \neq j$. It easily follows that $\operatorname{BiCay}(G, S)$ is the standard double cover of the Cayley graph Cay $(G, S)$, and so $\operatorname{BiCay}(G, S)=\operatorname{Cay}(G, S) \times \mathbf{K}_{2}$.
Lemma 4.2. Let $\Gamma=(V, E)$ be a connected undirected bipartite graph with biparts $U \cup W$ that is not a complete bipartite graph. Let $X=$ Aut $\Gamma$, and $X^{+}=X_{U}=X_{W}$. Suppose that $X^{+}$has a subgroup $G$ that is regular on both $U$ and $W$. Then the following statements hold:
(i) $\Gamma=\operatorname{BiCay}(G, S)=\operatorname{Cay}(G, S) \times \mathbf{K}_{2}$ for some subset $S$ of $G$;
(ii) letting $\Sigma=\operatorname{Cay}(G, S)$, we have Aut $\Sigma=X^{+}$;
(iii) if $\Gamma$ is locally primitive, then so is $\operatorname{Cay}(G, S)$; and
(iv) if $\operatorname{Cay}(G, S)$ is undirected, then $X=X^{+} \times \mathbb{Z}_{2}$, and $\Gamma$ is a Cayley graph of $G \times \mathbb{Z}_{2}$.
Proof. Since $\Gamma$ is not a complete bipartite graph, there exist vertices $u \in U$ and $w \in W$ that are not adjacent in $\Gamma$. Label the elements of $G$ as $g_{1}, g_{2}, \ldots, g_{n}$ with $g_{1}=1$. Then label the vertices in $U$ as $u_{j}=u^{g_{j}}$, and the vertices in $W$ as $w_{j}=w^{g_{j}}$, for $j=1,2, \ldots, n$. Let $S=\left\{g_{j} \in G \mid\left(u, w^{g_{j}}\right) \in E\right\}$. Then

$$
\begin{aligned}
\left\{u_{i}, w_{j}\right\} \in E & \Longleftrightarrow\left\{u^{g_{i}}, w^{g_{j}}\right\} \in E \\
& \Longleftrightarrow\left\{u, w^{g_{j} g_{i}^{-1}}\right\} \in E \\
& \Longleftrightarrow g_{j} g_{i}^{-1} \in S \\
& \Longleftrightarrow\left(g_{i}, 1\right) \sim\left(g_{j}, 2\right) \text { in } \operatorname{BiCay}(G, S)
\end{aligned}
$$

Thus, $\Gamma \cong \operatorname{BiCay}(G, S)=\operatorname{Cay}(G, S) \times \mathbf{K}_{2}$, as in part (i).

Let $\Sigma=\operatorname{Cay}(G, S)$. By definition, for any elements $g_{i}, g_{j}$ of $G$, the vertices $g_{i}, g_{j}$ of Cay $(G, S)$ are adjacent if and only if the vertices $\left(g_{i}, 1\right)$ and $\left(g_{j}, 2\right)$ of $\operatorname{BiCay}(G, S)$ are adjacent. For any permutation $x$ of $U$ and any edge $\left\{g_{i}, g_{j}\right\}$ of $\Sigma$, we have that $\left(g_{i}, 1\right)$ and $\left(g_{j}, 2\right)$ are adjacent in $\operatorname{BiCay}(G, S)$, and

$$
\begin{aligned}
x \in X^{+} & \Longleftrightarrow\left(g_{i}, 1\right)^{x} \sim\left(g_{j}, 2\right)^{x} \text { in } \operatorname{BiCay}(G, S) \\
& \Longleftrightarrow\left(g_{i}^{x}, 1\right) \sim\left(g_{j}^{x}, 2\right) \text { in } \operatorname{BiCay}(G, S) \\
& \Longleftrightarrow g_{j}^{x}\left(g_{i}^{x}\right)^{-1} \in S \\
& \Longleftrightarrow g_{i}^{x} \sim g_{j}^{x} \text { in } \operatorname{Cay}(G, S) \\
& \Longleftrightarrow x \in \operatorname{Aut} \Sigma .
\end{aligned}
$$

So $X^{+}=$Aut $\Sigma$, as in part (ii).
Identify elements $g_{i} \in G$ with points $\left(g_{i}, 1\right)$ of $U$, and identify $u$ with the identity of $G$. We have $\Sigma(u)=S=\left\{g_{j} \in G \mid\left\{u, w^{g_{j}}\right\} \in E\right\}$, and $\Gamma(w)=\left\{\left(g_{j}, 1\right) \mid g_{j} \in S\right\}$. If $\Gamma$ is locally primitive, then $X_{w}=X_{w}^{+}$acts primitively on $\Gamma(w)$. It follows that $X_{u}^{+}$ acts primitively on $\Sigma(u)$, and $\Sigma$ is $X^{+}$-locally primitive.

Finally, suppose that $\operatorname{Cay}(G, S)$ is undirected. It is easily shown that the map

$$
\tau:(g, j) \mapsto(g, 3-j), \quad \text { for } g \in G \text { and } j=1 \text { or } 2
$$

is an automorphism of $\Gamma$. Further, $\tau$ is an involution and centralizes $X^{+}$, and it then follows that $X=X^{+} \times\langle\tau\rangle \cong X^{+} \times \mathbb{Z}_{2}$.

Now, we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let $\Gamma$ be a connected undirected vertex transitive and locally primitive graph with vertex set $V$, such that $|V|=p^{n}$ with $p$ prime.

Let $X=$ Aut $\Gamma$, and let $N \triangleleft X$ be maximal subject to the condition that $N$ has at least three orbits on $V$. Let $\bar{X}=X / N$, and $V_{N}$ the set of $N$-orbits on $V$. Then $\bar{X}$ is quasiprimitive or bi-quasiprimitive on $V_{N}$. By Lemma 4.1, the normal quotient $\Gamma_{N}$ is $\bar{X}$-locally primitive, and $\Gamma$ is a normal cover of $\Gamma_{N}$.

Assume that $\bar{X}$ is quasiprimitive on $V_{N}$. Then, by Lemma 2.7, $\bar{X}$ has a subgroup $\bar{G}$ that is regular on $V_{N}$. Thus the extension $N . \bar{G}$ is regular on $V$, and $\Gamma$ is a Cayley graph. Again, by Lemma 2.7, either $\bar{G}$ is normal in $\bar{X}$, or $\Gamma_{N}=\mathbf{K}_{p^{n}}^{\times l}$ with $l \geq 2$ or $\Sigma^{\times l}$ where $l \geq 1$ and $\Sigma$ is the Schläfli graph. For the former, $N . \bar{G}$ is regular on $V$ and normal in $X=$ Aut $\Gamma$, and so $\Gamma$ is a normal Cayley graph of the 2 -group $N . \bar{G}$. For the latter, $\Gamma$ is a normal cover of $\mathbf{K}_{p^{n}}^{\times l}$ or $\Sigma^{\times l}$.

Assume that $\bar{X}$ is bi-quasiprimitive on $V_{N}$. Then $\Gamma$ is bipartite with biparts $U$ and $W$. By Lemma 3.3, $\bar{X}$ has a subgroup $\bar{G}$ that is biregular on $V_{N}$. Let $G=N \cdot \bar{G}<N \cdot \bar{X}=X$. It follows that the subgroup $G$ is biregular on $V$. Suppose that $\Gamma$ is not a complete bipartite graph. By Lemma 4.2, $\Gamma$ is a bi-Cayley graph of $G$, say $\Gamma=\operatorname{BiCay}(G, S)=\operatorname{Cay}(G, S) \times \mathbf{K}_{2}$ for some subset $S$ of $G$. Let $\Sigma=\operatorname{Cay}(G, S)$.

Then $\Sigma$ is $X^{+}$-locally primitive, and $\Sigma_{N}$ is $\bar{X}^{+}$-locally primitive. Further, $\Gamma_{N}$ and $\bar{X}$ satisfy Lemma 3.3.

If $\Gamma_{N}=\mathbf{K}_{2^{m}, 2^{m}}$, as in Lemma 3.3(i), then $\Gamma$ is a normal cover of a complete bipartite graph, as in Theorem 1.1(i). Thus assume next that $\Gamma_{N}$ is not a complete bipartite graph.

Suppose that $\bar{X}^{+}$has an elementary abelian normal 2-subgroup that is regular on $U_{N}$. Then the normal quotient $\Sigma_{N}$ is undirected, and so is Cay $(G, S)$. By Lemma 4.2, we have that $X=X^{+} \times \mathbb{Z}_{2}$, and $G \times \mathbb{Z}_{2}$ is a normal subgroup of $X$ and regular on $V$. So $\Gamma$ is a normal Cayley graph of $G \times \mathbb{Z}_{2}$, as in Theorem 1.1(ii).

Suppose that $\bar{X}^{+}$is a primitive permutation group on $U_{N}$ that is almost simple or of product action type. By Lemma 2.7, the quotient $\Sigma_{N}$ is $\mathbf{K}_{p^{r}}^{\times l}$, and so they are undirected. Thus $\Sigma$ is undirected, and by Lemma 4.2, $X=X^{+} \times \mathbb{Z}_{2}$. So $G \times \mathbb{Z}_{2}<X$ is regular on $V$, and $\Gamma$ is a Cayley graph of $G \times \mathbb{Z}_{2}$.

## References

[1] N. Biggs, Algebraic Graph Theory, 2nd edn (Cambridge University Press, New York, 1992).
[2] A. E. Brouwer and H. A. Wilbrink, 'Ovoids and fans in the generalized quadrangle GQ(4, 2)', Geom. Dedicata 36 (1990), 121-124.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups (Oxford University Press, London, 1985).
[4] J. D. Dixon and B. Mortimer, Permutation Groups (Springer, Berlin, 1996).
[5] R. M. Guralnick, 'Subgroups of prime power index in a simple group', J. Algebra 225 (1983), 304-311.
[6] B. Huppert, Finite Groups (Springer, Berlin, 1967).
[7] A. A. Ivanov and C. E. Praeger, 'On finite affine 2-arc transitive graphs', European J. Combin. 14 (1993), 421-444.
[8] C. H. Li, 'Finite $s$-arc transitive graphs of prime-power order', Bull. London Math. Soc. 33 (2001), 129-137.
[9] , 'The finite primitive permutation groups containing an abelian regular subgroup', Proc. London Math. Soc. 87 (2003), 725-748.
[10] , 'Finite edge-transitive Cayley graphs and rotary Cayley maps', Trans. Amer. Math. Soc. 358 (2006), 4605-4635.
[11] C. H. Li, C. E. Praeger, A. Venkatesh and S. Zhou, 'Finite locally-primitive graphs', Discrete Math. 246 (2002), 197-218.
[12] M. W. Liebeck, C. E. Praeger and J. Saxl, On regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc. to appear.
[13] C. E. Praeger, 'Primitive permutation groups with a doubly transitive subconstituent', J. Austral. Math. Soc. Ser. A 45 (1988), 66-77.
[14] -, 'On the O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs', J. London. Math. Soc. 47 (1992), 227-239.
[15] ——, 'Finite normal edge-transitive Cayley graphs', Bull. Austral. Math. Soc. 60 (1999), 207-220.
[16] M. Y. Xu, 'Automorphism groups and isomorphisms of Cayley digraphs', Discrete Math. 182 (1998), 309-319.

CAI HENG LI, School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
e-mail: li@maths.uwa.edu.au
JIANGMIN PAN, Department of Mathematics, Yunnan University, Kunming 650031, PR China
e-mail: jmpan@ynu.edu.cn
LI MA, Department of Mathematics, Yunnan University, Kunming 650031, PR China


[^0]:    This work forms a part of the PhD project of Jiangmin Pan. It was partially supported by a NNSF and an ARC Discovery Project Grant.

