HOMOLOGY OF DELETED PRODUCTS OF CONTRACTIBLE 2-DIMENSIONAL POLYHEDRA. III

C. W. PATTY

1. Introduction. Our aim in this paper is to continue our investigation of the homology of deleted products of finite, contractible, 2 -dimensional polyhedra. In [1], we observed that if X is such a polyhedron, then a homeomorph of X can be constructed by starting with a 2 -simplex and appending n-simplexes ($n=1,2$). In this paper, we are concerned with those polyhedra which have the property that if they are constructed as above, then at some stage we are forced to add to X_{i-1} a 2 -simplex τ at two of its 1 -faces, $\left\langle u_{3}, u_{1}\right\rangle$ and $\left\langle u_{3}, u_{2}\right\rangle$, where there is a simple closed curve S in $\partial\left(\operatorname{St}\left(u_{3}, X_{i-1}\right)\right)$ such that u_{1} and u_{2} are not in S but every sequence of 1 -simplexes in $\partial\left(\operatorname{St}\left(u_{3}, X_{i-1}\right)\right)$ from u_{1} to u_{2} intersects S. The cone over the complete graph on five vertices and the cone over the houses-and-wells figure are examples of such spaces.

Acknowledgements. I wish to express my appreciation to A. H. Copeland, Jr. for valuable communications concerning spaces which have the above property. I am also indebted to the referee for many suggestions which resulted in a shorter and more readable paper.
2. Notation. The notation introduced in $[\mathbf{1 ; 2}]$ is used in this paper. We shall use the notation " \simeq " for having the same homotopy type, and $S^{2} \vee S^{2}$ will denote the union of two 2 -spheres with a single point in common. Also we shall denote $A-\bigcup_{i=1}^{n} \operatorname{St}\left(u_{i}, A\right)$ by $A\left[u_{1}, \ldots, u_{n}\right]$ and

$$
\mathrm{Cl}\left(\mathrm{St}\left(u_{m}, A\right)\right)-\bigcup_{i=1}^{n} \operatorname{St}\left(u_{i}, A\right)
$$

by $A\left[u_{m} \mid u_{1}, \ldots, u_{n}\right]$. We shall also use the map $\rho: X \times X \rightarrow X \times X$ defined by $\rho(x, y)=(y, x)$.

Throughout this paper, with the exception of § 4, we assume that A is a finite, contractible, 2 -dimensional polyhedron such that A^{*} is connected, B is a 2 -simplex, $A \cap B=s_{1} \cup s_{2}$, where s_{1} and s_{2} are 1 -simplexes of A and $B, s_{1} \cap s_{2}=\left\{u_{3}\right\}, X=A \cup B$, and if u_{i} is the vertex of s_{i} different from u_{3}, then there is a simple $\operatorname{arc} \operatorname{in} \partial\left(\operatorname{St}\left(u_{3}, A\right)\right)$ joining u_{1} to u_{2}.

3. One way of adding 3-dimensional homology.

Definition 1. If S is a simple closed curve in $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)$ such that neither

[^0]u_{1} nor u_{2} are in S but every simple arc in $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)$ joining u_{1} to u_{2} meets S, then we say that A has property P at u_{3} with respect to $\left(S, u_{1}, u_{2}\right)$ provided:
(1) there is a simple arc R in $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)$ joining u_{1} to u_{2} such that if $R_{1}, R_{2}, \ldots, R_{q}$ are the components of the subset of R consisting of those 1 -simplexes of R which meet S, then, for each $i=1,2, \ldots, q$, there is an arc $R_{i}{ }^{\prime}$ in the 1 -skeleton of $A\left[u_{3}\right]$ from the first vertex of R_{i} to the last vertex of R_{i} such that $R_{i} \cup R_{i}{ }^{\prime}$ bounds a 2 -chain c_{i} in $A\left[u_{3}\right]$, and
(2) there is a simple closed curve S^{\prime} in the 1 -skeleton of $A\left[u_{3}\right]$ such that S^{\prime} is disjoint from R and c_{i} for any i and $S \cup S^{\prime}$ bounds a 2 -chain d in $A\left[u_{3}\right]$, where $d \cap R_{i}{ }^{\prime}=\emptyset$ for each i and d is disjoint from a 1 -simplex r_{i} of R if $r_{i} \cap S=\emptyset$.

Let s denote the 1 -face of B which is not in A. Then, if

$$
\Gamma=\left(A\left[u_{1}, u_{2}, u_{3}\right] \times B\right) \cup\left(A\left[u_{3} \mid u_{1}, u_{2}\right] \times s\right),
$$

we have $P\left(X^{*}\right)=P\left(A^{*}\right) \cup \Gamma \cup \rho(\Gamma)$.
Theorem 1. If A has property P at u_{3} with respect to $\left(S, u_{1}, u_{2}\right)$ and z is the 2-cycle which assigns to each 2-cell in $\left(\left(S * u_{3}\right) \times\left[\left\langle u_{1}\right\rangle \cup\left\langle u_{2}\right\rangle\right]\right) \cup(S \times s)$ either ± 1, then z bounds in $P\left(A^{*}\right) \cup\left(A\left[u_{1}, u_{2}, u_{3}\right] \times B\right)$.

Proof. There is a 3 -chain associated with the subset

$$
\begin{aligned}
& {[S \times B] \cup\left[d \times\left(s_{1} \cup s_{2}\right)\right] \cup\left[S^{\prime} \times\left(\left(u_{3} * R\right) \cup \bigcup_{\alpha=1}^{q} c_{\alpha}\right)\right]} \\
& \cup\left[\left(d \cup\left(S * u_{3}\right)\right) \times\left(\bigcup_{\alpha=1}^{q} R_{\alpha}^{\prime} \cup \cup\left\{r \mid r \text { is a 1-simplex of } R-\bigcup_{\alpha=1}^{q} R_{\alpha}\right\}\right)\right]
\end{aligned}
$$

of $P\left(A^{*}\right) \cup\left(A\left[u_{1}, u_{2}, u_{3}\right] \times B\right)$ whose boundary is z.
It may happen that A does not have property P at u_{3} with respect to (S, u_{1}, u_{2}) but the 2 -cycle z which assigns to each 2 -cell in

$$
\left(\left(S * u_{3}\right) \times\left[\left\langle u_{1}\right\rangle \cup\left\langle u_{2}\right\rangle\right]\right) \cup(S \times s)
$$

either ± 1 still bounds in $P\left(A^{*}\right) \cup\left(A\left[u_{1}, u_{2}, u_{3}\right] \times B\right)$.
4. Some results from a previous paper. If we examine [1, the proofs of Theorems 9 and 14], we observe that we have proved the following theorem.

Theorem 2. Let A be a finite, contractible, 2-dimensional polyhedron such that A^{*} is connected, and let X be the polyhedron obtained from A by adding a 2-simplex $B=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$.
(i) If $A \cap B=\left\langle u_{1}, u_{2}\right\rangle$ and $\partial\left(\operatorname{St}\left(\left\langle u_{1}, u_{2}\right\rangle, A\right)\right)$ is contractible, then $X^{*} \simeq A^{*}$.
(ii) If $A \cap B=\left\langle u_{1}, u_{3}\right\rangle \cup\left\langle u_{2}, u_{3}\right\rangle$ and $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)-\cup_{i=1}^{2} \operatorname{St}\left(u_{i}, A\right)$ is contractible, then $X^{*} \simeq A^{*}$.

5. The cone over the houses-and-wells figure. If

$$
Y=\bigcup_{2 \leqq i, j \leqq 4}\left\langle v_{1}, v_{i}, v_{j+3}\right\rangle,
$$

then Y is the cone over the houses-and-wells figure. In this section, we calculate
the homotopy type of the deleted product of this cone, and we examine the effect on the homology groups of the deleted product when the 2 -simplex B is added to A and $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right) \cup s$ contains a houses-and-wells figure which contains s, where s is the 1 -face of B which is not in A.

Let $X_{0}=\bigcup_{i=2}^{4}\left\langle v_{1}, v_{i}, v_{5}\right\rangle, B_{i}=\left\langle v_{1}, v_{i+1}, v_{6}\right\rangle, 1 \leqq i \leqq 3$, and

$$
B_{j}=\left\langle v_{1}, v_{j-2}, v_{7}\right\rangle, 4 \leqq j \leqq 6
$$

Inductively, we define $X_{i}=X_{i-1} \cup B_{i}, 1 \leqq i \leqq 6$. We note that $Y=X_{6}$. Then we shall prove the following result.

Theorem 3. $X_{i}{ }^{*} \simeq S^{2}(i \neq 4,6), X_{4}{ }^{*} \simeq S^{2} \vee S^{2} \vee S^{2}$, and $X_{6}{ }^{*}=Y^{*} \simeq S^{3}$.
Proof. That $X_{i}{ }^{*} \simeq S^{2}, 0 \leqq i \leqq 3$, follows easily from Theorem 2. To determine $X_{4}{ }^{*}$, let $C_{1}=X_{3}\left[v_{1}, v_{2}\right] \times B_{4}, \quad C_{2}=X_{3}\left[v_{2} \mid v_{1}\right] \times\left\langle v_{1}, v_{7}\right\rangle, \quad C_{3}=$ $X_{3}\left[v_{1} \mid v_{2}\right] \times\left\langle v_{2}, v_{7}\right\rangle, C_{4}=\mathrm{Cl}\left(\operatorname{St}\left(\left\langle v_{1}, v_{2}\right\rangle, X_{3}\right)\right) \times\left\langle v_{7}\right\rangle$, and $C=C_{1} \cup \ldots \cup C_{4}$. Then $P\left(X_{4}{ }^{*}\right)=P\left(X_{3}{ }^{*}\right) \cup C \cup \rho(C)$. It is easy to see that

$$
M=P\left(X_{3}{ }^{*}\right) \cup C_{1} \cup C_{2} \cup C_{3} \simeq X_{3}{ }^{*}
$$

Since $M \cap C_{4}$ is a circle which bounds a disk in M, we see that $M \cup C_{4} \simeq$ $S^{2} \vee S^{2}$. By repeating essentially the same argument, we can prove that $X_{4}{ }^{*} \simeq S^{2} \vee S^{2} \vee S^{2}$. Next, to determine X_{5}^{*}, let $D_{1}=X_{4}\left[v_{1}, v_{3}, v_{7}\right] \times B_{5}$, $D_{2}=X_{4}\left[v_{1} \mid v_{3}, v_{7}\right] \times\left\langle v_{3}, v_{7}\right\rangle$, and $D=D_{1} \cup D_{2}$. Then

$$
P\left(X_{5}^{*}\right)=P\left(X_{4}^{*}\right) \cup D \cup \rho(D)
$$

It is easy to see that $N=P\left(X_{4}{ }^{*}\right) \cup D_{1} \simeq X_{4}{ }^{*}$. Since $N \cap D_{2}$ is a 2 -sphere which bounds in D_{2} and $\left[\left\langle v_{2}, v_{5}\right\rangle \cup\left\langle v_{2}, v_{6}\right\rangle \cup\left\langle v_{4}, v_{5}\right\rangle \cup\left\langle v_{4}, v_{6}\right\rangle\right] \times\left\langle v_{1}, v_{3}, v_{7}\right\rangle$ is a 3 -dimensional set which fills up the space between the above 2 -sphere and the 2 -sphere

$$
\begin{aligned}
&\left\langle\left[\left\langle v_{1}, v_{2}, v_{5}\right\rangle \cup\left\langle v_{1}, v_{2}, v_{6}\right\rangle \cup\left\langle v_{1}, v_{4}, v_{5}\right\rangle \cup\left\langle v_{1}, v_{4}, v_{6}\right\rangle\right] \times\left[\left\langle v_{3}\right\rangle \cup\left\langle v_{7}\right\rangle\right]\right) \\
& \cup\left(\left[\left\langle v_{2}, v_{5}\right\rangle \cup\left\langle v_{2}, v_{6}\right\rangle \cup\left\langle v_{4}, v_{5}\right\rangle \cup\left\langle v_{4}, v_{6}\right\rangle\right] \times\left[\left\langle v_{1}, v_{3}\right\rangle \cup\left\langle v_{1}, v_{7}\right\rangle\right]\right)
\end{aligned}
$$

which is "one of the three 2 -spheres comprising $X_{4}{ }^{*}{ }^{* \prime}$, we see that $N \cup D_{2} \simeq$ $S^{2} \vee S^{2}$. By repeating essentially the same argument, we can prove that $X_{5}{ }^{*} \simeq S^{2}$. Next, to determine $X_{6}{ }^{*}$, let $E_{1}=X_{5}\left[v_{1}, v_{4}, v_{7}\right] \times B_{6}, E_{2}=$ $X_{5}\left[v_{1} \mid v_{4}, v_{7}\right] \times\left\langle v_{4}, v_{7}\right\rangle$, and $E=E_{1} \cup E_{2}$. Then $P\left(X_{6}{ }^{*}\right)=P\left(X_{5}^{*}\right) \cup E \cup \rho(E)$. It is easy to see that $Q_{1}=P\left(X_{5}^{*}\right) \cup E_{1} \simeq X_{5}{ }^{*}$. Now $Q_{1} \cap E_{2}$ is a 2-sphere. It is clear that this 2 -sphere bounds in E_{2}, and this 2 -sphere is essentially "the 2 -sphere in $X_{5}{ }^{*}$ ". Therefore $Q_{2}=Q_{1} \cup E_{2}$ is contractible. It is easy to see that $Q_{3}=Q_{2} \cup \rho\left(E_{1}\right)$ is contractible. Since $Q_{3} \cap \rho\left(E_{2}\right)$ is a 2-sphere and both of the spaces that we have put together in order to get this 2 -sphere are contractible, the resulting space, namely Y^{*}, has the homotopy type of S^{3}.

Theorem 4. If $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right) \cup\left\langle u_{1}, u_{2}\right\rangle$ contains a houses-and-wells figure F and S is the unique simple closed curve in F that does not meet $\left\langle u_{1}, u_{2}\right\rangle$, then the

2-cycle z which assigns to each 2-cell in $\left(\left[\left\langle u_{1}\right\rangle \cup\left\langle u_{2}\right\rangle\right] \times\left(S * u_{3}\right)\right) \cup(s \times S)$ either ± 1 bounds in
$L=P\left(A^{*}\right) \cup\left(A\left[u_{1}, u_{2}, u_{3}\right] \times B\right) \cup\left(A\left[u_{3} \mid u_{1}, u_{2}\right] \times s\right) \cup\left(B \times A\left[u_{1}, u_{2}, u_{3}\right]\right)$.
Proof. We may assume that S consists of four arcs r_{1}, \ldots, r_{4} and four vertices u_{4}, \ldots, u_{7} such that $r_{i} \cap r_{i+1}=u_{i+4}, 1 \leqq i \leqq 3$, and $r_{4} \cap r_{1}=u_{4}$. Further, we may assume that there are four $\operatorname{arcs} s_{1}, \ldots, s_{4}$ such that $F=\bigcup_{i=1}^{4}\left(r_{i} \cup s_{i}\right) \cup\left\langle u_{1}, u_{2}\right\rangle, s_{i} \cap S=u_{i+3}, 1 \leqq i \leqq 4$, and $s_{i} \cap s_{i+2}=u_{i}$, $i=1,2$, and $s_{i} \cap s_{\jmath}=\emptyset$ for $|i-j| \neq 2$. Let $R_{i}=\left[r_{i+2} \cup s_{i+2} \cup s_{i+3}\right] \times$ $\left(r_{i} * u_{3}\right), 1 \leqq i \leqq 4$, and $S_{i}=\left[r_{i+1} \cup r_{i+2} \cup s_{i+1} \cup s_{i+3}\right] \times\left(s_{i} * u_{3}\right), 1 \leqq i \leqq 4$, where indices are taken modulo 4 . Then it is clear that there is a 3 -chain associated with the subset

$$
\bigcup_{i=1}^{4}\left[\left(R_{i} \cup S_{i}\right) \cup \rho\left(R_{i} \cup S_{i}\right) \cup\left(\left(r_{i} * u_{3}\right) \times s\right) \cup\left(r_{i} \times B\right) \cup_{\rho}\left(r_{i} \times B\right)\right]
$$

of L whose boundary is z.

6. The cone over the complete graph on five vertices. If

$$
Y=\bigcup_{2 \leqq i<j \leqq 6}\left\langle v_{1}, v_{i}, v_{j}\right\rangle,
$$

then Y is the cone over the complete graph on five vertices. In this section, we calculate the homotopy type of the deleted product of this cone, and we examine the effect on the homology groups of the deleted product when the 2 -simplex B is added to A and $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right) \cup s$ contains a complete graph on five vertices.

Let $X_{0}=\bigcup_{i=3}^{5}\left\langle v_{1}, v_{2}, v_{i}\right\rangle, \quad B_{1}=\left\langle v_{1}, v_{2}, v_{6}\right\rangle, \quad B_{i}=\left\langle v_{1}, v_{3}, v_{i+2}\right\rangle, 2 \leqq i \leqq 4$, $B_{j}=\left\langle v_{1}, v_{4}, v_{j}\right\rangle, \quad j=5,6$, and $B_{7}=\left\langle v_{1}, v_{5}, v_{6}\right\rangle$. Inductively, we define $X_{i}=X_{i-1} \cup B_{i}, 1 \leqq i \leqq 7$. We note that $Y=X_{7}$. Then we shall prove the following result.

Theorem 5. $X_{0}{ }^{*} \simeq S^{2}, X_{i}^{*} \simeq S^{2} \vee S^{2} \vee S^{2} \vee S^{2} \vee S^{2}, 1 \leqq i \leqq 4, X_{3}^{*} \simeq$ $S^{2} \vee S^{2} \vee S^{2}, X_{6}{ }^{*} \simeq S^{2}$, and $X_{7}{ }^{*}=Y^{*} \simeq S^{3}$.

Proof. By [2, Theorem 3], $X_{0}{ }^{*} \simeq S^{2}$. To determine $X_{1}{ }^{*}$, let

$$
\begin{array}{ll}
C_{1}=X_{0}\left[v_{1}, v_{2}\right] \times B_{1}, & C_{2}=X_{0}\left[v_{2} \mid v_{1}\right] \times\left\langle v_{1}, v_{6}\right\rangle, \\
C_{3}=X_{0}\left[v_{1} \mid v_{2}\right] \times\left\langle v_{2}, v_{6}\right\rangle, & C_{4}=\mathrm{Cl}\left(\operatorname{St}\left(\left\langle v_{1}, v_{2}\right\rangle, X_{0}\right)\right) \times\left\langle v_{6}\right\rangle,
\end{array}
$$

and $C=C_{1} \cup \ldots \cup C_{4}$. Then $P\left(X_{1}{ }^{*}\right)=P\left(X_{0}{ }^{*}\right) \cup C \cup \rho(C)$. It is easy to see that $M=P\left(X_{0}{ }^{*}\right) \cup C_{1} \cup C_{2} \cup C_{3} \simeq S^{2}$. Since $M \cap C_{4}$ is the union of two circles, both of which bound in M, it is easy to see that $M \cup C_{4} \simeq$ $S^{2} \vee S^{2} \vee S^{2}$. By essentially repeating the same argument, we can prove that

$$
X_{1}^{*} \simeq S^{2} \vee S^{2} \vee S^{2} \vee S^{2} \vee S^{2}
$$

That $X_{i}{ }^{*} \simeq S^{2} \vee S^{2} \vee S^{2} \vee S^{2} \vee S^{2}, \quad 2 \leqq i \leqq 4$, follows easily from

Theorem 2. Next, to determine X_{0}^{*}, let

$$
D_{1}=X_{4}\left[v_{1}, v_{4}, v_{5}\right] \times B_{5}, \quad D_{2}=X_{4}\left[v_{1} \mid v_{4}, v_{5}\right] \times\left\langle v_{4}, v_{5}\right\rangle,
$$

and $D=D_{1} \cup D_{2}$. Then $P\left(X_{5}{ }^{*}\right)=P\left(X_{4}{ }^{*}\right) \cup D \cup \rho(D)$. It is easy to see that $N=P\left(X_{4}{ }^{*}\right) \cup D_{1} \simeq X_{4}{ }^{*}$. Since $N \cap D_{2}$ is a 2 -sphere which bounds in D_{2} and

$$
\begin{aligned}
\left(\left[\left\langle v_{3}, v_{6}\right\rangle \cup\left\langle v_{2}, v_{6}\right\rangle \cup\left\langle v_{2}, v_{3}\right\rangle\right] \times B_{5}\right) \cup & \cup\left(\left\langle v_{3}, v_{6}\right\rangle \times\left[\left\langle v_{1}, v_{2}, v_{4}\right\rangle \cup\left\langle v_{1}, v_{2}, v_{5}\right\rangle\right]\right) \\
& \cup\left(\left\langle v_{1}, v_{3}, v_{6}\right\rangle \times\left[\left\langle v_{2}, v_{4}\right\rangle \cup\left\langle v_{2}, v_{5}\right\rangle\right]\right)
\end{aligned}
$$

is a 3 -dimensional set which "fills up the space between the above 2 -sphere and one of the five 2 -spheres comprising $X_{4}{ }^{* \prime \prime}$, we see that

$$
N \cup D_{2} \simeq S^{2} \vee S^{2} \vee S^{2} \vee S^{2}
$$

By essentially repeating the same argument, we can prove that $X_{5}{ }^{*} \simeq$ $S^{2} \vee S^{2} \vee S^{2}$. The proof that $X_{6}{ }^{*} \simeq S^{2}$ is essentially the same as the proof that $X_{5}{ }^{*} \simeq S^{2} \vee S^{2} \vee S^{2}$. Finally, the proof that $X_{7}{ }^{*} \simeq S^{3}$ is essentially the same as the proof that $X_{6}{ }^{*} \simeq S^{3}$ in the proof of Theorem 3.

Theorem 6. If $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right) \cup\left\langle u_{1}, u_{2}\right\rangle$ contains a complete graph F on five vertices and S is the unique simple closed curve in F that does not meet $\left\langle u_{1}, u_{2}\right\rangle$, then the 2-cycle z which assigns to each 2-cell in

$$
\left(\left[\left\langle u_{1}\right\rangle \cup\left\langle u_{2}\right\rangle\right] \times\left(S * u_{3}\right)\right) \cup(s \times S)
$$

either ± 1 bounds in

$$
\begin{aligned}
L=P\left(A^{*}\right) \cup\left(A\left[u_{1}, u_{2}, u_{3}\right] \times B\right) \cup\left(A\left[u_{3} \mid u_{1}, u_{2}\right] \times s\right) & \\
& \cup\left(B \times A\left[u_{1}, u_{2}, u_{3}\right]\right) .
\end{aligned}
$$

Proof. We may assume that S consists of three arcs r_{1}, r_{2}, r_{3} and three vertices u_{4}, u_{5}, u_{6} such that $r_{i} \cap r_{i+1}=u_{i+3}, i=1,2$, and $r_{3} \cap r_{1}=u_{6}$. Further, we may assume that there are six $\operatorname{arcs} s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}$ such that $F=\cup_{i=1}^{3}\left(r_{i} \cup s_{i} \cup t_{i}\right) \cup\left\langle u_{1}, u_{2}\right\rangle, \quad s_{i} \cap S=t_{i} \cap S=u_{i+3}, \quad 1 \leqq i \leqq 3$, $s_{i} \cap s_{j}=u_{1}, \quad 1 \leqq i<j \leqq 3, \quad t_{i} \cap t_{j}=u_{2}, \quad 1 \leqq i<j \leqq 3, \quad s_{i} \cap t_{i}=u_{i+3}$, $1 \leqq i \leqq 3$, and $s_{i} \cap t_{j}=\emptyset$ for $|i-j|>0$. Let $R_{i}=\left[s_{i+1} \cup t_{i+1}\right] \times\left(r_{i} * u_{3}\right)$, $1 \leqq i \leqq 3, S_{i}=\left[r_{i+2} \cup t_{i+1} \cup t_{i+2}\right] \times\left(s_{i} * u_{3}\right), 1 \leqq i \leqq 3$, and

$$
T_{i}=\left[r_{i+2} \cup s_{i+1} \cup s_{i+2}\right] \times\left(t_{i} * u_{3}\right), \quad 1 \leqq i \leqq 3
$$

where indices are taken modulo 3 . Then it is clear that there is a 3 -chain associated with the subset

$$
\begin{aligned}
& \bigcup_{i=1}^{3}\left[\left(R_{i} \cup S_{i} \cup T_{i}\right) \cup \rho\left(R_{i} \cup S_{i} \cup T_{i}\right) \cup\left(\left(r_{i} * u_{3}\right) \times s\right)\right] \\
& \cup(B \times S) \cup(S \times B)
\end{aligned}
$$

of L whose boundary is z.
7. A lower bound for the 3-dimensional homology. Let \mathscr{F} be the set consisting of the subsets of $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right) \cup\left\langle u_{1}, u_{2}\right\rangle$ which contain $\left\langle u_{1}, u_{2}\right\rangle$ and are either PL-homeomorphs of the houses-and-wells figure or PL-homeomorphs of the complete graph on five vertices.

The following simple closed curves in $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)-\left\{u_{1}, u_{2}\right\}$ play a crucial role in the addition of 3 -dimensional homology:
(1) those simple closed curves S which have the property that there is a simple arc in $\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)$ joining u_{1} to u_{2} which does not meet S;
(2) those simple closed curves S such that A has property P at u_{3} with respect to $\left(S, u_{1}, u_{2}\right)$;
(3) those simple closed curves lying opposite $\left\langle u_{1}, u_{2}\right\rangle$ in some $F \in \mathscr{F}$.

We call a simple closed curve described in (1), (2), and (3) above, a simple closed curve of Types (1), (2), and (3), respectively.

Define $W\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right)$ to be the subgroup of

$$
H_{1}\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)-\left\{u_{1}, u_{2}\right\}\right)
$$

generated by simple closed curves of Types (1), (2), and (3). Define $W_{0}\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right)$ to be the subgroup of $H_{1}\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right)-\left\{u_{1}, u_{2}\right\}\right)$ generated by simple closed curves of Types (1) and (2). Set

$$
D\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right)=\operatorname{rank} W\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right)
$$

and

$$
E\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right)=\operatorname{rank} W_{0}\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right) .
$$

Theorem 7.

$$
\beta_{3}\left(X^{*}\right) \geqq \beta_{3}\left(A^{*}\right)+D\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right)+E\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right) .
$$

Proof. Let $E_{1}=\left(\left(S * u_{3}\right) \times\left[\left\langle u_{1}\right\rangle \cup\left\langle u_{2}\right\rangle\right]\right) \cup(S \times s), E_{2}=A\left[u_{1}, u_{2}, u_{3}\right] \times B$, and $E_{3}=A\left[u_{3} \mid u_{1}, u_{2}\right] \times s$. If S is a simple closed curve of Type (1), then, by [1, Theorem 11], every 2 -cycle in E_{1} bounds in $P\left(A^{*}\right) \cup E_{2}$. If S is a simple closed curve of Type (2), then, by Theorem 1, every 2-cycle in E_{1} bounds in $P\left(A^{*}\right) \cup E_{2}$. In each case, it is clear that every 2 -cycle in E_{1} bounds in E_{3}. Therefore

$$
\beta_{3}\left(P\left(A^{*}\right) \cup E_{2} \cup E_{3}\right) \geqq \beta_{3}\left(A^{*}\right)+E\left(\partial\left(\operatorname{St}\left(u_{3}, A\right)\right),\left\langle u_{1}, u_{2}\right\rangle\right)
$$

Again, by [1, Theorem 11], if S is a simple closed curve of Type (1), then every 2 -cycle in $\rho\left(E_{1}\right)$ bounds in $\Gamma=P\left(A^{*}\right) \cup E_{2} \cup E_{3} \cup \rho\left(E_{2}\right)$, and, by Theorem 1, if S is a simple closed curve of Type (2), then every 2-cycle in $\rho\left(E_{1}\right)$ bounds in Γ. Now if S is a simple closed curve lying opposite $\left\langle u_{1}, u_{2}\right\rangle$ in $F \in \mathscr{F}$, where F is a PL-homeomorph of the houses-and-wells figure, then, by Theorem 4, every 2 -cycle in $\rho\left(E_{1}\right)$ bounds in Γ. Finally, if S is a simple closed curve lying opposite $\left\langle u_{1}, u_{2}\right\rangle$ in $F \in \mathscr{F}$, where F is a PL-homeomorph of the complete graph on five vertices, then, by Theorem 6, every 2 -cycle in $\rho\left(E_{1}\right)$ bounds in Γ. In each of these four cases, it is clear that every 2 -cycle in $\rho\left(E_{1}\right)$ bounds in $\rho\left(E_{3}\right)$. This completes the proof of the theorem.

References

1. C. W. Patty, Homology of deleted products of contractible 2-dimensional polyhedra. I, Can. J. Math. 20 (1968), 416-441.
2. Homology of deleted products of contractible 2-dimensional polyhedra. II, Can. J. Math. 20 (1968), 842-854.

Virginia Polytechnic Institute and State University, Blacksburg, Virginia

[^0]: Received March 23, 1970 and in revised form, July 8, 1970. This research was supported by NSF grants GP-7943 and GP-15357.

