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Abstract

Let 2 be a Radon measure on RY which may be non doubling. The only condition that i must satisfy
is the size condition u(B(x, r)) < Cr” for some fixed n € (0, d]. Recently, Tolsa introduced the spaces
RBMO(u) and Hal,',,°°(p,), which, in some ways, play the role of the classical spaces BMO and H' in case
u is a doubling measure. In this paper, the author considers the local versions of the spaces RBMO(u)
and H a’,’f(u) in the sense of Goldberg and establishes the connections between the spaces RBMO(y) and
HL2 (1) with their local versions. An interpolation result of linear operators is also given.
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1. Introduction

In the whole paper we assume that d € N and 0 < n < d. We also assume pu is a
(positive) Radon measure on R satisfying the growth condition

(L.1) n(B(x, r)) < Gr"

for all x € supp 1 and r > 0. We do not assume that u is doubling.
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The doubling condition on 4 is an essential assumption in most results of classical
function spaces, Calderon-Zygmund theory and so on. However, recently it has been
shown that many results in the classical Calder6n-Zygmund theory and the classical
Hardy and BMO spaces also hold without the doubling assumption; see [8-16] and
their references. In particular, Tolsa in [13] introduced the spaces RBMO(u) and
H (1) and proved that these spaces have properties similar to ones of the classical
spaces BMO and H' defined for doubling measures and are useful in the study of
the L? (1) boundedness of Calderdn-Zygmund operators without assuming doubling
conditions; see also [14, 15].

The purpose of this paper is to consider the local versions of the spaces RBMO(11)
and H;,',,°°(;L) in the sense of Goldberg [4] by using ideas coming from [13]. The
organization of this paper is as follows. In Section 2, we introduce the local version,
rbmo(u), of the space RBMO(y) in [13] and then give some basic properties including
several equivalent definitions of this local space. By using these properties, we
establish the John-Nirenberg’s inequality for the functions in the space rbmo(u). In
Section 3 we introduce the local version, h‘l,;,‘,”(p,), of the space H;,‘,;” (n) in [13]
and we then prove the dual space of the space hf,;,‘,”(,u.) is just the space rbmo(u).
An interpolation result of linear operators is given in Section 4, which states that
if a linear operator T is bounded from hL3°(u) into L'(u) and from L*®(u) into
rbmo(u), then T is also bounded on L? (1) for p € (1, 00). In Section 5, we establish
the connections between the spaces RBMO(1.) and H,,l,',,°° (u) and their local spaces,
rbmo(u) and h,i;§° (), respectively. Finally, in Section 6, we give some remarks on
our results in case u is doubling. Even in this case, our result is also new.

Let us now introduce some basic notation. By a cube @ C R9, we mean a closed
cube centered at some point in supp 1 with sides parallel to the axes. Its side length
is denoted by /(Q) and its center by zp. Given p > 0, we denote by p Q the cube
concentric with Q with side length pl( Q).

DEFINITION 1.1. Given @ > 1 and B > «”, we say that the cube Q C R? is
(a, B)-doubling if u(a Q) < fu(Q).

As shown in [13], due to the fact that p satisfies the growth condition (1.1), there
are a lot of ‘big’ doubling cubes. To be precise, given any point x € supp ¢ and ¢ > 0,
there exists some (a, 8)-doubling cube Q centered at x with [( Q) > ¢, which follows
from (1.1) and the fact that 8 > «”.

On the other hand, if 8 > a”, then for u-a.e. x € RY, there exists a sequence of
(a, B)-doubling cubes { Qi } centered at x with [(Q;) — 0 as k — 00; see also [13].
So there are a lot of ‘small’ doubling cubes too.

In the following, for any p > 1, we denote by B, one of these big constants 8. For
definiteness, one can assume that 8, is twice the infimum of these 8’s.

Recall that given two cubes Q C R, Qg stands for the smallest cube concentric
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with Q containing R. Without assuming Q C R, we denote by Qg the smallest cube
concentric with Q containing @ and R.

DEFINITION 1.2. Consider two cubes Q, R C R?. We denote

1 1
8(Q, R) = max </ ——du(x), ——du(x)).
oo X — zgl" Ro\R 1X — Zg|"

Notice that I(Qg) ~ I(Rp) ~ I(Q) + I(R) + dist(Q, R), and if @ C R, then
Rgp = Rand I(R) < I(Qr) < 2I(R).

3(Q, R) was first introduced by Tolsa in [13]; see also [14, 15].

Throughout the paper, the letter C is used for non-negative constants that may
change from one occurrence to another. Constants with subscripts, such as C;, do not
change in different occurrences. For any cube @ C R, we write Kg = 1+8(Q, R).

The following lemma was proved by Tolsa in [13], which plays a fundamental
role in the whole theory. From this lemma, it is easy to see that Ky z reflects some
geometric aspects of cubes.

LEMMA 1.3. Let C > 0 be a constant.

(i) If Q C R C S are cubes in RY, then Kor < Kps5, Krs < CKg s and
Kos < C(Kgr+ Kg,s)
(ii) If Q C R have comparable sizes, Ko r < C.
(iii) If N is some positive integer and the cubes pQ, p*Q, ..., p "' Q are non
(p, B)-doubling with B > 2", then K o ,» 9 < C with C depending on B, p and C,.
(iv) If N is a positive integer and for some f < p”",

u(e" Q) < Bu('Q) < BPu(" Q) < -+ < BN (Q),

then Ky v g < C with C depending on B, p and Cy.

2. The space rbmo(p)

Given p > 1 and a cube @ C R?, we let N be the smallest nonnegative integer
such that 2V Q is (p, B,) doubling and we denote this cube by Q. In the following,
we also set

d
(Q)/f(x) w(x).

DEFINITION 2.1. Let p > 1 be some fixed constant.
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(i) Letl <75 < oo. Wesay that f € L} (u) is in RBMO(w) if there exists some
constant C; > 0 such that for any cube Q,

1
u(nQ)

and for any two (p, B,)-doubling cubes Q C R,

@.1) fQ \f —mpfldu < Ci,

2.2) Imof —~mgpf| < CiKgnr.

Moreover, we define the RBMO(u) norm of f by the minimal constant C; and we
denote this by || - |-

(i) Letl <n < p < o0. Wesay that f € L] () is in rbmo(u) if there exists
some constant C; > 0 such that (2.1) holds for any cube Q with I(Q) < 1 and C;
instead of C, (2.2) holds for any two (p, 8,)-doubling cubes Q C R with [(Q) < 1
and C, instead of C;, and

1
23 _— d C
23) M(nQ)/QIf(x)I u(x) < G

for any cube Q@ with I(Q) > 1. Moreover, we define the rbmo(w) norm of f by the
minimal constant C, and we denote this by | - ||..

The space RBMO(11) was introduced by Tolsa in {13] and it was proved that the
definition of RBMO(u) in [13] is independent of the choices of n and p. It is easy
to see that rbmo() C RBMO(u), and there are some measures u (for example, the
d-dimensional Lebesgue measure) such that the above inclusion is strict.

The following proposition is similar to [13, Proposition 2.5] whose proof is also
similar. In fact, the properties (i) and (ii) are easy to check. The third property can
easily follows from the following Proposition 2.4 and the fourth property follows from
the third one.

PROPOSITION 2.2. (i) rbmo(w) is a Banach space of functions (modulo additive
constants).

i) L) C rbmo(w) with Il flls < 211 f

(ii)) If f € rbmo(u), then | f| € rbmo(u) and ||| flll« < Cll fli..

(iv) If f, g € rbmo(u), then min(f, g), max(f, g) € rbmo(u) and

| min(f, g)ll., [ max(f, &)l < CUSI+ lgl)-

Let us now see some other equivalent norms for the space rbmo(u). Letn € (1, 00).
Suppose that for a given function f € L) _(u), there exist some constant C; > 0 and
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a collection of numbers { fo} o (that is, for each cube Q there exists f, € R) such that
: /

sup |f(x) = foldu(x) < Gs,

ot Q) Jo © ’

(2.5) [fo— frl £ C3Kg
for any two cubes Q C R with [(Q) < 1, and for any cube R with [(R) > 1,

2.6) | frl < Cs.

We then write || f||.. = inf{C;}, where the infimum is taken over all the constants Cs
and all the numbers { fp}, satisfying (2.4)2.6).

Temporarily, we write || - ||..., instead of || - ||... The following proposition indicates
that || - |}..., is independent of 5, the proof of it is a slight variation of [13, Lemma 2.6].
We omit the details.

2.4)

PROPOSITION 2.3. The norms || + ||, are independent of n € (1, 00).

REMARK 2.1. Let € (1, 00). From the proof of Proposition 2.3 (see the proof of
[13, Lemma 2.6]), we can see that if C; > 0 is some constant and { f,} ¢ is some fixed
collection of numbers satisfying that for Q with /(Q) < 1,

1
sup
o<1t L(nQ)

for any two cubes Q C R with /[(Q) < 1, and for any cube R with I(R) > 1,
[ fr] < Cy, then for the same numbers { fp}, and any 7, € (1, 00), we have

1
sup
o<1 u(m Q)

with C > 0 depending on n and 5,.

/If(X)—fQIdM(X)SCf, |fo— frl < CsKor
Q

f Lf @) — foldu(x) < CC;
Q

Next proposition proves that for any fixed n € (1, 00) and n < p < 00, the norms
| Il and || - ||, are equivalent, which indicates that the norms || - |, are also independent
ofl <n<p<oo.

PROPOSITION 2.4. For a fixed n € (1, 00) and a fixed p € [n, 00), the norms || - || ,»
and || - ||, are equivalent.

PROOF. Let f € L} (u). We first prove that || fll.. < Cllf|.. To do so, for any
cube Q, we set

maf(x) if Q) <T1;

0 otherwise.

fo=
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Then, if /(Q) < 1, (2.4) holds with c3 = I fll.. If1(Q) < 1andI(Q) > 1, we have

[Q 1) foldu) = — Q) f ol du(x)

u(nQ)

u(Q)
d ~
Squ)/'f(") ma fldneo+ £ E ima
W@ wpd)
* * C *x9
<Ifl + EBLED f1. < U

since é is a (p, B,)-doubling cube. Here we used the fact that » < p in the second
step to the last one. Thus, (2.4) holds.
We now verify that for any two cubes @ C R with [(Q) < 1,

2.7 [fo — frl S CKgrllflls

We consider several cases.

Case 1. I(R) > I(Q) > 1. In this case, (2.7) is obv1ously true.

Case 2. I(R) >1> I(Q) In this case, we let Ry = 4R By Lemma 1.3, we have
K5 g, < CKg r. From this, it follows that

Ifo — fel =1fol = Imgfl < ImGf —mg f|+ |mpg, [l
Simgf —mp fl+ Clflle <= CKorll fl.

Estimate (2.7) also holds.

Case 3. 1 > l(ﬁ) > l(é). We have |fo — frl = Imgf — mifl|, and by [13,
(2.13)], we know (2.7) is true.

Case 4. I(R) < 1(Q) < 1. This case is similar to Case 3. By [13, (2.13)] we know
(2.7) that holds.

Case 5. I(R) <1< l(Q) In this case, if we denote Q, = 4Q then [(Qg) > 1
and by Lemma 1.3 we have

|fo — fel = fel =mgf| < Imgf —mo, fl+ |mg, f]

u(pQo) 1
< CKioll flls + —— [ I f)ldux) < C|fl..
ko 12(Q0) 1100 Jo, !
Here we used the facts that n < p, Kz o, < C by Lemma 1.3 and Qy is a (p, 8,)-
doubling cube. Thus (2.7) holds.
Case 6. 1 < I(R) < I(Q). In this case (2.7) is trivial.
Thus (2.7) holds in all cases and we obviously have (2.6). So, || fil.. < C|l f]l..

Let us now prove the converse. We first prove that if Q is a cube with [(Q) > 1,
then

(2.8)

d C -
M(UQ)/QIf(x)I u(x) < CIfI
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In fact, for each x € Q N supp u, we choose a cube Q, C nQ with its center at x and
I(Q:) <1 <i(Q,), where v > max(1, 1/(n — 1)). By (1.1), we can take Q, to be
a (p, B,)-doubling cube. Then, by the Besicovich covering theorem, we can find a
family of points {x;}; C Q Nsupp u such that the cubes {Q,, }; form an almost disjoint
covering of Q Nsupp . Since I(Q,,) < 1 < vi(@Q,,), by (2.5), (2.6) and Lemma 1.3,
we have

29) |fo,l = \fo, — foo, V + 10, | S CKg, vo, I fllax + Clifllew < Cll fllaa-
Since Q,, is (p, B,)-doubling and n < p, we also have

(2.10) Y oum0:) <Y upQy) <CY Q) < CuinQ).
From (2. 9) and (2.10) we deduce

/If(x)ldu(x)
d x
M(nQ)Z/ £ = fo, | duix) + (Q)ZM(Q,)Ifgl

Zu(an M fllaw+ Cll Fllaw < Clf Nl

nnQ)

<C

u( Q)

Thus (2.8) holds.
Now if Q is a (p, B,)-doubling cube with /(Q) < 1, by (2.4) and < p, we have

umnQ)
d T, e C *k e
(Q)_/(f fo) u‘-llf!l 02 <cif

Thus for any cube Q with /[(Q) < 1, by (2.11) when l(Q) < 1 or by (2.6) and

(2.8) when I(Q) > 1, we obtain | fo —mafl <|fo— fal+1f6—mzfl < Clfllu-
Therefore, if [(Q) < 1, we have

/ [f(x) —mgfldu(x)
Q

@1 lfo-mofl=

uwn@)

=200 /Q If(x) = foldu(x) + / | fo —mgfldu)

< Cllf llsa-

Finally, if Q C R withI(Q) < 1 are (p, B,)-doubling, by (2.5), (2.11) whenI(R) < 1
or by (2.5), (2.6) and (2.8) when [(R) > 1, we have

Imof —mepfl <|mof — fol +1fo— frl +|fr —mrfl
S Clflha + CKorll flls < CKgrll fllss.

This proves that || f|l, < C|l f ||« . O

(Q)
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REMARK 2.2. By Proposition 2.3 and Proposition 2.4, we easily see that we obtain
equivalent definitions for the space rbmo(u) if instead of cubes centered at points in
supp i, we consider all the cubes in R? with sides parallel to the axes. Furthermore,
it does not matter if we take balls instead of cubes. :

REMARK 2.3. By the proof of (2.7) and the proof of [13, (2.13)], it is easy to see
that if @ C R with[(Q) < 1 and f € rbmo(u), then |msf —mzf| < CKgrll fll..

The following proposition indicates other possible ways of defining rbmo(ut).

PROPOSITION 2.5. Let n € (1, 00), p € [n, 00) and B, > [max{(p, 1/(n — 1)}]" be
fixed. For a function f € L} (1), the following are equivalent:

(i) f € rbmo(u).
(ii) There exists some constant Cy, > O such that for any cube Q withl1(Q) < 1,

212) [ \f —mofldu < Cou(nQ),
Q

Jor any two cubes Q C R withl(Q) < 1,

uw(nQ) u(nR)]
w(Q) r(R) |’

(2.13) mof —mgfl < CoKgr [ +

and for any cube Q with1(Q) > 1,

2.14) f £ () du(x) < Cou(nQ).
Q

(iii) There exists some constant C. > 0 such that for any (p, B,)-doubling cube Q
withl(Q) < 1,

2.15) / \f —mofldu < Con(Q),
Q

for any two (p, B,)-doubling cubes Q C R with1(Q) < 1,
(2.16) fmof —mgf| < CcKopr,

and for any (p, B,)-doubling cube Q with 1(Q) > 1,
(2.17) / I f)]du(x) < Ccp(Q).
Q

Moreover, the best constants Cy, and C. are comparable to the rbmo(u) norm of f.
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PROOF. Let us first prove that (i) implies (ii). If f € rbmo(y), then for any cube Q
with[(Q) < 1, we have

w(nQ)
n(Q)
From this, we easily follow that (2.12) holds with C, = 2| f|l..

Now let us prove that (2.13) also holds. We consider several cases.
Case 1. I(Q) < 1 andI(R) < 1. By (2.18) and (2.7) we have

(2.18) Imof —mzf| <mo(|f =mzf|) < Ifl.

lmof —mefl <lmof —mgfl+|msf —mgfl+|mzgf —mefl

unQ) u(nR)
* T, CK * *
<Ifl 20) +CKorllflle + LA (R

@ wunR)
CK *s
=CRok [ 20 T am ] ol

that is, (2.13) holds.

Case 2. l(é) >landl(R) <1 < l(ﬁ). From (2.3) and the facts that é and R are
(p, B,)-doubling, we deduce |mgf —mg f| < CJ| fl.. By this and (2.18) we obtain
(2.13). .

Case 3. 1(Q) > 1and I(R) < 1. In this case, R C 40. Let Qo = 40. By
Lemma 1.3, we have Kz o, < C (see the proof of [13, Lemma 2.8]). By (2.18) and
(2.3) we have

Imgf —mzfl < Clmg, f —mgfl+|mg, fl+ |mzfl

w(nQo) u(n@)] '
CKz X = . <Clfl..
< CKg ol fll +[MQ0) + O Nflle < ClfI

We then obtain (2.13) by this and (2‘18);
Case 4. 1(Q) > 1and 1 < I(R) < I(R). In this case, by (2.3) and (2.18), we have

Imof —mpfl < |mgof —mgfl+Imgfl+|mgfl

u(nQ) pr(nR)
< Iflls 20 +Clfll+ IIfII.m

uw(nQ) wp@mR)
CK .
=“Ror [ w0 T am ] 7l

Thus (2.13) also holds. _
Case 5. I(Q) < 1and I[(R) <1 < I(R). In this case, by [13, (2.14)], we have

(2.19) mgf —mgfl < CKorll fls.

From this and (2.18), we then easily deduce (2.13).
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Case 6. l(é) <landl <I(R) < l(ﬁ). In this case, by the proof of [13, (2.14)],
we still have (2.19) holds. We then, by (2.19), (2.18) and (2.3), obtain that

imof —mpfl <Imgof —msfl+Imsf —mzfl+|mgf|+ |mgfl

R
< nfu.“(("QQ)) + CKoxllfll + Clfll. + IIfII.’L(("R))
u(n@) pn(@R)
CK .
< Q.R[#(Q) + M(R)]Mfll

Thus, in all cases, (2.13) holds. Estimate (2.14) is obvious.

That (ii) implies (iii) is trivial.

Let us now see that (iii) implies (i). We first prove (2.3). Let Q be a cube
with I(Q) > 1. We consider the same covering as in the proof of (2.8). Since
l(v@,.) >1(vQ,) > 1, by (2.16)—«(2.17) and Lemma 1.3, we then have

|mQx,~f| = ImQ,,.f —mu’é;,.fl + |mv@.f| =< CCKQ,i,in + Cc
5 CC[KQ,'.,UQ,,. + KvQ,i,v'é;i] + Cc _<_ CCC

From this, (2.15) and (2.10), we deduce

d d
— f o) < — Q)Z f £ dptx)

< W)Q) Zf |f () = mo, fldu(x)
M( Q)D 0, Flu(Qy)
) < CC..
2 16 2 1@

Thus (2.3) holds.

Finally, we need to prove that (2.15) holds for any cube Q with I(Q) < 1. We
suppose Q is not a (p, B,)-doubling cube. The argument is similar to the one given
in the proof of [13, Lemma 2.10]. Since B, > [max(p, 1/(n — 1))]", we can choose
v > max(p, 1/(n — 1)) such that 8, > v". We know that for all x € Q N suppu,
there exists some (p, B8,)-doubling cube centered at x with side length v=*/(Q), where
k € N. We denote by Q, the biggest cube satisfying these properties. Since 8, > v",
we then can prove, by Lemma 1.3, that K, 5 < C. Notice that @, C nQ C é
By (2.16), we have

(2.20) Img, f —mg f| < CC..
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By Besicovich’s covering theorem, there are points x; € Q such that Q N supp u is
covered by a family of cubes {Q,,}; with bounded overlap. From this and (2.20), we
deduce

/Qlf—mafldu < Z/Q f —mfldu
< Z/Q 1f —mo, fldu+ Y Imgf — mo, Fli(Q.)
< CCept(nQ).

Thus f € rbmo(1). a

The following theorem is a version of John-Nirenberg’s inequality related to the
space rbmo(u). To prove it we adapt the arguments of [13, Theorem 3.1] which is, in
fact, the John-Nirenberg’s inequality for the functions in RBMO(v) (see also [7]).

THEOREM 2.6. Let f € rbmo(u) and let n € (1, 00), p € [n,00) and {fp}o be a
collection of numbers satisfying

1 .
2.21 - d C *
@21) s s fQ £ () — foldu(x) = CIf
(2.22) Ifo— frl = CKo Rl fll
for any two cubes Q C R with I(Q) < 1, and for any cube Q with1(Q) > 1,
(2.23) |fol = Cllfll..

Then, for any cube Q withl(Q) < 1 and any A > 0, we have

Csh
(2.24) pwlxe @ 1f(x) = fol > A} < Cau(nQ)exp (— 71 )

and for any cube Q with1(Q) > 1 and any A > 0, we have

Csh
2.25) uix e Q:1f(x) > A} < Csu(nQ)exp (— ";“ ) .

Here C4 > 0 and Cs > 0 depend on n and p and are independent of A and f.

To prove our theorem, we need the following lemma.

LEMMA 2.7. Let f € rbmo(u) and let { fp} o be a collection of numbers satisfying
(2.21)2.23). If Q and R are cubes such that [(Q) ~ [(R) and dist(Q, R) < I(Q),
then

(2.26) | fo— fel = Clifl..
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PrOOF. If min(I(Q), I[(R)) > 1, then we obtain (2.26) by (2.23).

If min(I(Q), I(R)) < 1, let R’ be the smallest cube concentric with R containing
Q and R. Since I(Q) ~ I(R") ~ I(R), we have Ko < C and Kpp < C.If
max{l(Q),I(R)) < 1, by (2.22), we then have

Ifo— fel < \fo— fel +1fe — frl < C(Kor + Kr) fll = Cli f s

If max(I(Q), [(R)) > 1, say,I[(R) > 1,thenl(Q) < l and [(R’) > 1. Thus, by (2.22)
and (2.23), we obtain

|fo — frl < Ifo = frl+ 1 frl + | fel < CKorllflls +Cliflle < Clifll.

Thus (2.26) also holds. If [(R) < 1,then(Q) > 1 and I{(R’) > 1, we then can obtain
(2.26) also by (2.22) and (2.23). 0

The following lemma is similar to [13, Lemma 3.3] and its proof is also similar, by
replacing [13, Proposition 2.5] by Proposition 2.2, to the proof of [13, Lemma 3.3].
We omit the details.

LEMMA 2.8. Let f € rbmo(i). Given g > 0, we let

fx) flfl=q;
qfxX)/1f @ i 1f ] > q.

Then f, € rbmo(u) with || f;|l < C| f ..

fq(x) = {

We also have a remark similar to [13, Remark 3.4], which will be used in the proof
below.

REMARK 2.4. Let f € rbmo(u) and let { f5}, be a collection of numbers satisfying
(2.21)~(2.23). We set fp . = max(fg, 0) and fp - = — min(fp, 0) and we set

fa.0 = min(fg 4, q) —min(fy _, q).
Then, it is easily seen that
1 [
sup ——— [ |fy(x) = fooldu(x) < Clifl.,
Q:I(Qr))sl n2Q) 0 fq fq ¢ f

Ifq.Q - fq.RI =< CKQR"f"t

for any two cubes Q C R with [(Q) < 1, and for any cube Q with [(Q) > 1,
[ fa.el = Cliflls,

where C > 0 is independent of q.
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PROOF OF THEOREM 2.6. We prove (2.24) and (2.25) for n = p = 2. The proof for
other values of 7 and p is similar; see also Remark 2.1. _

Let f € rbmo(u) and assume first that f is bounded. Let Q, be some fixed cube
in R? with 1(Qp) > 1 and we write Q) = %Qo. Let B be some positive constant
which will be fixed later. By [13, Remark 2.3], for p-almost any x € Q, such that
| f(x)| > B| fll., there exists some doubling cube Q, centered at x satisfying

(2.27) mo |fI > Bl fl.

Moreover, we may assume that Q, is the biggest doubling cube satisfying (2.27) with
side length 27*1(Q,) for some integer k > 0 and I(Q,) < £I(Qo). By Besicovich’s
covering theorem, there exists an almost disjoint subfamily {Q;}; such that

(2.28) {xe Qo:lf™)> B|fll.}C UQ,--

By Proposition 2.3 and Proposition 2.4, we deduce from (2.21)—(2.23) that

(2.29) (4R/3) / [f()dux) < Cllfll.
for any cube R with [(R) > 1. Thus, if we choose B big enough, by (2.29), we then
have
30 Y u0r =Y g [ 1o < £ ()] i)
; Bl fll« Jo. Blifll« Jg,
C#(§Q6) < Cu(ZQo) < /-L(ZQO).
= B — B ~ 4B,

We now prove that

(2.31) Ifo.l = Cell £l

IfI(Q;) > 1,(2.31) is true by (2.23). If I(Q;) < 1, we consider the cube fé,- and we
then consider several cases.

If l(2AQ/,-) > 10/(Qy), then there exists some cube 2™ Q;, m > 1, containing Q, and
such that [(Qg) ~ 12" Q;) < l(f@). Thus, if I(2Q;) > 1, then

lfol = Ifo = fal + 1faol = CKoag I flls + Cllf Il = ClLf I
If12Q)) < 1 <1(2"Q,), then

[ fol £ fa = fool + 1 fag, = fomol + | famg
=< CKinzQi “f“t + CK2Q."2"’Q; “f“* + C“fll* < Cllf“*.
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where we used (2.23) and the fact that K, »mp, < C since there are no doubling
cubes of the form 2*Q; between Q; and 2" Q; and K,p, g, < CKg, mg, < C by
Lemma 1.3. IfI1(2"Q;) < 1 < I(Qy), we have

[fo.l 21 fo — fagl + 1 oo, = fomol + | famo, — fool + 1 S04l
< C[Kg.20 + Kag, 20, + Kamg,.0| 1 f I + Cl Il < ClIF

by (2.23) and Lemma 1.3 again. Thus, in this case, (2.31) is true.
Nowif 1 <1(2Q;) < 10/(Qy), then by (2.22)-(2.23), and Lemma 1.3, we have

(2.32) \fol < 1fo — fiz| + 1 fim| < CKg gl +ClFI
< C[Kog,20, + Kag, 55 ]I Flls + ClI fll. < ClIf..

If 1(Q0)/10 < l(2AQ',-) < 1, then from (2.22)—(2.23), Lemma 2.7 and Lemma 1.3
we deduce

IfQil =< |fQi - fﬁ,l + lfza - fQoI + IfQo[
< C[Kg.15 + Kig.o] 1l + Cli fll. < Cll £

If1(2Q;) < 1(Q0)/10, then, by the maximality of Q;, we have msz (| f]) < B|| f|.
which implies that

(2.33) Ims3. ()] < Bl fl.-

If 1(20;) > 1, then (2.32) indicates (2.31). If I(2Q;) < 1, by (2.21), (2.33) and
Lemma 1.3 we have

\fol < |fo, = fig | + | fig, — mig (O + Imi5, ()]

1
<CKy sl fll«+ Bl fll+ 60D ‘/2"6 |f(x) — figldu(x)
p(22Q;)
< Clfl. + CEZZE2 1),
Il A1 GO0 A

= Ciifl..

Thus, in any case, (2.31) holds.
Now we consider the function

1 t
X = -
O = o R20) fge"p ('f ) = felyyn

1 t
d .
M Ty /Qe"p ('f | l!fll*) w(x)

) du(x)
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Since f is bounded, X () < oco. By (2.28), (2.30) and (2.31), we have

(2.34)

<If(x)l ) du(x)

1(2Qo) Al

l exp(Bt) du(x)

#(2Q0) Qo\Ui Q
Z / exp (lf( %) = fol i )du(x)CXP(Cst)

i1(@=l1

d
+u(2Qo>,,§~)>,/ exp (1@, ) e

< exp(Bt) + ZX(t) exp(Cet) + ZX(t).

+ M(2Qo)

If1(Qo) < 1, by a modification of the argument in [13, pages 108-110], we can prove

(2.35)

1
exp (lf(x) fol7—7 ) du(x) < exp(Bt) + ZX(I) exp(Cet).
Qo

i
K (2Qo) I fl.
From (2.34) and (2.35), it follows that

X(t) [;31- — %exp(CGt)] < 2exp(Bt).

Thus, for #, small enough, we have X (1) < C;, where C; > 0 depends on 1y, B
and C6.
Therefore, if f is bounded and I[(Q) < 1, then

w{xeQ: 1F) = fol > Mif /i) < / exp(""f("’?—”"fo') exp(—A) du(x)
Q *

< C7u(2Q) exp(—A),

which is equivalent to (2.24).
If f is bounded and [(Q) > 1, then

plx e 0 1F > Mfll/to) < f exp (’:Iff%) exp(—A) dpu(x)
Q *

< Gu(2Q) exp(—A),

which is equivalent to (2.25).
When f is not bounded, by Lemma 2.8, Remark 2.3, and a similar argument to that
in [13, page 111], we can prove that (2.24) and (2.25) are also true. O

https://doi.org/10.1017/51446788700010430 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010430

164 Dachun Yang [16]

From Theorem 2.6, we can easily deduce that the following spaces rbmo”(u)
coincide for all-p € [1, 00). Given 5 € (1, 00), p € [, 00) and p € [1, 00), we say
that f € L} (u) is in rbmo® () if there exists some constant Cg > 0 such that for any
cube Q centered at some point of supp u with(Q) < 1,

/p
—maflPd < G,
V«(’?Q)/Q‘f Qf| M} 8
Imof —mg| < CsKgr

(2.36) [

for any two (p, B,)-doubling cubes Q C R with [(Q) < 1, and for any cube Q with
Q) >1,

1/p
(2.37) [ flf(x)l"du] < GCs.

nw(nQ)

Moreover, we define the minimal constant Cg as the rbmo” (1) norm of f and we
denote it by || f ]+,

REMARK 2.5. Arguing as for p = 1, one can prove that another equivalent definition
for rbmo” (1) can be given in terms of the numbers { fp} ¢ as in (2.4)—(2.6). Moreover,
Proposition 2.5 is also true for rbmo® (1) with any p € (1, o). We omit the details.

By using Theorem 2.6, we can prove the following corollary. See the proof of [13,
Corollary 3.5] for the details.

COROLLARY 2.9. For p € [1, 00), the spaces rbmo® (1) coincide and their norms
Il - .., are equivalent.

Finally let us give another useful property of the space rbmo(u). To do so,
given a cube Q C R? and f € L} (), we let ag(f) be the constant for which
inf, mo(lf — ) is obtained. It is known that the constant ay ( f), which may be not
unique, satisfies

pixeQ: fx) > ag(f)} < u(Q)/2
and

uixe Q: fx) <ag(fN} <u(Q)/2;

see [7, page 30] and [13, pages 115-116].
Given n € (1,00), p € [n, 00), B, big enough and f € L, (u), we denote by
[l 1, the minimal constant Cy > O such that

(2.38) >

@)=l

= Q)f If —az(P)ldu < Cs.
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for any two (p, $,)-doubling cube @ C R withI(Q) < 1,

(2.39) leg(f) — ar()] < CoKo s
and for any (p, 8,)-doubling cube Q with [(Q) > 1,
(2.40) leg ()l < Co.

Then we have the following proposition which is similar to [13, Lemma 4.5].
PROPOSITION 2.10. || - ||, is @ norm which is equivalent to || - ||.

PROOF. Let us first prove that || f||,, < C|| fll.- To this end, for any cube Q C R,
we define

s ot it 10) < 1;
e 0 otherwise.
To prove our claim we only need to prove that if 0 C R withI[(Q) < 1,
|fo — frI = Clfll-Ko.r-

But, this can be proved by a similar way to (2.7) and we omit the details.
Now, let us see the converse. We want to prove that || f|l. < C|| f|l.. Let Q be any
(p, B,)-doubling cube with /(Q) > 1. Then, by the definition of ay(f), we have

S/QIf—ao(f)IdMS/QIfldu-

ao(f)u(Q)—/ fdu(x)
0

From this, it follows that

@.41) wo(P@ =2 [ 1f1du.
0]

By (2.8) we then have

(2.42) lag (I < CllLf s

that 1s, (2.40) holds.
To verify (2.38), we first see that if Q is a (p, B,)-doubling cube with [(Q) < 1,
then

@43)  |fp—ag(f)i = / [fo — ao()]du

0
d

o [ sohan

— - d

M(Q)folf(x) ao(f)| du

2
- _ di < Cll fllone
sMQ)fQIf(x) ao(f)] du < CIIfI
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Now, replacing (2.8) and (2.11) in the last part of the proof of Proposition 2.4,
respectively, by (2.42) and (2.43), we then can prove that (2.38) and (2.39) also hold
with Gy < C||f |l«s- Thus our claim holds. O

3. The space k57 (n) with1 < p < o0

We first introduce the space k(1) and present some properties of this space. In
the following, for a fixed p € (1, 00), a function b € L} _(u) is called an atomic block
if it satisfies

(i) there exists some cube R such that suppb C R,

(i) [ blx)dp(x) =0,

(iit) there are functions g; supported on cubes Q; C R and numbers A; € R such
that b = Zfil Aja; and ||all =g < (L0 Q;)K g, r]7".
Then we define |b|,,;;:e(u) = }:j |A;l. A function b € L,‘oc(u) is called a block if it
satisfies only (i) and (iii).

Moreover, we say that f € hL°(u) if there are atomic blocks or blocks b; such
that

3.1) f=) b,

where ), |b.'|;.j‘;;v(“) < 00, b; is an atomic block if supp b; C R; and I(R;) < 1, and b,
is a block if suppd; C R; and I(R;) > 1. And we define the h;;§°(u) norm of f
by letting ||f R = inf 3, |bil B > where the infimum is taken over all possible
decompositions of f in atomic blocks or blocks.

We remark that the atomic blocks were first introduced by Tolsa in [13]. He used
them to define the Hardy space H,;°(u). To be precise, the Hardy space H°(w)
consists of all L'(u) functions which can be represented as in (3.1) with all the b;’s
being atomic blocks. Obviously, H ™ (u) C hL(w) C L' (w).

On this local Hardy space, we have the following basic properties. The proof of
Proposition 3.1 is similar to the proof of [13, Proposition 4.1]. We omit the details

here.

PROPOSITION 3.1. (i) The space h,',;;”(u,) is a Banach space.
(i) Pop () C L) with |f iy < If laimgo-

a

(iit) The definition of h,‘,;,‘:Q (u) is independent of the choice of the constant p > 1.

The spaces /.s° (1) and rbmo(s) are closely related. In fact, we prove that the dual
of h:®(w) is rbmo(w). We first have the following inclusion.

atb
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LEMMA 3.2. Let g € rbmo(u). Then the linear functional Ly(f) = fm,, fgdu
defined on bounded functions f with compact supports extends to a continuous linear
functional Ly on bl (w) with | Lyl pieye < Cllgll. That is, rbmo(u) C hug® (i)*.

ath (n)*

PROOF. Following some standard arguments (see, for example, [3, pages 294—
296]), we only need to prove that if b is an atomic block with suppb C R and
I(R) < 1 or ablock with suppb C R and I[(R) > 1 and g € rbmo(u), then

/ bgdu

If b is an atomic block, then [13, Lemma 4.3] can be adopted to show (3.2). We now
prove (3.2) when b is a block with suppb C R and I(R) > 1. Suppose b = Y, A;a;
and let {g,} o be the collection of the numbers satisfying (2.4)—(2.6) of the definition
of g € rbmo(u). We then write

/ bgdu
R4

By (2.6) and the definition of b, we have

(3.4 el [ 1b1dw < Clgl 3 o f a1 de
R i i

< Cligl. 1 (“Q“)z,gg :

< Cliglls Z Al < Cligllalblyg .

3.2) b C|b|h‘°“(u) ligll.

(3.3)

< ‘f b(g—gk)du’ + lgR|/ bl dpe.
R R

Moreover, if I(Q;) > 1, by (2.6) and (2.8), we obtain

(3.5) /Q g — gnldu < /Q 18l dis + 1gali(Q)
< Clu(p Q) + 1@ ligl < Cu(o Q) gl
If I(Q;) < 1, by (2.4) and (2.5), we then have
(3.6) /Q g — gl d < /Q 1 — 2ol di + I2g, — galin(Q)
| < C[1p0) + Kouxu( Q)] gl < CKg. s Q)lgl

From (3.5), (3.6) and the definition of b, it follows that

3.7 I/ b(g — gr)du| < ZIA IIIa,llem)/ lg — 8rl < Clibllyizqnliglls

Now (3.4), (3.7) and (3.3) tell us (3.2). _ 0
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We now prove that the converse inequality in Lemma 3.2 is also true.

LEMMA 3.3. If g € rbmo(u), then ||Lgll, 12, ~ llgll

ath
PROOF. By Lemma 3.2, we only need to prove that ||L, Natooquy = Clligll.. We

prove this by showing that there exists some function f € h.>(u) such that

ILg (O = CTHIgNoN £ Nyt

For simplicity we assume that p = 2. Let € > 0 be some small constant which will
be fixed later. There are two possibilities:

(1) There exists some doubling cube Q C R? with [(Q) < 1 such that

(3.8) fQ e — ao(e)ldu > €llglon(Q),

or there exists some doubling cube Q C R¢ with /(Q) > 1 such that

(3.9 lag(g)l = €ligll..

(2) For any doubling cube Q C R? with [(Q) < 1, (3.8) does not hold and for any
doubling cube Q C R? with I(Q) > 1, (3.9) does not hold.

Let us first see case (1). If (3.8) holds, by an argument similar to that in [13,
page 116], we can find an f € h';Z°(p,) such that

ai

ILo(H)l = l f gf du| = C7ellglloll fllyism o
Rd

If (3.9) holds, we take f = signg/u(Q). Then f € h;,',f°(,u) and llf”,,:;:o(m < C.By
(2.41) and (3.9), we then have

LoD = [ leldu/n(@) 2 C elghl fllzza:
Q

Thus, in case (1), our claim holds.
Now, let us consider case (2). We have two subcases.

(a) For any two doubling cubes Q C R withI(Q) < 1,

1
lg(g) —ar(g)l < '2’KQ,R"g"o-

(b) There are doubling cubes Q@ C R with(Q) < |,

1
leg(g) — ar(@)l > 5Korligll.-
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Let us first consider case (a) under assumption (2). In this case, by the definition
of ||gll., there exists some cube Q with /(Q) < 1 such that

1
(3.10) fQ I8 ~ ag()ld = 7 lgl.uC0).

If1(Q) < 1, then by the argument in [13, page 117], we know that if we choose € > 0
small enough, then our claim holds. If /(Q) > 1, we then choose
f= XixeQ:g(x)>az(e)) — XixeQ:g(x)<az(g)}-

Thensupp f C Q C é and ”f”h",,';"(u) < uQ)Ky 5 < Cu(2Q). Moreover, since
(3.9) does not hold for Q, by (3.10), we have

IL(f)] = fo gfdu' =| fQ [g—%(g)]fdu] ~ Lo (8)] 1(Q)

> / I8 — o(8)| dix — ellgllon(Q)
Q

1 -
> ;ligllon2@) = C g lloll fllase s

if we choose € small enough. Thus, in this case; our claim also holds.
Let us consider case (b). If /(R) < 1, then the same argument as in [13, page 118]
gives us the proof of our claim. If [(R) > 1, we take f = x,. Then

I fllnseiy < Q) Kor < Cu(Q)Ko r-
Since (3.8) does not hold for Q and (3.9) does not hold for R, we then have

/gfdu
Q
> |ag(g) — ar(g)| 1(Q) — /Q g — o) du — lar(g)| 1(Q)

ILe(H)] =

/ g — xo()]f du + g (g)n(Q)
Q

1 1
> '2'KQ,R”g”olL(Q) — 2€¢llgllon(Q) = ZKQ,RIIgllo/LQQ)

-1
2 CTIgllol f llate gy

if we choose € small enough. Thus, in this case, our claim is still true. |

To establish the duality between h ",;Z"(u) and rbmo(u), we follow the same pro-
cedure as that for the duality between H,,',',,°°(u) and RBMO(u) in [13]; see also [7].
To do so, we introduce the atom and block spaces h ,',;,‘,’ () for p € (1,00) and we

_ prove that they coincide with ,>°(x) and the dual of the space h,;;° (1) is the space
rbmo(u) simultaneously.

In the following, for a fixed p € (1, 00), a function b € L (u) is called a p-atomic

block if
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(i) there exists some cube R such that suppb C R,
(i) [ybdu =0,
(iii) there are functions a; supported in cubes Q; C R and numbers A; € R such
that b = zw Xjaj, and lla; || ey < n(pQ ~)‘/""‘K‘l
A function b € L| oc (1) is called a p-block if it satisfies only (i) and (iii).
For a p-atomic block or a p-block, we define |b|h-p(#) E |A;|. Then, we say

that f € k7 (1) if there are p-atomic blocks or p-blocks b; such that

3.11) f=)_b

with ), |b,<|,,:;:m) < 00, where b; when suppb; C Q; and [(Q;) < 1 is a p-atomic
block and b; when supp b; C Q; andI(Q;) > 1 is a p-block. Moreover, we define the
hL? (1) norm of f by WA ey = inf ), |b; |ni2uy» Where the infimum is taken over
all the possible decompositions of f in p-atomic blocks and p-blocks as above.
If all the b;’s in (3.11) are p-atomic atoms, the all such f’s form the space H;,‘b” )
which was first studied by Tolsa in [13]. Obviously, we have

(3.12) HLP (W) G B (u) G L' ().

The spaces h;7(u) have similar properties to the spaces h.°(u) (see Proposi-
tion 3.1). We omit the details of the proof (see also [13, Proposition 5.1]).

PROPOSITION 3.4. Let1 < p < ooandl < p < o0.

) h,,,,, (1) is a Banach space.

(i) gy () C L' with || fllzan < 1 lie -
(iii) Forl < p, < p; < 00, we have the continuous inclusion h,,,,, () C hl,,‘," (w).
(iv) The definition of ha,b (u) does not dependent on the constant p € (1, 00).

In the rest of this section, we assume the constant p in the definition of the space
a,,, P(w) is 2 and the constants p and 7 in the definition of the space rbmo(u) are also 2.
Moreover, for any p € (1, 00), we define p’ by 1/p+ 1/p = 1.

LEMMA 3.5. For any p € (1,00), rbmo(u) C harb (IL) That is, for any g €
rbmo(p), the linear functional Ly(f) = [o. f8 dp defined on bounded functions f
with compact support extends to a unique continuous linear functional L, on Ryt (W)
with || L, < Cligl..

)

PROOF. Similar to the proof of Lemma 3.2, we only need to prove that if b is a
p-atomic block or p-block and g € rbmo(u), then

/,.,fgd“
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In the following, we suppose suppb C Rand b = Zj Aja;. If I(R) < 1,then bisa
p-atomic block. Since f, bdy = 0, then

Rd
, 1/p
<) nilliagllrgo [ f g — mz(2)l” du} :
i Q/’

Since ge rbmo(u), by Corollary 2.9, we have ge rbmo"'(u). Froml(Q;) <I(R) <1,
by (2.36) and (2.7), we deduce

(3.13)

/ b(g — mz(g)) du!
R

, 1/p
(3.14) { lg —mz(g)lf du]
Q;

1/p
< U Ig—m’gj.(g)l”'du} + Img; (8) — mr(®)In(Q)"”
]

= C”g“tu’(sz)l/p’ + CKQI-R”g”‘[L(Qj)l/P'
< CKg xllglwm2o)'?.

From (3.13) and the definition of p-atomic blocics, we then deduce

bgdu‘ < 3" I llgls < Clblyggliglh.
R4 X
J

If I(R) > 1, then b is a p-block. We then have

/ bgdu
R4

ma(@)! [ 1bldw < Cligh. Yl [ laldu
R j Qi

< Clighs Y_ 13 @l om (@)
J

=<

(3.15)

f blg —mﬁ(g)]dul + Imz ()| / bl d.
R R

We first have

< Cligh Y_ 18] < Cligllibllyie -

J

If I(Q;) < 1, by (2.36) and Remark 2.3, we easily see that (3.14) still holds. From
this, it is easy to deduce

1/p
(3.16) lg — mz(g)l”’ du] < Cligll.

_/;2 ailg - mk(g)]dlil < llajllzr {

Q
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If1(Q)) > 1, by (2.37), we have

’ 1/p’ , 1/p ,
(3.17) {/Q lg — mz(g)I° du} 5{ . lgl? du} + Imz(g)Iu(Q;)'P

< C||g||4/«(2Qj)'/”' + Cligll (@)Y
< Cligh.nQ)'",

and therefore, | o, ailg — mi(®)] du| < Cligll,- By combining (3.16) and (3.17)
with (3.15), we obtain our claim. (]

From the above, (3.12), and [13, Lemma 5.4], Lemma 3.4 follows; see also [7].
LEMMA 3.6. For 1 < p < 00, we have ha,b (u,) clLt (u)
LEMMA 3.7. For 1 < p < 00, we have h,,,,, (u)' C rbmo(u).

PROOF. Let g € ha,b (u) By Lemma 3.7, we can suppose g € Lloc(u) We now
verify that g € rbmo(w) and ||gll, < C||Lil, . We prove that for any cube Q with

M

Q) =1,

1
(3.18) 20 /ng —ap(g)|du < CllLgly g
(3.19) |oo(8) — ar(8)] < CKorliLglyipqy
for any two doubling cubes Q C R with [(Q) < 1, and for any doubling cube Q with
Q) >1,
(3.20) leg(@)] < CllLyllyre gy

We first prove (3.20). Let Q be a doubling cube with [(Q) > 1 andlet f = xgsigng.
Then f € ha,b (1) and ||f ||hnp(#) < Cu(Q). By (2.41), we then obtain

lao(e)| < (Q)f lgldu = — /gf Mi

= —= ”Lg”h P (u) -\ f ”h"’(#) = C"Lg”h‘f’(u)

u(Q)

Thus (3.20) holds.

We now verify (3.18). If Q is a doubling cube, by the proof of [13, (5.2)] we know
that (3.18) holds. Suppose now @ is non doubling. If l(é) < 1, then (3.18) is also
true by the proof of [13, (5.2)]. Now suppose that /( é) > [. We take

lg — ag(@)l”

b=
g —ag(g)

X onig#ag(g)-
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Then supp b C 0. By Lemma 1.3, we have K, 5 < C and from this, it follows that

, 1/p ,
(3.21) 1Bllyeq < € { f g —ap(e)| du] w2Q)\”.
Q
Since (3.20) is true for é, by (3.21) and Proposition 3.4 (ii), we have
(3.22) / le — ap(@)|” du =/ (g — ap(®) bdu
1 0

< ‘/ gbdu‘ + |aa(g)|/ bl dp
0 0

< ClIL el 11220

o

, 1/p’
< ClLglypqy { / g — @) du} el
Q

That is,

1 , 1/p’
[u(2Q)/ lg —ap®| du,] < CliLgllyip
0

which implies (3.18). Thus, in all the cases, we have (3.18) holds.
Finally, let us verify (3.19). If I(R) < 1, then by the proof of [13, (5.3)] we can
easily obtain (3.19). Now suppose that [(Q) < 1 < I(R). We then take

ol aR(g)V”X
g _ aR (g) ON{g#ar(g)}
Then it is easy to check that
! ‘/p !
(3.23) 1Bl < CKo { / lg — ez ()’ du} Meloll
Q

(see the proof of (3.21)). By (3.20) for R and (3.23), as in (3.22), we then have
[ lg = ax@P ds < ULz Ibligan
Q
' I/P ’
< CKorllLellygy { / g — ()l du] wQ)".
Q
Thus

(3.24)

1 , 1/p
[m/glg —ag(g)lf dlL} < CKorllLgllyp gy

https://doi.org/10.1017/51446788700010430 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010430

174 Dachun Yang [26]

Since Q is doubling with I(Q) < 1, and, therefore, satisfies (3.18), by (3.24) we

obtain
1
_ - — d
lao(g) — ar(g)] u(Q)/Q|aQ(g) ar(g)| du
1 1
—_— — du + ———— —gld
S#(Q)/ lg —ap(g)| du M(Q)fglak(g) gldu
=< CKQ R”Lg"h'l’(,,,)
That is, (3.19) also holds. O

Now, if we replace [13, Lemmas 5.2, 5.3 and 5.4], respectively, by Lemmas 3.5,
3.7 and 3.6, then by the same argument as in [13, Theorem 5.5], we can prove the
following theorem; see also [7]. We omit the details.

THEOREM 3.8. For1<p<o00, ha,,, (w) = h",;f,"’(u). Moreover, h;;,‘,”(p,)* = rbmo(u).

4. An interpolation result

In this section we choose = 3/2 and p = 2 in the definition of the space rbmo(w).
In {13] Tolsa has introduced the following sharp maximal operator related to the

space RBMO(p):
1
@1 M) = swp oy flf mg f|du
3x 5
mof —m
+ sup ———| of Rf'.
QCR: x€Q. 0, R doubling Kor

Then it is clear that f € RBMO(w) if and only if M* f € L*°(u). The sharp maximal
operator related to our space rbmo(u) is defined by

42 #fw = sup f |f —mgf| du
Qax, I(Q)=<I1 “‘
mof —m
+ sup ———I of Rfl
QCR: x€Q. I(Q)<l Q. R doubling Kor
+ sup / [fldu.
Qax. H{(Q)>1 IL

Obviously, we have that f € rbmo(u) if and only if Mt f € L®(u), and by (4.1)-
(4.2), we obtain

(4.3) M'f(x) < CM'f(x).
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In [13], for p € (1, 00), Tolsa also introduced the following maximal operators N
and M 0)*

1
Nf(x)= su /I |du and M, f(x) =su /l |du.
Q5x, Q£)ublmg ﬂ(Q) f (p)f QSE w(Q) Q f

Tolsa proved that N and M,,, are of weak type (1, 1) and bounded on L?(u), p €
(1, co].

From (4.2) it is easy to see that Mt fx)<C (M(3/2) f)+Nf (x)) which tells us
that M* is of weak type (1, 1) and bounded on L?(u), p € (1, co].

By (4.3) and [13, Theorem 6.2], we easily obtain the following lemma.

LEMMA 4.1. Let f € L} () with o, fdu =0 if [lull < oo. For1 < p <oo,if
inf(1, Nf) € LP(u), then we have "Nf”u(u) < C"Mnf”u(u) < C"M f"LP(u)

Our main theorem in this section is the following interpolation result for operators.

THEOREM 4.2. Let T be alinear operator which is bounded from h 5,2 (w) into L' (1)
and from L™(w) into rbmo(u). Then T extends boundedly to LP(u), 1 < p < oo.

The proof of Theorem 4.2 follows the scheme of the proof of [13, Theorem 7.2];
see also [7]. We need the following Calder6n-Zygmund type decomposition, which
is [13, Lemma 7.3].

LEMMA 4.3. For 1 < p < oo, consider f € L?(u) with compact support. For any
A >0 (with A > Bl fllig/llull if |l < 00), we have

(a) There exists a finite of almost disjoint (namely, with a bounded overlap) cubes
{Q;}i such that

14

1 AP 1 A
?d —, — Pdu < — Il 2,
n2Q) /g;,. If1* dp > B2 12000 —/I:Q.- [fIPdu < 8, Jorall n >
(4.4) Ifl<A ae () on RE\N;Q,.

(b) For each i, let w; = xq,/( >, xo.) and let R; be a (6,6"+')-doubling cube
concentric with Q; and with [(R;) > 41(Q;). Then there exists a family of functions
@, with supp ¢; C R; satisfying [ ¢pidp = [, fw;dp and

4.5) > el < BA

(where B is some constant), and if 1 < p < 00,

1/p
( lgi1? du) 1(R)
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(c) For1l < p < 00, if R; is the smallest (6, 6"*")-doubling cube of the family
{6*Qili>1 and we set b =3 (f w; — @;), then

4.6) ”b”H‘P(#) —If ”LP(u)

_)J"

PROOF OF THEOREM 4.2. For simplicity we assume |ju]| = co. Obviously, the
functions f € L™ (i), having compact support, are dense in L (1), 1 < p < 0. For
such functions we prove that

4.7 IM*Tf sy < Clf llry, 1< p < 00.

By (4.7), Lemma 4.1 and the fact that [f (x)] < Nf (x) for u-a.e. x € R?, we have
ITf oy < CIf lleruy- Note that if f € L*(u) has compact support, then f €

kL (u)and Tf € L'(w). Thus N(Tf) € L"*(w) and then inf{1, N(Tf)} € L?(w).

atb
This means the hypotheses of Lemma 4.1 are satisfied.

Given any function f € LP(u), 1 < p < oo, for A > 0, we take a family of
almost disjoint cubes { Q;}; as in Lemma 4.3, and a collection of cubes {R;}; as in (¢)
of Lemma 4.3. Then

TS

By (4.4)4.5), we have ||g[| 1=, < CA, and by (4.6) and (3.12),

C
< o5 1 1

Since T is bounded from L*®(w) into rbmo(1t), we have ||M "Tf | Loy < Ciroh. Thus
[x e RY: M'Tf (x) > (Cio+ DA} C {x € R?: M*Th(x) > A}.

blate gy < 1Bl gp gy <

Since M" is of weak type (1, 1), we have

- Tbh
wix e RY: M*Th(x) > A} < c”——l@.

On the other hand, as T is bounded from h),2° (1) into Ll(pl,)

17BNy < Cllbllgeeqey < e 1||f [

ath

Thus

nix e R MPTF (x) > A} < IIf [
This means that the sublinear operator M?*T is of weak type (p, p) forall p € (1, 00).
By the Marcinkiewicz interpolation theorem we obtain that M* T is bounded on L? (1)

for all p € (1, 00). In particular, (4.7) holds for a bounded function f with compact
support. Thus our claim holds. a
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5. Relation between h:,’;” (1) and HL>° ()

In this section, we establish some relation between the space k> (1) and the space

H;f () studied in [13]. Let us first recall the characterization of the Hardy space

Ha',',:” () in terms of a maximal operator Mg which was established in [15] and will
be used in the following.

DEFINITION 5.1. Given f € L (u), we set

Mof (x) = sup

¢~

f¢dur

R4

where the notation ¢ ~ x means that ¢ € L'(u) N C'(R?) and satisfies

® lellew =<1,
(i) 0<¢(y) <1/ly—x|"forally € R? and
(iii) |Ve(y) < 1/|y —x|**! forall y € R

LEMMA 5.2. A function f belongs to the space Hal,‘,;” (u) ifand only if f € L'(w),
Jasf A =0and Mof € L'(1). Moreover, in this case,

I e ~ I Mg + IMof lltgn-

To establish the relation between the space hll,;Zo (1) and the space Ha',‘,f" (1t) we need
a special function. Let ¢ be a function on R? x R? satisfying

é.1) ¢(x,y) =0 if |x —y| > Cs, where Cy > 0is a constant;
(5.2 l¢(x, y)| < C;
(5.3) for pu-a.e. y € supp i, / dx,y)dulx)=1.

R4

ObViOUSly, if supp u is bounded, we can jUSt take
¢ (x ) - u| p.( )X upp 1 ()’)
’ X X)Xs .

Then this function ¢ satisfies (5.1)—(5.3). Moreover, if ¢ satisfies (5.1)—(5.3), then ¢
also has the following properties:

(54 lox, ¥l <
lx —y|

(5.5) forp-ae. y € suppp, f |¢(x,y)ldu(x)+/ ¢ (y, x)|du(x) < Cy.
Rd . Rd

for x #y;
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In the following, for a function ¢ on R? x R? and suitable functions f , we define
T 6) = [ $0)f 0)duo).
R

THEOREM 5.3. Let¢> be afunction on R? x R? satisfying (5.1)=(5.3). Iff € hL*(w),
thenf —T,f € H a,,, > (w) and ||f —Tpf "H,j,,f"(,;) < C|f ll,,xb (uy» Where C is independent
off.

PROOF. By the definition of the space h.°(u) and Lemma 5.2, to prove Theo-
rem 5.3, we only need to verify that if b is a block or an atomic block, say, b = Y A;a;,
then fw, Me(b — Tub)(x)du(x) < CZ]. |A;l. Let suppb C R, where R is a cube
with the center zz and the side length I(R).

We first suppose b is a block. Then I(R) > 1. In this case, it is easy to see that
supp Tyb C Cy R, where Cy; > 0 depends only on Cy. We then write

fMQ(b—nb)(x)du(x)=/ Mq,(b—nb)(x)du(xwf =L+l
R4 R

AN2CH R 2C R

For I,, by (5.5) and fR,,[b(y) — Tpb(y)ldu(y) = 0, we obtain that, when x €
R4\ 2CyiR, for ¢ ~ x,

f [b(y) — Tb()le() du(y)‘
Rd

= / [b(y) — Tob(N]le(y) —w(zR)]du(y)‘
R4
CI(R)

- |x _ ZRln-H

CI(R
< o [ 1eoiane)

CI(R)
= Ix — zg |n+lZ| Al
From this, it follows that

CI(R
IlscDuf B <Yl
J

RA2CHR X — 2R |"+1

[fw [b(M]duly) + /W /w |6 (¥, D11b(2)] du(z)du(y)]

Now let us estimate I;. We first have

L < f [Mob(x) + Mo(T,b)(x)] diax)
2C) R

SZM[ Moa; (x) dp(x) + M¢(T¢a,-)(x)du(x)]~
J

2C||R 2CIIR

https://doi.org/10.1017/51446788700010430 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010430

[31] Local Hardy and BMO spaces 179

To obtain a desired estimate for I, we need to prove

(5.6) Moq () du) + [ Mo(Tua) o) duta) < C.
2CuR 2CuR

Let Q; be the support of @; and zg, be its center. We further write

Mq,aj(x)du(x):f Moaj(x)du.(x)+/
20; 2

2ChR CiiR\2Q;

When x € 2Q; and ¢ ~ x, we have

/,; o(a; (y) d#«(}’)l < MNajlleoll@lierg < l1aj e
R
From this and the definition of a block, it follows that

Moa; (x) dp(x) < |lajllemn(2Q;) < C.
20

When x € 2C; R \ 20Q;, by the definition of ¢ ~ x, we have

1
’/ e V) du(y)| < ———lajllvw-
R lx —zg,1

From this, Lemma 1.3 and the definition of a block, we deduce
57) f Moa;(x) du(x) < Cla; l103(2Q;, 2C11R)
2C1R\2Q,
< Cliagj | Loqyn(Q;)K(Q;, R) < C.

The estimate for the second term in the left-hand side of (5.6) is similar. We also write

Mo(Tya;)(x)dp(x) = Mo(Tya;)(x)du(x) + /
2Ci R 20 2C R\2Q;

For the first term, when x € 2Q;, by (5.5) and the definition of ¢ ~ x, we have

/.. o0 Ta () dr0)| < /m , /R 10060, 94, dr(@) dr ) < Clla g

From this, it follows that

Mo (Tya;)(x)du(x) < Cllaj || Lo@u(2Q;) < C
20;

https://doi.org/10.1017/51446788700010430 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010430

180 Dachun Yang [32]

which is a desired estimate. When x € 2C;R \ 2Q; and ¢ ~ x, by (5.4)-(5.5), we
have

(YN Tha;)(y) du(y)’
md

< / '“’(Z)'[/m |¢(y)¢(y,z)|du(y>] du()
md d

la; (z)| [/ le()¢(y, Dldu(y) + / & ] du(z)
RY ly—zl23lx—zl ly—zl<jlx—zl

< ——lgjllvw-
lx _ZQI |n J )

Then similar to (5.7), we can prove fzc,,R\zg, Mo(Tya;)(x)du(x) < C which is a
desired estimate. Thus (5.6) is true. We have proved our claim when b is a block.

Now let us prove our claim when b is an atomic block. Suppose supp b C R with
the center zz and the side length I(R) < 1. Let R, be the cube with the center zz and
the side length C, + I(R). Then supp T,b C R,. We then write

Me(b — Tyb)(x)du(x) =/ Me(b — T¢b)(x)dN(X)+/ +/
RA2R, RI\2R 2R

R4 2

=L+ 1L+ I

The estimate for 15 is similar to /; by replacing 2Cy; R there by R here. We omit the
details. To estimate 14, we further write it into

(5.8) Iy S/ Mob(x) dp(x) +/ Mo (T3b)(x) dp(x).
RI\2R

2R\2R

On the first term, by the definition of ¢ ~ x and fm,, b(y)du(y) = 0, we have that
whenx € 2R, \ 2R,

w(y)b(y)du(y)l = / [(p(y)—w(zR)]b(y)du(y)'
R4 Re
CI(R) Cl(R)
< e = == ZI Al

From this it follows that

[ Mobt)dutn < cumy Cw1 [
2R\\2R j

2R\\2R |x — zg

du(x) < CZM l,

|n+l
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which is a desired estimate. For the second term in (5.8), by the definition of ¢ ~ x
and (5.2), we then have

/ ¢(y)T¢b(y)du(y)| < Clellewlbllpg < C E [Aj 1.
R4 N
i
We then deduce
/ Mo(Tyb)(x)du(x) < C E |Aj|u(2R) < C E |A; |
2R\\2R 7 7

which is also a desired estimate. The estimate for /5 can be obtained by a similar
way to that for ;. We only need to replace 2C|| R there by 2R here. We omit the
details. a

Let ¢ be a function satisfying (5.1)—(5.3). We then define

T3 () = f 6(0)f 0) du(y)
R4

for any suitable function f. Then, by a proof similar to that of [4, Corollary 1], we
can easily deduce the following corollary from Theorem 3.8 and Theorem 5.3. We
omit the details.

COROLLARY 5.4. Let ¢ be the same function as in Theorem 5.3. Then

rbmo(p) = {b € RBMO(u) : Tyb € L*(u)}.

6. Some remarks

In this section, we further suppose the measure w satisfying the following condition
w(B(x,r)) ~ r*forall x € suppu and all 0 < r < diam(supp i), where, foraset E,
diam E = sup{jx — y| : x, y € E}. Then, supp u is a space of homogeneous type in
the sense of Coifman and Weiss in [1].

Let h'(1) = F{*(supp w) which is introduced in [6]. Then it is easy to see that in
this case, we have h'(u) = h:,;Z"(p,). In fact, by the atom and block decomposition of
F,O‘z(supp W) in [6], we can easily deduce

FY(supp i) C hyp(u) = hgp® (1)

from Theorem 3.8. Conversely, from [13, (2.24) and (2.25)] it is also easy to see that
each 2-atomic block or 2-block b in Section 3 is just a (1, 2, 0) atom or (1, 2, 0) block
b, for Flo'z(supp 1) times a coefficients C|b| B2 0 Thus

RLX (1) = hh(w) © F{*(supp p).
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That is, our claim holds. Moreover, by [13, Example 5.6] and [5, Theorem C], we
know that H;,',;” () = Flo’z(supp () which was introduced by Han in [5]. We remark
that our Theorem 5.3 and Corollary 5.4 are also true for this special case. Moreover,
the function ¢ satisfying (5.1)—(5.3) exists in this special case. In fact, we can just
take ¢ = S; for some fixed k € Z, where {S;}1cz is an approximation to the identity
constructed by Coifman’s method; see [2, 5, 6].
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