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Abstract

Let fi be a Radon measure on Rd which may be non doubling. The only condition that n must satisfy
is the size condition n(B(x, r)) < Cr" for some fixed n € (0, d]. Recently, Tolsa introduced the spaces
RBMO(ii) and //^""(/x), which, in some ways, play the role of the classical spaces BMO and H1 in case
\i is a doubling measure. In this paper, the author considers the local versions of the spaces RBMO(n)
and //J,£°(/x) in the sense of Goldberg and establishes the connections between the spaces RBMO(ix) and
Hab°(n) w'th their local versions. An interpolation result of linear operators is also given.

2000 Mathematics subject classification: primary 42B35; secondary 42B30,42B25,43A99.
Keywords and phrases: local Hardy space, local BMO space, atomic block, block, non-doubling measure,
interpolation, duality.

1. Introduction

In the whole paper we assume that d e N and 0 < n < d. We also assume /x is a
(positive) Radon measure on Rd satisfying the growth condition

(1.1) fi(B(x,r))<Cor"

for all x e supp /x and r > 0. We do not assume that /x is doubling.
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The doubling condition on /x is an essential assumption in most results of classical
function spaces, Calderon-Zygmund theory and so on. However, recently it has been
shown that many results in the classical Calderon-Zygmund theory and the classical
Hardy and BMO spaces also hold without the doubling assumption; see [8-16] and
their references. In particular, Tolsa in [13] introduced the spaces RBMO(n) and
H^(fi) and proved that these spaces have properties similar to ones of the classical
spaces BMO and / / ' defined for doubling measures and are useful in the study of
the Lp (/x) boundedness of Calderon-Zygmund operators without assuming doubling
conditions; see also [14,15].

The purpose of this paper is to consider the local versions of the spaces RBMO(ii)
and H*;£°(fi) in the sense of Goldberg [4] by using ideas coming from [13]. The
organization of this paper is as follows. In Section 2, we introduce the local version,
rbmo(fi), of the space RBMO(n) in [13] and then give some basic properties including
several equivalent definitions of this local space. By using these properties, we
establish the John-Nirenberg's inequality for the functions in the space rbmo(^). In
Section 3 we introduce the local version, /i^°(/x), of the space H^(fi) in [13]
and we then prove the dual space of the space h^ifx.) is just the space rbmo(ii).
An interpolation result of linear operators is given in Section 4, which states that
if a linear operator T is bounded from h^(fi) into L'(/x) and from £°°(/x) into
rbmo(fx), then T is also bounded on Lp(fi) for p e (1, oo). In Section 5, we establish
the connections between the spaces RBM0{ii) and / / ^ ( /x ) and their local spaces,
rbmo(n) and fr^°Gx), respectively. Finally, in Section 6, we give some remarks on
our results in case /LA is doubling. Even in this case, our result is also new.

Let us now introduce some basic notation. By a cube Q c Rrf, we mean a closed
cube centered at some point in supp/x with sides parallel to the axes. Its side length
is denoted by l(Q) and its center by ZQ- Given p > 0, we denote by pQ the cube
concentric with Q with side length pl(Q).

DEFINITION 1.1. Given a > 1 and £ > a", we say that the cube Q c Kd is
(a, B)-doubling if M(« Q) <

As shown in [13], due to the fact that /x satisfies the growth condition (1.1), there
are a lot of 'big' doubling cubes. To be precise, given any point x e supp /x and c > 0,
there exists some (a, /J)-doubling cube Q centered at x with /(Q) > c, which follows
from (1.1) and the fact that /? > a".

On the other hand, if ft > a", then for /x-a.e. x 6 Kd, there exists a sequence of
(a, /})-doubling cubes {£?*}* centered at x with l(Qt) -> 0 as k -> oo; see also [13].
So there are a lot of 'small' doubling cubes too.

In the following, for any p > 1, we denote by PP one of these big constants £. For
definiteness, one can assume that Bp is twice the infimum of these /Ts.

Recall that given two cubes Q c R, QR stands for the smallest cube concentric
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with Q containing R. Without assuming Q C R, we denote by QR the smallest cube
concentric with Q containing Q and R.

DEFINITION 1.2. Consider two cubes Q, R c Kd. We denote

1 dfi(x) ,f
I* - ZR\n

Notice that l(QR) ~ l(RQ) ~ l(Q) + l(R) + dist(<2, R), and if g c /?, then
RQ = R and Z(/?) < /(£>«) < 2l(R).

8(Q, R) was first introduced by Tolsa in [13]; see also [14,15].
Throughout the paper, the letter C is used for non-negative constants that may

change from one occurrence to another. Constants with subscripts, such as Co, do not
change in different occurrences. For any cube Q C R, we write K0R = 1 + 8 (Q, R).

The following lemma was proved by Tolsa in [13], which plays a fundamental
role in the whole theory. From this lemma, it is easy to see that KQR reflects some
geometric aspects of cubes.

LEMMA 1.3. Let C >0be a constant.

(i) If Q C R C S are cubes in Rd, then KQ,R < KQ,S, KR,S < CKQtS and
KQ.S S C(KQR + KR s).

(ii) If Q C R have comparable sizes, KQ,R < C.
(iii) If N is some positive integer and the cubes pQ, p2Q,..., pN~x Q are non

(p, fiydoubling with $ > 2", then KQyQ < C with C depending on ft, p and Co.
(iv) IfN is a positive integer and for some fi < p",

n(pNQ) < Pv(pN~xQ) < P2^(pN~2Q) <••• < £ V ( 0 .

then KQ^ Q < C with C depending on fi, p and CQ.

2. The space rbmo(fi)

Given p > 1 and a cube Q c 0&rf, we let N be the smallest nonnegative integer
such that 2N Q is (p, f$p) doubling and we denote this cube by Q. In the following,
we also set

= ~T7^ /fJ-(Q) JQ/
Q

DEFINITION 2.1. Let p > 1 be some fixed constant.
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(i) Let 1 < r) < oo. We say that / € Ll
loe(fi) is in RBMO(ii) if there exists some

constant Cx > 0 such that for any cube Q,

(2.1) ^ ; f
fJirjQ) JQ

and for any two (p, /Jp)-doubling cubes Q C R,

(2.2) \mQf-mRf\<CxKQ,R.

Moreover, we define the RBMO(fi) norm of / by the minimal constant C{ and we
denote this by || • ||*.

(ii) Let 1 < r) < p < oo. We say that / e L^fi) is in rbmo(n) if there exists
some constant C2 > 0 such that (2.1) holds for any cube Q with l(Q) < 1 and C2

instead of Cu (2.2) holds for any two (p, p1,)-doubling cubes Q c R with l(Q) < 1
and C2 instead of Ci, and

(2.3) —^— f \f(x)\dfi(x)<C2f
for any cube (2 w'th ' ( O > 1- Moreover, we define the rbmo(ii) norm of / by the
minimal constant C2 and we denote this by || • ||«.

The space RBMO(n) was introduced by Tolsa in [13] and it was proved that the
definition of RBMO(fx) in [13] is independent of the choices of r) and p. It is easy
to see that rbmo(n) C RBMO(fi), and there are some measures \i (for example, the
^-dimensional Lebesgue measure) such that the above inclusion is strict.

The following proposition is similar to [13, Proposition 2.5] whose proof is also
similar. In fact, the properties (i) and (ii) are easy to check. The third property can
easily follows from the following Proposition 2.4 and the fourth property follows from
the third one.

PROPOSITION 2.2. (i) rbmo(fi) is a Banach space of Junctions (modulo additive
constants).

(ii) L°°(n) C rbmo(n) with | |/ | | . < 2||/||L»(/J).
(hi) / / / e rbmo(n), then \f\ € rbmo(n) and |||/|||, < C||/||,.
(iv) If f, g e rbmo(n), then min(/, g), max(/, g) e rbmo(n) and

II min(/, g)\\t, || max(/, *) | | . < C(| | / | | . + ||g||.).

Let us now see some other equivalent norms for the space rbmo(^i). Let^ e (1, oo).
Suppose that for a given function / € L^in), there exist some constant C3 > 0 and
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[5] Local Hardy and BMO spaces 153

a collection of numbers {/Q}Q (that is, for each cube Q there exists fQ e R) such that

(2-4) sup — 1 — f \f(x) - / e | dn(x) < C3,
Q.KQ)<\ H(ilQ) JQ

(2.5) \fQ - fR\ < C3KQ,R

for any two cubes Q C R with l(Q) < 1, and for any cube R with l(R) > 1,

(2.6) \fR\ < C3.

We then write ||/||»« = inf{C3}, where the infimum is taken over all the constants C3

and all the numbers {/Q}Q satisfying (2A)-{2.6).
Temporarily, we write || • ||»*,,, instead of || • ||»». The following proposition indicates

that || • ||M-, is independent of r), the proof of it is a slight variation of [13, Lemma 2.6].
We omit the details.

PROPOSITION 2.3. The norms \\ • ||*»,,, are independent of r] e (1, oo).

REMARK 2.1. Let rj e (1, oo). From the proof of Proposition 2.3 (see the proof of
[13, Lemma 2.6]), we can see that if Cf > 0 is some constant and {/Q}Q is some fixed
collection of numbers satisfying that for Q with l(Q) < 1,

sup —^— f \f(x)-fQ\dn(x)<Cf, \fQ-fR\<CfKQ,R
Q:I(Q)<1 H(iQ) JQ

for any two cubes Q c R with l(Q) < 1, and for any cube R with l(R) > 1,
\/R I < Cf, then for the same numbers {/Q}Q and any r)x € (1, oo), we have

sup — ^ — / |/(^) - / e | dti(x) < CCf
Q.t(Q)<i V-(n\Q) JQ

with C > 0 depending on r) and jjj.

Next proposition proves that for any fixed rj e (1, oo) and rj < p < oo, the norms
|| • || „ and || • ||t are equivalent, which indicates that the norms || • ||, are also independent
of 1 < T] < p < oo.

PROPOSITION 2.4. For a fixed rj e (1, oo) and a fixed p e [rj, oo), the norms \\ • ||,,
and || • ||* are equivalent.

PROOF. Let / e Ll
]oc(fi). We first prove that | | / | U < C | | / | | t . To do so, for any

cube Q, we set

= Ug/OO if KQ) < 1;
0 otherwise.
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Then, if l(Q) < 1, (2.4) holds with C3 = | | / | | , . If l(Q) < 1 and/(Q) > 1, we have

\f(x)\dn(x)JQ
1

< II/IU +

since £? is a (p, £p)-doubling cube. Here we used the fact that /? < p in the second
step to the last one. Thus, (2.4) holds.

We now verify that for any two cubes Q c R with l(Q) < 1,

(2.7) l/e-M<Cffe.«||/||..

We consider several cases.
Case 1. l(R) > l(Q) > 1. In this case, (2.7) is obviously true.
Case 2. l(R) > 1 > l(Q). In this case, we let Ro = 4R. By Lemma 1.3, we have

KQ,R0 < CKQR- From this, it follows that

l/e - h\ = I/el = Img/I < Ns / - mRJ\ + \mRJ\
< \mSf - mRJ\ + CH/IU < CKQ,R\\f\U-

Estimate (2.7) also holds.
Case 3. 1 > l(R) > l(Q). We have | / e - fR\ = \m5f - mRf\, and by [13,

(2.13)], we know (2.7) is true.
Case 4. l(R) < l(Q) < 1. This case is similar to Case 3. By [13, (2.13)] we know

(2.7) that holds. ^
Case 5. l(R) < 1 < l(Q). In this case, if we denote Qo = 4Q, then l(Q0) > 1

and by Lemma 1.3 we have

- f*\ = l/*l = l«if/l < \mif - mQJ\ + \mQof\

f \f(x)\dn(x)<C\\f\\t.\Q0) JQo
^ / f

fi(Qo) ii{r\Q0) JQo

Here we used the facts that rj < p, KR Qa < C by Lemma 1.3 and Qo is a (p, /3P)-
doubling cube. Thus (2.7) holds.

Case 6. 1 < l(R) < l(Q). In this case (2.7) is trivial.
Thus (2.7) holds in all cases and we obviously have (2.6). So, ||/||*» < C||/||*.
Let us now prove the converse. We first prove that if Q is a cube with 1{Q) > 1,

then

(2.8) —^— [ \f(x)\dfx(x) <
vinQ) JQ
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In fact, for each x e Q n supp /x, we choose a cube Qx c rjQ with its center at x and
KQx) < 1 < v / ( C J , where v > max(l, l/(r> - 1)). By (1.1), we can take Qx to be
a (P. /Jp)-doubling cube. Then, by the Besicovich covering theorem, we can find a
family of points {*,}, c Q n supp /x such that the cubes {£)*,}/ form an almost disjoint
covering of Q D supp/z. Since l(QXl) < 1 < vl(QXi), by (2.5), (2.6) and Lemma 1.3,
we have

(2-9) | /o , I < | / e , - fvQxi I + lAc, | < CArej,,yai H/IU. + CH/IU, < C\\f\U.

Since QXj is (p, /Jp)-doubling and r) < p, we also have

From (2.9) and (2.10) we deduce

1
\f(x)\dn(x)

H{r]Q)

E i i/« - /., i *w + ̂  E

[(f-fQ)d(i
JQ

Thus (2.8) holds.
Now if Q is a (p, /5p)-doubling cube with /(Q) < 1, by (2.4) and r\ < p , we have

(2.11) | / e -m e / |= - i
lQ

Thus for any cube Q with / ( 0 < 1, by (2.11) when l(Q) < 1 or by (2.6) and

(2.8) when/(Q) > 1, we obtain | / f l - m g / | < \fQ - / g | + |/g - m g / | <

Therefore, if/(<2) < 1, we have

[ \f(x)-ntQf\dn(x)
JQ

1
\f(x) - fQ\dlJL(x) + —^— I

M('VG) JO

Finally, if Q c ^ with/(Q) < 1 are (p, /3p)-doubling, by (2.5), (2.11) whenl(R) < 1

or by (2.5), (2.6) and (2.8) when /(/?)> 1, we have

\mQf - mRf\ < \mQf - fQ\ + \fQ-fK\ + |/« - mRf\

< Cll/L. + CKQ,R\\f\Ut < CKQ.RUW**-

This proves that ||/|U < CH/ll„. D
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REMARK 2.2. By Proposition 2.3 and Proposition 2.4, we easily see that we obtain
equivalent definitions for the space rbmo(ii) if instead of cubes centered at points in
supp fi, we consider all the cubes in Rd with sides parallel to the axes. Furthermore,
it does not matter if we take balls instead of cubes.

REMARK 2.3. By the proof of (2.7) and the proof of [13, (2.13)], it is easy to see
that if Q C R with l(Q) < 1 and / € rbmo(n), then \m§f - mRf\ < CKQ_R\\f\\t.

The following proposition indicates other possible ways of defining rbmo(fi).

PROPOSITION 2.5. Let rj e (1, oo), p e \r\, oo) and pp > [max(p, l/(r? - 1))]" be
fixed. For a function f € L,'oc(/x), the following are equivalent:

(i) / € rbmo(ix).
(ii) There exists some constant Q > 0 such that for any cube Q with l(Q) < 1,

(2.12) I \f-mQf\dvL<Cbn{nQ),
JQ

for any two cubes Q C R with l(Q) < 1,

and for any cube Q with I (Q) > 1,

(2.14) f \f(x)\d(x(x)<Cbii(i1Q).
JQ

(iii) There exists some constant Cc > 0 such that for any (p, f5p)-doubling cube Q
withl(Q) < 1,

(2.15) I \f-mQf\dn<Cctx{Q),
JQ

for any two (p, fip)-doubling cubes Q C R with l(Q) < 1,

(2.16) \mQf-mRf\<CcKQ.R,

and for any (p, f}p)-doubling cube Q with l(Q) > 1,

(2.17) f \f(x)\dfi(x)<Ccv(Q).
JQ

Moreover, the best constants Cb and Cc are comparable to the rbmo(fi) norm of f.
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PROOF. Let us first prove that (i) implies (ii). If / € rbmo(fi), then for any cube Q
with l(Q) < 1, we have

(2.18) | m Q /

From this, we easily follow that (2.12) holds with Cb = 2||/||*.
Now let us prove that (2.13) also holds. We consider several cases.
Case 1. l(Q) < 1 and l(R) < 1. By (2.18) and (2.7) we have

\mQf - mRf\ < \mQf - mg/| + |wg/ - mRf\ + \mRf - mRf\

V(G)
r
L

that is, (2.13) holds.
Case 2. l(Q) > 1 and /(/?) < 1 < l(R). From (2.3) and the facts that Q and R are

(p, £p)-doubling, we deduce |mg/ - mRf\ < C||/||». By this and (2.18) we obtain
(2.13). • ^

Case 3. l(Q) > 1 and /(£) < 1. In this case, R C AQ. Let Qo = 4£>. By
Lemma 1.3, we have Kg Qo < C (see the proof of [13, Lemma 2.8]). By (2.18) and
(2.3) we have

< C\mQJ - m%f\ + \mQof\

We then obtain (2.13) by this and (2.18).
Case 4. l(Q) > 1 and 1 < /(/?) < l(R). In this case, by (2.3) and (2.18), we have

\mQf -mRf\ < \mQf -niQf\ + |mg/| + \mRf\

M(K)

Thus (2.13) also holds.

Case 5. l(Q) < 1 and l(R) < 1 < l(R). In this case, by [13, (2.14)], we have

(2.19) \mQf-mRf\<CKQ,R\\f\\t.

From this and (2.18), we then easily deduce (2.13).
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Case 6. l(Q) < 1 and 1 < /(/?) < /(£). In this case, by the proof of [13, (2.14)],
we still have (2.19) holds. We then, by (2.19), (2.18) and (2.3), obtain that

\mQf - mRf\ < \mQf - mg/| + |mg/ - mRf\ + \mgf\ + \mRf\

+ CATe.,11/11. + CH/IU +

\nifiQ)

Thus, in all cases, (2.13) holds. Estimate (2.14) is obvious.
That (ii) implies (iii) is trivial.
Let us now see that (iii) implies (i). We first prove (2.3). Let Q be a cube

with l(Q) > 1. We consider the same covering as in the proof of (2.8). Since
l(vQXi) > 1{VQXI) > 1, by (2.16M2.17) and Lemma 1.3, we then have

\mQx_ f\ < \mQx. f - mv-Qxj f\ + I m ^ f\ < CcKQxj^xj + Cc

< Cc\K.Qx.tVQx. + KvQSi,v~Qx.\ + Cc < CCC.

From this, (2.15) and (2.10), we deduce

1 W
)<*>) Jo

\f(x)\dfi(x)

Thus (2.3) holds.
Finally, we need to prove that (2.15) holds for any cube Q with l(Q) < 1. We

suppose Q is not a (p, ̂ -doubling cube. The argument is similar to the one given
in the proof of [13, Lemma 2.10]. Since f}p > [max(p, l/(rj - 1))]", we can choose
v > max(p, l/(r) — 1)) such that fip > v". We know that for all x e Q n supp/x,
there exists some (p, /Jp)-doubling cube centered atx with side length v~kl(Q), where
k € N. We denote by Qx the biggest cube satisfying these properties. Since f$p > v",
we then can prove, by Lemma 1.3, that KQXQ < C. Notice that Qx C r]Q c Q.
By (2.16), we have

(2.20) \mQxf-niQf\ < CCC.
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By Besicovich's covering theorem, there are points xt e Q such that Q n supp fi is
covered by a family of cubes {QXj}, with bounded overlap. From this and (2.20), we
deduce

I \f-m5f\dv.<T[ \f-mSf\dn
JQ i JQ,t

< cccn(vQ)-

Thus / 6 rbmoin,). •

The following theorem is a version of John-Nirenberg's inequality related to the
space rbmo(ii). To prove it we adapt the arguments of [13, Theorem 3.1] which is, in
fact, the John-Nirenberg's inequality for the functions in RBMOiy) (see also [7]).

THEOREM 2.6. Let f € rbmo(ix) and let r) € (1, oo), p € [rj, oo) and [fQ}Qbea
collection of numbers satisfying

(2.21) sup -1— f I /M - fQ\dn(x) < CH/IU,
G:'(2)<1 \l\AV.) JQ

(2.22) l/G-M

/or any Avo cufeei Q C R with l(Q) < 1, and for any cube Q with 1{Q) > 1,

(2.23) l/el<C||/ |U.

Then, for any cube Q with l(Q) < 1 and any X > 0, we have

(2.24) n{xeQ: \f(x)-fQ\>k]<C4n(riQ)cxp

and for any cube Q with l(Q) > 1 and any k > 0, we have

(2.25) n{x € Q : | /(JC)| > k} <

//ere C4 > 0 and C5 > 0 depend on r\ and p and are independent ofk and f.

To prove our theorem, we need the following lemma.

LEMMA 2.7. Let f € rbmo((i) and let {/gle be a collection of numbers satisfying
(2.21H2.23). / / Q and R are cubes such that l(Q) ~ /(/?) and dist(g, R) < l(Q),
then

(2.26) \fQ - M < CII/IU.
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PROOF. If min(/(<2), /(/?)) > 1, then we obtain (2.26) by (2.23).
If min(/(0, /(/?)) < 1, let R' be the smallest cube concentric with R containing

Q and R. Since l(Q) ~ l(R') ~ l(R), we have KQ,K < C and A"*,*' < C. If
max(/(0, /(#)) < 1, by (2.22), we then have

l/e - /*l < l/e - f*\ + \f* ~ M <

Ifmax(l(Q),l(R)) > l,say,/(i?) > l ( then/(0 < landl(R') > 1. Thus,by(2.22)
and (2.23), we obtain

l/e - M < l/e - /«'l + l/«'l + IM < C^e,«-||/||, + C||/||, < C||/||,.

Thus (2.26) also holds. If/(/?) < l,then/((2) > 1 and/(/?') > 1, we then can obtain
(2.26) also by (2.22) and (2.23). •

The following lemma is similar to [13, Lemma 3.3] and its proof is also similar, by
replacing [13, Proposition 2.5] by Proposition 2.2, to the proof of [13, Lemma 3.3].
We omit the details.

LEMMA 2.8. Let f € rbmo(ii). Given q > 0, we let

f,x)=\fW if\f(x)\<q;
U/0O/I/0OI if\f(x)\>q.

Then / , € rbmo(fi) with | |/, | | < C||/ |L.

We also have a remark similar to [13, Remark 3.4], which will be used in the proof
below.

REMARK 2.4. Let / e rbmo(fM) and let {/G}G be a collection of numbers satisfying
(2.21M2.23). We set fQ,+ = max(/G, 0) and /Ci_ = - min(/e, 0) and we set

,+, q) - min(/e,_, q).

Then, it is easily seen that

SUPQJ(Q)<1 I^K^Q) JQ

\fq.Q-fq.R\<CKQAfh

for any two cubes Q C. R with l(Q) < 1, and for any cube Q with 1{Q) > 1,

l/,.el
where C > 0 is independent of q.
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PROOF OF THEOREM 2.6. We prove (2.24) and (2.25) for r] = p = 2, The proof for
other values of r\ and p is similar; see also Remark 2.1.

Let / € rbmo(fM) and assume first that / is bounded. Let Qo be some fixed cube
in Rd with l(Q0) > 1 and we write Q'o = \Q0. Let B be some positive constant
which will be fixed later. By [13, Remark 2.3], for /x-almost any x e QQ such that
\f(x)\ > B\\f\\,, there exists some doubling cube Qx centered at x satisfying

(2.27) m e , | / | >

Moreover, we may assume that Qx is the biggest doubling cube satisfying (2.27) with
side length 2~kl(Q0) for some integer k > 0 and l(Qx) < JQI(QO). By Besicovich's
covering theorem, there exists an almost disjoint subfamily {£),}, such that

(2.28) [xeQ0: I /Ml > B||/||.} C | J Q,.
i

By Proposition 2.3 and Proposition 2.4, we deduce from (2.21)-(2.23) that

(2-29) - T ^ T [\f(x)\drtx)<
JR

for any cube R with /(/?) > 1. Thus, if we choose B big enough, by (2.29), we then
have

(2.30) EMC) < E ^ I I/WUMM <

c

We now prove that

(2.31) l / a l < C 6

If l(Qi) > 1, (2.31) is true by (2.23). If /(£?,-) < 1, we consider the cube 2Qi and we
then consider several cases.

If/(2^,) > lOl(Qo), then thereexists some cube 2mQ,,m > 1, containing Qo and
such that/(go) ~ l(2mQi) < l(2Qt). Thus, if/(2Q,) > 1, then

I/a I < I/ft - /2ft I + l/2ftl < CKQ,,2QI H/ll, + CH/IU < CH/IU.

,) < 1 </(2m<2,),then

I/ft I < I/ft - /2ft I + l/2ft - /2-ftl + l/2-ftl

< C^fti2a||/|U + CK2Ql,VQl H/IU + CII/IU < CII/IU,
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where we used (2.23) and the fact that K2Qi,2-Q, < C since there are no doubling
cubes of the form 2*£>, between Q, and 2mQt and K1Qiy.Qi < CKQi2mQj < C by
Lemma 1.3. If l(2mQi) < 1 < /(£><,), we have

I/a I < I/a - /2e. I + 1/20. - A-a I + 1/2-ft - /a, I + I/a, I

< C [ATft,2a + % , 2 - c , + AT2-a.ft,] 11/11.

by (2.23) and Lemma 1.3 again. Thus, in this case, (2.31) is true.
Now if 1 < l(2Q,) < 10/(go), then by (2.22M2.23), and Lemma 1.3, we have

(2.32) |/0,1 < I/c , - fa I + |/ift I < CKQl^ II/IU +

If/(<2o)/lO < /(2^,) < 1, then from (2.22H2.23), Lemma 2.7 and Lemma 1.3
we deduce

I/ft I < I/ft - /ift I + l/ift " /ft, I + I/fid

< C [tfG,,2a + ^2ft,Co] II/IU + CII/IU < C l l / L .

If/(2Gj) < /((2o)/10,then,bythemaximalityof Ci, wehavem2-e.(|/|) <
which implies that

(2.33)

If/(2^,) > 1, then (2.32) indicates (2.31). If /(2Q.) < 1, by (2.21), (2.33) and
Lemma 1.3 we have

I/e, I < I/a - /ie, I + I /ift -«2 f t ( / ) l + l«2ft(/)l

I/0O-/iff,I

^ II/IU
M(2(2.)

< CH/IU.

Thus, in any case, (2.31) holds.
Now we consider the function

X(t)= s u p
Q:l{Q)<\ H'K^-Q) JQ
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Since / is bounded, X(t) < oo. By (2.28), (2.30) and (2.31), we have

(2.34) -1— f exp(\f(x)\J—\ dn(x)
H(2Qo) JQ0 \ 11/11*/

1 f
I exp(Bt)dfi,(x)

•'Oo\u,G,

o ) i

f exP ( W > - fa. \

< exp(Sr) + ix(0exp(C6r) + ^

If'(Co) 5 1, by a modification of the argument in [13, pages 108-110], we can prove

(2.35)

7^Qo)LeXP{ \f(x) - /OOITT^T) dn(x) < exp(flf) + ]-X(t)exp(C6t).
11/11* 4

From (2.34) and (2.35), it follows that

T3 1 I
X(t) exp(C6f) < 2exp(fir).

L4 2 J

Thus, for tQ small enough, we have X(t0) < C7, where C7 > 0 depends on t0,
andC6.

Therefore, if / is bounded and l(Q) < 1, then

{x € Q : |/(*) - / e | > XH/U.A,} < / exp (<bl/^~ / g ' ) exp(-
/ \ 11/II* /

which is equivalent to (2.24).
If / is bounded and l(Q) > 1, then

€ G : I/Ml > A||/|LAo} < / exp
/

LAo} < /"
/g

<C7/x(2G)exp(-X),

which is equivalent to (2.25).
When / is not bounded, by Lemma 2.8, Remark 2.3, and a similar argument to that

in [13, page 111], we can prove that (2.24) and (2.25) are also true. •
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From Theorem 2.6, we can easily deduce that the following spaces rbmop(n)
coincide for all p € [1, oo). Given t] € (1, oo), p e [??, oo) and p 6 [1, oo), we say
that / € L^ifj.) is in rbmop(fi) if there exists some constant C8 > 0 such that for any
cube Q centered at some point of supp fi with l(Q) < 1,

(236> \^ [ ) '

for any two (p, /}p)-doubling cubes Q C R with l(Q) < 1, and for any cube Q with
KQ) > 1,

(2.37) (—l— f \f(x)\"dn] " <C8.

Moreover, we define the minimal constant Cg as the rbmop(n) norm of / and we
denote it by ||/|U,P.

REMARK 2.5. Arguing as for p = 1, one can prove that another equivalent definition
for rbmop(fi) can be given in terms of the numbers {/Q}Q as in (2.4M2.6). Moreover,
Proposition 2.5 is also true for rbmop(n) with any p e (1, oo). We omit the details.

By using Theorem 2.6, we can prove the following corollary. See the proof of [13,
Corollary 3.5] for the details.

COROLLARY 1.9. For p e [1, oo), the spaces rbmop(fi) coincide and their norms
|| • ||»,p are equivalent.

Finally let us give another useful property of the space rbmo(n). To do so,
given a cube Q C W and / e Lx

loc(^), we let aQ{f) be the constant for which
info m G ( | / — ar|) is obtained. It is known that the constant otQ(f), which may be not
unique, satisfies

li[xeQ:f(x)>aQ(f)}<n(Q)/2
and

(i{x € Q : f(x) < aQ(f)} < n(Q)/2;

see [7, page 30] and [13, pages 115-116].
Given »; e (1, oo), p e [r?, oo), fip big enough and / e L^i/x), we denote by

||/ | |o the minimal constant C9 > 0 such that

(2.38) T -^-rr [ 1/ - «5(/)l dix < C[ 1/ - «5
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for any two (p, /^-doubling cube Q C R with l(Q) < 1,

(2.39) \aQ(f) -aR(f)\ <C9KQ,R,

and for any (p, p^-doubling cube Q with l(Q) > 1,

(2.40) | a e ( / ) | < C9.

Then we have the following proposition which is similar to [13, Lemma 4.5].

PROPOSITION 2.10. || • ||o is a norm which is equivalent to || • ||,.

PROOF. Let us first prove that || / 1 | „ < C || /1|„. To this end, for any cube Q c Kd,
we define

= jofg(/) if
10 otherwise.

To prove our claim we only need to prove that if Q C R with l(Q) < 1,

But, this can be proved by a similar way to (2.7) and we omit the details.
Now, let us see the converse. We want to prove that | |/ | |o < C||/||»*. Let Q be any

(p, ^-doubling cube with l(Q) > 1. Then, by the definition of aQ(f), we have

- f fdnix) < [ \f-aQ(f)\dn< [ \f\dfi.
JQ JQ JQIQ

From this, it follows that

(2.41) \aQ(f)\ii{Q)<2 [ \f\dfi.
JQ

By (2.8) we then have

(2.42) |ofC(/)| < CU/IU,

that is, (2.40) holds.
To verify (2.38), we first see that if Q is a (p, p%)-doubling cube with 1{Q) < 1,

then

(2.43)

1 ' \f(x) - aQ{f)\ dii
Q

2< f \f(x)-aQ(f)\dfx<C\\f\\tt.
Jo
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Now, replacing (2.8) and (2.11) in the last part of the proof of Proposition 2.4,
respectively, by (2.42) and (2.43), we then can prove that (2.38) and (2.39) also hold
with Cg < CII/IU*. Thus our claim holds. •

3. The space h]^(ji) with 1 < p < oo

We first introduce the space h^i/x) and present some properties of this space. In
the following, for a fixed p e (1, oo), a function b € L\x{ix) is called an atomic block
if it satisfies

(i) there exists some cube R such that supp b c. R,
(ii) fRb(x)dv(x)=O,
(iii) there are functions aj supported on cubes Qj C R and numbers kj e K such

that b = X7=1 XjUj and ||a||z~(M) < [/x(pQj)KQj,R]-1.

Then we define |6|/,'~(M) = ^ 1̂ ; I- A function b e L^i/i) is called a block if it
satisfies only (i) and (iii).

Moreover, we say that / e hl
a't™(/x) if there are atomic blocks or blocks bt such

that

(3.1) f =J2bi'
i

where £,. |fc,-|Ai.~(M) < oo, fc, is an atomic block if supp bt C /?, and /(ft,) < 1, and bt

is a block if supp 6, C /?, and /(/?,•) > 1. And we define the hl
a'™(ix) norm of/

by letting | |/ ||/,';»(/i) = inf X!, l^il/i'^w w n e r e m e infimum is taken over all possible/,;
decompositions of/ in atomic blocks or blocks.

We remark that the atomic blocks were first introduced by Tolsa in [13]. He used
them to define the Hardy space H^(ix). To be precise, the Hardy space //o',£°(^i)
consists of all Ll(/x) functions which can be represented as in (3.1) with all the &,'s
being atomic blocks. Obviously, H^(fi) C /i^°(/z) C Ll(/x).

On this local Hardy space, we have the following basic properties. The proof of
Proposition 3.1 is similar to the proof of [13, Proposition 4.1]. We omit the details
here.

PROPOSITION 3.1. (i) The space hl
a'™((i) is a Banach space.

(ii) hl,™(iJ.) c L\fi) with \\f \\Liw < \\f \\h^w.

(iii) The definition o//ia;£°(/z) is independent of the choice of the constant p > 1.

The spaces h^(fi) and rbmo(fx.) are closely related. In fact, we prove that the dual
of hg,™(n) is rbmo(fj.). We first have the following inclusion.
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LEMMA 3.2. Let g e rbmo(fi). Then the linear functional Lg(f) = f
defined on bounded functions f with compact supports extends to a continuous linear
functional Lg on h^(ji) with WLJ^^. < C\\g\\.. That is,

PROOF. Following some standard arguments (see, for example, [3, pages 294-
296]), we only need to prove that if b is an atomic block with suppfe C R and
l(R) < 1 or a block with supp b C R and /(/?) > 1 and g e rbmo(n), then

(3.2)
JR*

bgd/x

If b is an atomic block, then [13, Lemma 4.3] can be adopted to show (3.2). We now
prove (3.2) when b is a block with suppfc C R and /(/?) > 1. Suppose b = ^ , A,a,
and let {go}Q be the collection of the numbers satisfying (2.4)-(2.6) of the definition
of g e rbmo(fi). We then write

(3.3) [ bgdfi < I b(g-gR)dix +\gK\ I \b\d/i.
J\x.d JR JR

By (2.6) and the definition of b, we have

(3.4) \8R\
/ .

lay I

Moreover, if l{Qt) > 1, by (2.6) and (2.8), we obtain

(3.5) f \g-gR\dix< f
J g, J Q,

i) < 1. by (2.4) and (2.5), we then have

(3-6) I \g-gR\dfjL< f \g-gQi\dn + \
JQ, jQt

l)\ 11*11.

From (3.5), (3.6) and the definition of b, it follows that

(3.7)

Now (3.4), (3.7) and (3.3) tell us (3.2). D
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We now prove that the converse inequality in Lemma 3.2 is also true.

LEMMA 3.3. Ifg € rbmo(fi), then ||Lg||^»(M). ~ \\g\\,.

PROOF. By Lemma 3.2, we only need to prove that ||LJAi.oo(M). > C~'||gll*. We
prove this by showing that there exists some function / e hl

a;™(fj.) such that

For simplicity we assume that p = 2. Let e > 0 be some small constant which will
be fixed later. There are two possibilities:

(1) There exists some doubling cube Q c &d with l(Q) < 1 such that

(3.8) [ \g-«Q(g)\dn>c\\g\\on(Q),
JQ

or there exists some doubling cube Q C &d with l(Q) > 1 such that

(3.9) \aQ(g)\ > e\\gh.

(2) For any doubling cube Q cRd with l(Q) < 1, (3.8) does not hold and for any
doubling cube Q C Rd with l(Q) > 1, (3.9) does not hold.

Let us first see case (1). If (3.8) holds, by an argument similar to that in [13,
page 116], we can find an / e h^ifi) such that

= \iIK.d

If (3.9) holds, we take / = signg/M«2). Then / e fc^V) and \\f\\h^M < C. By
(2.41) and (3.9), we then have

= / \g\dn/n(Q)>C-]

JQ

Thus, in case (1), our claim holds.
Now, let us consider case (2). We have two subcases.

(a) For any two doubling cubes Q c R with l(Q) < 1,

\aQ{g)-aK(g)\<-KQ.R\\g\\o.

(b) There are doubling cubes Q C R with l(Q) < 1,

\ctQ(g)-ctR(g)\>^KQ,R\\g\\o.
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Let us first consider case (a) under assumption (2). In this case, by the definition
of ||g||0, there exists some cube Q with l(Q) < 1 such that

(3.10) f \g-ctQ(g)\d(x>l-\\g\\oti(2Q).
Jo *

< 1, then by the argument in [13, page 117], we know that if we choose e > 0
small enough, then our claim holds. If l(Q) > 1, we then choose

/ = X\xeQ:g(x)>ag(g)) ~ X{xeQ:g(x)<aQ(g)]-

Then supp/ C Q C Q, and \\f\\h^(ll) < n(2Q)KQiQ~ < Cfi(2Q). Moreover, since
(3.9) does not hold for Q, by (3.10), we have

[ gfdfi = f[g-aa(g)]fdiJ.
JQ JQ

^ / \g-
Jo -*II«IU(G)

l

if we choose e small enough. Thus, in this case, our claim also holds.
Let us consider case (b). If l(R) < 1, then the same argument as in [13, page 118]

gives us the proof of our claim. If l(R) > 1, we take / = XQ- Then

O ,R < Cn(Q)KQ,R.

Since (3.8) does not hold for Q and (3.9) does not hold for R, we then have

f gfd
JQ Q

>\«Q(g)-aR(g)\n(Q)- f \g-aQ(g)\dn-\aK(g)\n(Q)
JQ

>C-l\\gUf\\hlrw,

if we choose e small enough. Thus, in this case, our claim is still true. •
To establish the duality between /j^°(/x) and rbmo(fi), we follow the same pro-

cedure as that for the duality between H*;™(ii) and RBMO(ii) in [13]; see also [7].
To do so, we introduce the atom and block spaces h^iix) for p € (1, oo) and we
prove that they coincide with h^ifi) and the dual of the space h]^(fi) is the space
rbmo(fi) simultaneously.

In the following, for a fixed p € (1, oo), a function b € L^in) is called a p-atomic
block if
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(i) there exists some cube R such that supp b c R,
(ii) fRbdn = O,

(iii) there are functions ay supported in cubes Qj C R and numbers kj e IR such
that* = £°°=, A,a;, and I M ^ , < n(pQj)l»-lK£R.

A function fe e Ll
loc((i) is called a p-block if it satisfies only (i) and (iii).

For a p-atomic block or a p-block, we define \b\h\.pw = £\. |A.;-|. Then, we say
that / e hlibin) if there are p-atomic blocks or p-blocks bt such that

(3.11) /

with £(. |ftilA'c(M) < oo, where 6, when suppfc, c Q, and /(Q,) < 1 is a p-atomic
block and bt when supp bt c G, and /(£?,) > 1 is a p-block. Moreover, we define the
hl

a£(n) norm of / by ||/||A'c(/ i) = inf £ , \bi\^p{ll), where the infimum is taken over
all the possible decompositions of / in p-atomic blocks and p-blocks as above.

If all the bj's in (3.11) are p-atomic atoms, the all such / ' s form the space Hx
a£{n)

which was first studied by Tolsa in [13]. Obviously, we have

(3.12) HXJill) C hlj(n)CLl(M).

The spaces h^in) have similar properties to the spaces h^ifi) (see Proposi-
tion 3.1). We omit the details of the proof (see also [13, Proposition 5.1]).

PROPOSITION 3.4. Let 1 < p < oo and 1 < p < oo.

(i) hl
a'£(ii) is a Banach space.

(ii) hl
afb(n) C L\n) with UWow < ll/ILl'w

(iii) For 1 < p\ < p2 < oo, we have the continuous inclusion hl^dx) C h)£ (ft).
(iv) The definition ofhl

a'£(fj,) does not dependent on the constant p € (1, oo).

In the rest of this section, we assume the constant p in the definition of the space
hx

at
p
b(ix) is 2 and the constants p and r) in the definition of the space rbmoiix) are also 2.

Moreover, for any p € (1, oo), we define p' by 1/p + 1/p' = 1.

LEMMA 3.5. For any p e (1, oo), rbmo(fx) C /ia;^(/x) . That is, for any g €
rbmo(fi), the linear functional Lg(f) = fKd fgd/j, defined on bounded functions f
with compact support extends to a unique continuous linear functional Lg on ha£(fx)

C 1

PROOF. Similar to the proof of Lemma 3.2, we only need to prove that if b is a
p-atomic block or p-block and g e rbmo(fi), then

\L <C\b\hi£wW8\\-
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In the following, we suppose supp b C R and b = £ . kjaj. If l(R) < 1, then b is a
p-atomic block. Since fR bd\i = 0, then

(3.13) f bgdfi = I b(g-m^g))dix
Jw JR

'IH^II^(M) / \g-m5

Since ge rbmo(fi), by Corollary 2.9, we have ge rbmcP\\x). From/(Qi) < K.R) < 1,
by (2.36) and (2.7), we deduce

(3.14) U \g-m^g)fdn\
W

"

< C\\g\\tn(2Qj)1/p'+ CKQj,R\\g\\MQj)W

From (3.13) and the definition of p-atomic blocks, we then deduce

If l(R) > 1, then b is a p-block. We then have

(3.15)

We first have

I bgdu < I blg-ms
Jvf JR

+ \mS(g)\ [ \b\dn.
JR

f\b\dn<C\\g\\.1V\kj\ I \aj
JR JQJ

If KQj) < 1. by (2.36) and Remark 2.3, we easily see that (3.14) still holds. From
this, it is easy to deduce

(3.16) <\\aj\\UM\[ \g ~ mS(g)\"'dJ < C\\g\U.
[JQJ I
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If l(Qj) > 1, by (2.37), we have

(3.17) U \g - ms(g)\>>'dJ " < I J \g\"'dn\ " +\mn(g)\n(Qj)
l">'

< C\\g\\M2Qj)l/p' + C\\g\\MQj)w

< C\\g\\tlj.(2Qj)l/p\

and therefore, | / aj[g - mg(g)]dfi\ < C\\g\\t. By combining (3.16) and (3.17)
with (3.15), we obtain our claim. •

From the above, (3.12), and [13, Lemma 5.4], Lemma 3.4 follows; see also [7].

LEMMA 3.6. For 1 < p < oo, we have / I ^ ( M ) * C Lp
x(fj,).

LEMMA 3.7. For 1 < p < oo, we have / ^ ( /x )* C rbmo{ix).

PROOF. Let g e h^(fi) . By Lemma 3.7, we can suppose g e Lfoc(/x). We now

verify that g € rbmo^) and ||g||o < C||Lgi|Ai.P( }«. We prove that for any cube Q with

KQ) < 1,

a i 8 )

(3.19) \aQ(g)-aR(g)\<

for any two doubling cubes Q C R with l(Q) < 1, and for any doubling cube Q with

KQ) > l,

(3-20) \aQ(g)\ < C\\Lg\\h]£w:

We first prove (3.20). Let Q be a doubling cube with /(Q) > 1 and le t / = XQ sign g.
Then/ € hl

al
p(ix) and | | / ||A..,(M) < Cfx(Q). By (2.41), we then obtain

gf

Thus (3.20) holds.
We now verify (3.18). If Q is a doubling cube, by the proof of [13, (5.2)] we know

that (3.18) holds. Suppose now Q is non doubling. If Z ( 0 < 1, then (3.18) is also
true by the proof of [13, (5.2)]. Now suppose that /(Q) > 1. We take

g-«~Q(g)
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Then supp& c Q- By Lemma 1.3, we have KQ g < C and from this, it follows that

(3.21) < C ^J \g - ct~Q(g)\p

Since (3.20) is true for Q, by (3.21) and Proposition 3.4 (ii), we have

(3.22) f \g - a~Q{g)\p' dti = f (g - «5(g)) bdn
JQ JQ

I gbdit +\a~Q(g)\ I \b\dti
JQ JQ

^c\\LA]£W'\f \8~«Q(8

That is,
Up'

which implies (3.18). Thus, in all the cases, we have (3.18) holds.
Finally, let us verify (3.19). If l(R) < 1, then by the proof of [13, (5.3)] we can

easily obtain (3.19). Now suppose that l(Q) < 1 < l(R). We then take

, \g-<XR(g)\"
b g-aK(g)

Then it is easy to check that

\ f l1 / p

(3.23) \\b\\h>,w<CKQ,R{ \g-aR(g)\" dfj,\ M ( 2 0 1 / P '
[JQ J

(see the proof of (3.21)). By (3.20) for R and (3.23), as in (3.22), we then have

/ I*-««(*)!" ' dn < C\\Lg\\h,P .\\b\\h>,w
JQ

<CKQ,K\\Lg\\k]£w.yQ\g-,

Thus

(3-24) "
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Since Q is doubling with l(Q) < 1, and, therefore, satisfies (3.18), by (3.24) we
obtain

\aQ(g) - aR(g)\ = —— / \aQ(g) - aR(g)\ dfj,
V-Kvl) JQ

That is, (3.19) also holds. •

Now, if we replace [13, Lemmas 5.2, 5.3 and 5.4], respectively, by Lemmas 3.5,
3.7 and 3.6, then by the same argument as in [13, Theorem 5.5], we can prove the
following theorem; see also [7]. We omit the details.

THEOREM3.8. For \<p<oo, hl
al£(n) = hl

a™(ix). Moreover, hl
al™(n)* = rbmo(n).

4. An interpolation result

In this section we choose r) = 3/2 and p = 2 in the definition of the space rbmo(fi).
In [13] Tolsa has introduced the following sharp maximal operator related to the

space RBMO(fi):

(4.1) Mlf(x) = sup J \f - mg/| dp.

\mQf -mRf\
+ sup 1 l-.

QCR: xeQ. Q, R doubling "-Q.R

Then it is clear that / € RBMO(fi) if and only if M"/ € L°°(/z). The sharp maximal
operator related to our space rbmo(n) is defined by

(4.2) M'f(x)= sup —l—[\f-msf\dn
Qix, I(Q)<1 V- \lQ) JQ

\mQf - mRf\
+ sup J !•

QcR: X€Q, HQ)<\, Q, R doubling "-Q.R

+ ŜUp ^—l—j\f\dpL.

Obviously, we have that / G rbmo(fi) if and only if Af"/ e L°°(/i), and by (4.1)-
(4.2), we obtain

(4.3) M'f(x) < CM* f{x).
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In [13], for p € (1, oo), Tolsa also introduced the following maximal operators N
and M(p):

Nf(x)= sup -L- [ \f\d(i and Mip)f (x) = sup - ^ - - f \f\dfi.
Q3x, Q doubling H\\l) JQ Qsx l^\\i) J Q

Tolsa proved that N and M(f>) are of weak type (1,1) and bounded on Lp(n), p e
d,oo].

From (4.2) it is easy to see that Mif(x) < C(M(3/2)/(x) + Nf(x)), which tells us
that M" is of weak type (1,1) and bounded on Lp(ii), p e (1, oo].

By (4.3) and [13, Theorem 6.2], we easily obtain the following lemma.

LEMMA 4.1. Let f e L ' ^ M ) with /E, fdfi = Oif\\u\\ < oo. For I < p < oo, 1/
e

Our main theorem in this section is the following interpolation result for operators.

THEOREM 4.2. Let T bea linear operator which is boundedfrom hl
a;™ (/x) into L' (ix)

and from L°°(fi) into rbmo(fi). Then T extends boundedly to Lp(fi), 1 < p < 00.

The proof of Theorem 4.2 follows the scheme of the proof of [13, Theorem 7.2];
see also [7]. We need the following Calderon-Zygmund type decomposition, which
is [13, Lemma 7.3].

LEMMA 4.3. For I < p < 00, consider f € Lp (/x) with compact support. For any
k>0 (with k > fa\\fh>M/\\n\\ '711/* II < 00). we have

(a) There exists a finite of almost disjoint (namely, with a bounded overlap) cubes
[Qi], such that

, / <¥. for all n> 2,
Qi p M2r)Q) J &

(4.4) | / | <A . a.e.(n) on R" \n ,Q, .

(b) For each i, let u>, = Xa/(IZiXeJ and let /?, be a (6, 6"+l)-doubling cube
concentric with Qt and with l(Rt) > 4l(Qj). Then there exists a family of functions
<Pt with supp & C Ri satisfying fRj <pi d\x = fQ_ fwt dfi and

(4.5)

(where B is some constant), and if I < p < oo,

\f\pdfi.
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(c) For 1 < p < oo, if Ri is the smallest (6, 6"+1) -doubling cube of the family
{6kQi)k>\ and we set b = £ , ( / wt — (pi), then

(4.6)

PROOF OF THEOREM 4.2. For simplicity we assume ||/x|| = oo. Obviously, the
functions/ 6 L°°((j,), having compact support, are dense in Lp(/x), 1 < p < oo. For
such functions we prove that

(4-7) \\M'Tf 1 1 ^ , < C\\f \\uw, 1 < P < oo.

By (4.7), Lemma 4.1 and the fact that \f (x)\ < Nf (x) for /x-a.e. x € Rd, we have
\\Tf\\LHn) - CWfWffji.)- Note that if/ e L0 0^) has compact support, then / e
h\£(ji) and Tf e L'(/x). Thus7V(7/) e Ll00(/i) and then inf{l, N(Tf)} e L"(/x).
This means the hypotheses of Lemma 4.1 are satisfied.

Given any function / € Lp(n), 1 < p < oo, for A. > 0, we take a family of
almost disjoint cubes {£?,}, as in Lemma 4.3, and a collection of cubes {/?,}, as in (c)
of Lemma 4.3. Then

By (4.4M4.5), we have ||sllz.~(M) < Ck, and by (4.6) and (3.12),

Since T is bounded from L°°(/LI) into rbmo(fx), we have ||Af7y ||L»(M) < QoA.. Thus

{x € r ' : MnTf(x) > (C10 + 1)X} C {x e VLd : M*Tb(x) > k].

Since A/8 is of weak type (1, 1), we have

n{xeR": M>Tb(x) > k} <

On the other hand, as T is bounded from A^£°(/z) into

Thus

At {x 6 Krf : Af«r/(x) > k} < ^WfW'w

This means that the sublinear operator Mi T is of weak type (p, p) for all /? 6 (1, oo).
By the Marcinkiewicz interpolation theorem we obtain that Mi T is bounded on Lp (/x)
for all p e (1, oo). In particular, (4.7) holds for a bounded function / with compact
support. Thus our claim holds. D
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5. Relation between h^(fi) and H^ifi)

In this section, we establish some relation between the space ft^Ox) and the space
//^°°(/x) studied in [13]. Let us first recall the characterization of the Hardy space
H^(fi) in terms of a maximal operator A/<t> which was established in [15] and will
be used in the following.

DEFINITION 5.1. Given/ e L/^Ox), we set

M<t>f (x) = sup
JR"

fcpd/x

where the notation <p ~ x means that (p e Ll(fi) H Cl(Rd) and satisfies

0) IHIt>o.)<l.
(ii) 0 < <p{y) < \/\y - x\" for all y e Rd, and

(iii) \V<p(y) <l/\y -x |n+1 for all y e Rd.

LEMMA 5.2. A Junction f belongs to the space H^(fi) if and only iff 6 L\ix),
f^f dfi = 0 and M®f e Lx{(x). Moreover, in this case,

To establish the relation between the space h1^ (/x) and the space H*;™ (/x) we need
a special function. Let <p be a function on Krf x Kd satisfying

(5.1) <t>(x, y) = 0 if |x — y| > Q , where Q > 0 is a constant;

(5.2) \<P(x,y)\<Q;
f

(5.3) for/x-a.e. yesupp/x , / (/>(x, y)dfu,(x) = 1.

Obviously, if supp /x is bounded, we can just take

<j>(x,y) = T

/x(supp/x)
Then this function <p satisfies (5.1)—(5.3). Moreover, if 0 satisfies (5.1)—(5.3), then </>
also has the following properties:

(5.4) \4>(x,y)\ <7-^-rn for x ^ y;
\x y i

(5.5) for/x-a.e. y 6 supp/x, / \<j>(x, y)\ dfi(x) + / \<p(y, x)\ dfi(x) < Q .
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In the following, for a function <j> on Rd x Rd and suitable functions / , we define

W ) = f <Kx>y)f(y)dn(y)-

THEOREM5.3. Let <p be a function on Rd xRd satisfying (5. l)-(5.3). / / / e h^i/x),
thenf - Ttf € / /J£°(M) and \\f - Trf \\H^W < C\\f ||A..»(M), where Cis independent
off-

PROOF. By the definition of the space /i^°(/z) and Lemma 5.2, to prove Theo-
rem 5.3, we only need to verify that if b is a block or an atomic block, say, b = ]T Xj Oj,
then f^Mtib - Tl),b)(x)dfi(x) < C £ ; |A.;|. Let suppfc c R, where R is a cube
with the center ZR and the side length l(R).

We first suppose b is a block. Then /(/?) > 1. In this case, it is easy to see that
supp T^b C CUR, where Cn > 0 depends only on Q,. We then write

[ M*{b-T<pb)(x)dfj,(x)= [ M*{b-T4,b){x)dn{x)+ I ••• = /1 + /2.
•/If Jof^CR ./2CiiK

For /,, by (5.5) and f^AHy) - T^biy)] dn(y) = 0, we obtain that, when x e

f [b(y) - T*b(y)][<p(y) -

\ f \b(y)\dn(y)+ f I \(p(y,z)\\b(z)\dfi(z)dix(y)Cl(R)

- i^-^r1 LlHy)ldtl(y)

<_CKR)_

From this, it follows that

Now let us estimate /2. We first have

h
lCuR

< I
< T] \kj\ \ I M*aj(x)dv(x) + f

i \.J2C»R Jl
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To obtain a desired estimate for /2, we need to prove

179

+ [
2CnR

(5.6) / M<taj(x)dn(x)
J2CnR

Let Qj be the support of a, and zQj be its center. We further write

/ M*aj (JC) dn(x) = / M*aj (x) dix(x) + f
JlCuR JlQj J2

When x e2Qj and <p ~ x, we have

C.

2CllR\2Qj

From this and the definition of a block, it follows that

When x e 2CnR \ 2Qj, by the definition of <p ~ x, we have

1 .. ..

" I* - ZQ, \"

From this, Lemma 1.3 and the definition of a block, we deduce

(5.7) [ M*aj(x)dn(x)<C\\aj\\LHlt)8(2Qj,2CuR)
J2CnR\2Qj

C.

The estimate for the second term in the left-hand side of (5.6) is similar. We also write

= f M»(T+aj)(x)dlx(x)+ f/ f
JlCuR JlQj J2CnR\2Qj

For the first term, when x e 2 Qj, by (5.5) and the definition of <p ~ x, we have

v(y)T4aj(y)dn(y)

From this, it follows that

< f

I M*(T+aj)(x)dn(x) < C\\aj\\L-wnVQj) <
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which is a desired estimate. When x e 2C\\R \ 2Q, and <p ~ x, by (5.4)-(5.5), we
have

< f 1̂
.•/R1*

• J L

I* - ZQj r

Then similar to (5.7), we can prove J2QlR\2Q M*(T<))aj)(x)d(x(x) < C which is a
desired estimate. Thus (5.6) is true. We have proved our claim when b is a block.

Now let us prove our claim when b is an atomic block. Suppose supp b c R with
the center ZR and the side length l(R) < 1. Let R\ be the cube with the center ZR and
the side length Q + l(R). Then supp T^b C /?i. We then write

f M*(b - T<pb)(x)d^i(x) = f M*(b - Ttb)(x)dfM(x) + f ...+ f ...
JtHJ J«.d\2R[ J2R,\2R J2R

The estimate for 73 is similar to 7i by replacing 2C\\R there by R\ here. We omit the
details. To estimate /4, we further write it into

(5.8) h < I M$b(
J2R,\2R

I M*(Ttb)(x)dn{x).
J2R,\2R

On the first term, by the definition of <p ~ JC and J%d b{y) d/x(y) = 0, we have that
when* e 2/?, \2R,

L<p(y)b(y)dii(y) I
JHd

[<P(y)-<P(zR)]b(y)d^(y)

~ \x-zR\"+i\x-zR\"

From this it follows that

,\2R
< Cl(R)

2R,\2«
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which is a desired estimate. For the second term in (5.8), by the definition of <p ~ x
and (5.2), we then have

^<p(y)T+b(y)dn(y)

We then deduce

M*(T+b)(x)dv.(x)<
2«i\2R

J J

which is also a desired estimate. The estimate for I5 can be obtained by a similar
way to that for /2. We only need to replace 2CnR there by 2/? here. We omit the
details. •

Let 0 be a function satisfying (5.1)—(5.3). We then define

for any suitable function / . Then, by a proof similar to that of [4, Corollary 1], we
can easily deduce the following corollary from Theorem 3.8 and Theorem 5.3. We
omit the details.

COROLLARY 5.4. Let <p be the same function as in Theorem 5.3. Then

rbmo(ix) = {b e RBMO(n) : T*b 6 L°°(fi)).

6. Some remarks

In this section, we further suppose the measure [i satisfying the following condition
H.{B(x, r)) ~ r" for all x e supp fj, and all 0 < r < diam(supp/i), where, for a set E,
diam E — sup{|x — y\ : x,y e £} . Then, supp /x is a space of homogeneous type in
the sense of Coifman and Weiss in [1].

Let h^fx) = F,°'2(supp/x) which is introduced in [6]. Then it is easy to see that in
this case, we have h\ix) = hl

a;™(/x). In fact, by the atom and block decomposition of
F,°'2(supp/i) in [6], we can easily deduce

/f2(supp/z) C hl
at

2
b(n) = A^O*)

from Theorem 3.8. Conversely, from [13, (2.24) and (2.25)] it is also easy to see that
each 2-atomic block or 2-block b in Section 3 is just a (1, 2,0) atom or (1, 2,0) block
b\ for F,°'2(supp/Li) times a coefficients C|&|AI.2(M). Thus

C V ) = h%(n) C / f 2(suppfi). '
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That is, our claim holds. Moreover, by [13, Example 5.6] and [5, Theorem C], we
know that / / ^ ( / x ) = F,Ol2(supp/x) which was introduced by Han in [5]. We remark
that our Theorem 5.3 and Corollary 5.4 are also true for this special case. Moreover,
the function <f> satisfying (5.1)—(5.3) exists in this special case. In fact, we can just
take <j> = Sk for some fixed k el, where {Sk}kai is an approximation to the identity
constructed by Coif man's method; see [2,5,6].
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