CIRCUMRADIUS-DIAMETER AND WIDTH-INRADIUS RELATIONS FOR LATTICE CONSTRAINED CONVEX SETS

POH WAH AWYONG AND PAUL R. SCOTT

Let K be a planar, compact, convex set with circumradius R, diameter d, width w, and inradius r, and containing no points of the integer lattice. We generalise inequalities concerning the 'dual' quantities $(2R - d)$ and $(w - 2r)$ to rectangular lattices. We then use these results to obtain corresponding inequalities for a planar convex set with two interior lattice points. Finally, we conjecture corresponding results for sets containing one interior lattice point.

1. INTRODUCTION

Let \mathcal{K}^2 denote the set of all planar, compact, convex sets. Let K be a set in \mathcal{K}^2 with circumradius $R(K) = R$, diameter $d(K) = d$, inradius $r(K) = r$, and width $w(K) = w$. Let K^o denote the interior of K and let $\Lambda_R(u, v)$ be a rectangular lattice generated by the vectors $u = (u, 0)$ and $v = (0, v)$, $u \leq v$. In the case where $u = v = 1$, we have the integral lattice, denoted by Γ. Let $G(K, \Lambda)$ denote the number of points of lattice Λ in K. A number of results concerning the 'dual' quantities $(2R - d)$ and $(w - 2r)$ have been obtained by Scott [2, 3, 4] and Awyong [1]. In particular, Awyong [1] proves

THEOREM 1. Let K be a set in \mathcal{K}^2 having $G(K^o, \Gamma) = 0$. Then

\[
2R - d \leq \frac{1}{3},
\]

\[
w - 2r \leq \frac{1}{6} \left(2 + \sqrt{3}\right),
\]

with equality when and only when $K \cong E_0$ (Figure 1).

![Figure 1: The equilateral triangle E_0.](image)
The purpose of this paper is to generalise Theorem 1 to rectangular lattices and to use the result to obtain the corresponding inequalities for a set \(K \in \mathcal{K}^2 \) having \(G(K^\circ, \Gamma) = 2 \). We prove the following results:

Theorem 2. Let \(K \) be a set in \(\mathcal{K}^2 \) with \(G(K^\circ, \Lambda_R) = 0 \). Then

\[
\begin{align*}
(1) & \quad 2R - d \leq \frac{2}{3} \left(2 - \sqrt{3} \right) \left(\frac{\sqrt{3}}{2} u + v \right) \\
(2) & \quad w - 2r \leq \frac{1}{3} \left(\frac{\sqrt{3}}{2} u + v \right),
\end{align*}
\]

with equality when and only when \(K \cong E_R \) (Figure 2).

![Figure 2: The equilateral triangle \(E_R \).](image)

Corollary 1. Let \(K \) be a set in \(\mathcal{K}^2 \) with \(G(K^\circ, \Gamma) = 2 \). Then

\[
\begin{align*}
2R - d & \leq \frac{1}{3} \left(5 - 2\sqrt{3} \right) \approx 0.512, \\
w - 2r & \leq \frac{1}{3} \left(2 + \frac{\sqrt{3}}{2} \right) \approx 0.955,
\end{align*}
\]

with equality when and only when \(K \cong E_2 \) (Figure 3).

2. Proof of Theorem 2

In [1], it was proved that for a set \(K \in \mathcal{K}^2 \),

\[
\begin{align*}
(3) & \quad 2R - d \leq \frac{2}{3} \left(2 - \sqrt{3} \right) w, \\
(4) & \quad w - 2r \leq \frac{w}{3},
\end{align*}
\]
with equality when and only when K is an equilateral triangle.

By applying a result by Vassallo [6] to rectangular lattices, we have the result that if K is a set in K^2 with $G(K^0, \Lambda_R) = 0$, then

$$w \leq \frac{\sqrt{3}}{2} u + v.$$

(5)

Theorem 2 follows immediately by combining inequality (5) with (3) and (4).

3. PROOF OF COROLLARY 1

Let K now be a set satisfying the conditions of Corollary 1. Without loss of generality, we may assume that the origin O is one of the lattice points. Let L denote the other lattice point contained in K^0 and let the coordinates of L be (z_1, z_2), where without loss of generality, $z_1 \geq 0$, $z_2 \geq 0$. By a reflection about $y = x$ if necessary, it suffices to consider those cases for which $z_1 \neq z_2$. Since K^0 contains no other lattice points, the open line segment OL contains no lattice points. Hence we may assume that either $z_1 = 1$ and $z_2 = 0$ or else z_1 and z_2 are relatively prime.

If z_1 and z_2 are both odd, we consider the sublattice

$$\Gamma' = \{(x, y) : x + y \equiv 1 \pmod{2}\}.$$

Clearly, $O \notin \Gamma'$, $L \notin \Gamma'$ and $G(K^0, \Gamma') = 0$. Here we have $u = v = \sqrt{2}$ and by Theorem 2

$$2R - d \leq \frac{1}{3} \sqrt{2} \approx 0.4714 < \frac{1}{3} \left(5 - 2\sqrt{3} \right) \approx 0.512,$$

$$w - 2r \leq \frac{\sqrt{2}}{3} \left(1 + \frac{\sqrt{3}}{2} \right) \approx 0.879 < \frac{1}{3} \left(2 + \frac{\sqrt{3}}{2} \right) \approx 0.955.$$
If z_1 is odd and z_2 is even, we consider the sublattice.

$$\Gamma'' = \{(x, y) : x = m, y = 2n + 1, \ m, n, \in \mathbb{Z}\}.$$

Clearly $O \notin \Gamma''$, $L \notin \Gamma''$ and $G(K^o, \Gamma'') = 0$. In the case where z_1 is even and z_2 is odd, we consider the lattice

$$\Gamma''' = \{(x, y) : x = 2m + 1, y = n, m, n, \in \mathbb{Z}\}.$$

Here, we have $G(K^0, \Gamma''') = 0$. By an appropriate transformation, this is equivalent to the case where z_1 is odd and z_2 is even. In this case $u = 1$ and $v = 2$ and by Theorem 2, we have

$$2R - d \leq \frac{1}{3} \left(5 - 2\sqrt{3}\right) \approx 0.512,$$

$$w - 2r \leq \frac{1}{3} \left(2 + \sqrt{3}\right) \approx 0.955.$$

Equality is attained when and only when $K \cong E_2$ (Figure 3).

4. A Conjecture

We now conjecture the corresponding inequalities for a set K having $G(K^o, \Gamma) = 1$.

Conjecture. Let K be a set in \mathcal{K}^2 having $G(K^o, \Gamma) = 1$. Then

$$2R - d \leq \sqrt{2} \left(\frac{7}{6} - \frac{\sqrt{3}}{2}\right) \approx 0.425,$$

$$w - 2r \leq \sqrt{\frac{2}{12}} \left(5 + \sqrt{3}\right) \approx 0.793,$$

with equality when and only when $K \cong E_1$ (Figure 4).

![Figure 4: The equilateral triangle E_1.](https://www.camos.org/core/terms)
The difficulty which occurs here is that for a set K having $G(K^o, \Gamma) = 1$, $w \leq 1 + \sqrt{2}$, with equality when and only when K is congruent to the isosceles triangle shown in Figure 5 [5]. As this set of largest width is not an equilateral triangle, (3) and (4) do not give sharp inequalities.

Figure 5: The isosceles triangle I_1.

A simple calculation shows that the width of E_1 is $\left(\sqrt{2}(5 + \sqrt{3})\right)/4 \approx 2.38$. Hence if $0 < w \leq \left(\sqrt{2}(5 + \sqrt{3})\right)/4$, it follows from (3) and (4) that for this given range of w,

$$2R - d \leq \sqrt{2} \left(\frac{7}{6} - \frac{\sqrt{3}}{2}\right) \approx 0.425,$$
$$w - 2r \leq \frac{\sqrt{2}}{12} (5 + \sqrt{3}) \approx 0.793,$$

with equality when and only when $K \cong E_1$ (Figure 4).

This leaves unresolved those cases for which $\left(\sqrt{2}(5 + \sqrt{3})\right)/4 < w \leq 1 + \sqrt{2}$. We believe that the set for which $(2R - d)$ and $(w - 2r)$ are maximal is congruent to the equilateral triangle E_1 (Figure 4).

REFERENCES

Division of Mathematics
National Institute of Education
469 Bukit Timah Road
Singapore 259756
e-mail: awyongpw@nievax.nie.ac.sg

Department of Pure Mathematics
The University of Adelaide
South Australia 5005
e-mail: pscott@maths.adelaide.edu.au