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Abstract
A review of Heckmann and Schiicking's formulation of Newtonian cosmology
is presented, which permits the discussion of models more general than those
possessing both homogeneity and isotropy. In particular it is shown that all
homogeneous cosmologies may be uniquely specified by the rate of shear
tensor as an arbitrary function of time and specifying arbitrary initial values
for expansion, rotation and density. Perturbations of these models are now
discussed, with a view to their possible implications for galaxy formation.
The Jeans criterion is shown to hold in all these models, even in the presence
of viscosity; this generalizes a result of Bonnor which only applied to the
isotropic case. Furthermore, Bonnor's analysis is considerably simplified in
the present paper. Finally, a WKB-type of approximation procedure is
described which appears to be successful in estimating the growth rate of
unstable fluctuations.

1. Introduction

Cosmology, the study of the gross dynamical behaviour of the universe, is generally
regarded as being the province of general relativity. However, the cosmological
equations are in general difficult to solve, and once a cosmological solution has been
found its stability poses yet another equally interesting and challenging problem.
The most famous and frequently used class of solutions are those representing
isotropic and homogeneous solutions, and are known as Friedmann models. The
perturbation theory of these models was analysed by Lifschitz [1] in 1946, and he
came to the conclusion that the Jeans stability criterion [2] was valid for this class
of models, but the rate of growth followed a power law rather than an exponential
One, so that the suitability for galaxy formation (that is sizeable inhomogeneities)
became questionable. Nevertheless, whether one accepts or rejects the hypothesis
that galaxies form from perturbations in a homogeneous background, the existence
of the Jeans wavelength as a natural scaling length on the size of unstable fluctua-
tions remains a powerful idea, the relevance of which it seems premature to
abandon out of hand.

A question of considerable interest is then whether the Jeans criterion continues
to hold good in more general backgrounds, such as models possessing rotation and
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shear. It is with this aim in mind that we turn our attention in this paper to
cosmologies in the simpler context of Newtonian gravitation theory. That the
Friedmann models have a simple Newtonian interpretation has been known for
some time [3,4], and their perturbation theory was shown by Bonnor [5] to be
essentially equivalent to Lifschitz's analysis while being correspondingly simpler.
However, less well known is the formulation of Newtonian cosmology given by
Heckmann and Schiicking [6], which permits discussion of non-isotropic models.
As their original work is in German, has received scant attention in the literature
and is a profitable field for comparison with general relativistic models, we feel this
to be a suitable moment to review some of their basic results. This is done in Sections
2, 3 and 4 of this paper.

Our formulation of Newtonian cosmology in Section 2 essentially follows the
Heckmann-Schiicking model, with minor departures on detail and interpretation.
In Section 3 we give a definition of what we mean by a "homogeneous" cosmology,
and prove their somewhat surprising result [7] that a homogeneous cosmology is
uniquely specified by five arbitrary functions of time (namely, the rate of shear) and
five arbitrary constants (initial values of the density, expansion and angular
velocity). In Section 4 we concentrate on shear-free models, and show that
with rotation present all such models "bounce" out of the singularity which
inevitably occurs in the isotropic (rotation-free) case. These results are com-
pared and contrasted with what is now known to be the case in general
relativity.

In Section 5 we set up the perturbation analysis, and show that the "comoving"
Fourier components have a time development given by a set of ordinary differential
equations. The stability analysis shows that the Jeans criterion is valid for the
general homogeneous cosmology, even if viscosity is included. Some special cases,
where the density growth equation reduces to a single second-order differential
equation, are discussed in Section 6. These include the Friedmann case, the shear-
free rotating case with perturbations along or perpendicular to the axis of rotation,
and some non-rotating shearing models with initially stationary perturbations.
Finally, a WKB-type approximation procedure for evaluating the rate of growth of
perturbations is discussed in Section 7. It is shown to converge rigorously to the
correct rate in the Einstein-de Sitter model.

2. Newtonian cosmology

Following Heckmann and Schiicking [6] we shall understand by a Newtonian
cosmology, the following: a three-dimensional Euclidean space, whose points are
denoted by position vectors r, a time parameter t, three functions of space and time
p(r,t), p(r,t), <£(r, t) called respectively the density, pressure and gravitational
potential, and a vector field v(r, t) known as the velocity field, related by the standard
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equations of fluid dynamics

f , (1)

A (2)

(1)

where d/dt = 8/dt + v.V. For simplicity reference to a cosmological constant has
been omitted here, but it could easily be included by inserting a term —A on the
right-hand side of equation (3).

By a fundamental observer we mean any streamline r(0 of the motion, that is a
solution of the differential equation

dt

Newtonian physics depends heavily on the notion of inertial observers. These find
no natural place in the above scheme, and indeed the task of combining the notion
of an inertial frame and an infinite (non-empty) cosmology appears to be essentially
impossible [4,8,9]. The heart of the difficulty may be summed up as follows.
Equations (l)-(3) a r e invariant under the Galilean group of coordinate transforma-
tions

x't = ai} xj + uit+bi, a^ aik = Sjk

if we assume that p, p and <f> are scalar fields,

p(r',t') = P(r, t), et cetera,

and the components of velocity transform as a vector field

Thus the dynamical equations look the same in all inertial frames. However, the
cosmology (that is the solution of these equations) is certainly not invariant under
these transformations, for the functional forms of p, p, <f> and v will be quite
different in different frames. Furthermore, the notion of an inertial particle finds no
natural place in our formulation, for presumably a "free" particle has equation of
motion

and rectilinear motion only results if <f> = const, whence p = 0 by equation (3).
Thus the word "Newtonian" only refers here to the form of the field equations, not
to any fundamental questions of dynamics.
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It should also be noted that no sensible equations for light propagation can be
postulated, so that our cosmologies are essentially dark. No attempt should then be
made to assign any observational consequences to the models which result.
Dynamically, however, there is room for comparison with general relativistic
models.

3. Homogeneous Newtonian cosmologies

Let a(?) be any fundamental observer. Relative to a we may define the position
and velocity of any other point r at time t as being

ra = r-a(O,

The vector function va(x, t) so defined is called the velocity field relative to a(t).
We will say that the cosmology is homogeneous if the density and pressure are

independent of position at any time t, that is p = p{t), p = p(t), and if the velocity
field relative to all fundamental observers is the same, that is

This equation says that

v(x+a(0,0-v(a(0,0 = v
and on taking derivatives with respect to jcf at x = 0, we obtain

But a and b are arbitrary at any time t (assuming a fundamental observer through
every spatial point), whence

(4)
(5)

On substituting into equation (2) we find that the potential gradient <f>if must have
the form

where
fa = Vij+VikVkj (6)

and

There is little loss of generality in setting c = d = 0, since by going to an "acceler-
ated" reference frame r' = r+g(f) with g = — c and redefining the potential (f> as
<f>' = ^ — (gi + Vyg^Xi all the equations (l)-(3) are again satisfied.
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Thus by a homogeneous Newtonian cosmology we shall mean one having the

form
P = p(O, P=P(f), Vi^

Since <t>iti = $jt we must have that the matrix F = (Jlj) is symmetric. The cosmo-
logical equations (l)-(3) may be written as

(7)

. (8)

(9)

Breaking up F^ into a trace, symmetric trace-free part and skew part (that is the
irreducible parts under the action of the rotation group)

where

6 = Vu = expansion,

"« = Wij+V^-tfSy = shear,

"U = «**««»* = Wij-Vid = rotation,

we find that (8) reduces to three equations
6 = -4TrGp-\8i+2oJi-2<j\ (10)

(11)

j j Ukk 8ij> 02)

where

The structure of these equations is fairly clear. Given an arbitrary shear matrix
ffy(r) as a function of time, we may solve equations (7), (10) and (11) for 6, wi and p,
a unique solution resulting for every set of initial values of these variables. Finally,
the trace-free part of/^ is read off from equation (12), and its trace from equation
(9). Thus the set of homogeneous Newtonian universes is determined by five
arbitrary functions of time (the rate of shear) and five arbitrary constants (the initial
values of OĴ , p and <f> at an arbitrary time /„). It is interesting to note how different
this situation is from general relativity where there are nine possible groups of
symmetry for a universe with homogeneous space sections (the Bianchi types), and
each one must be treated separately [10].
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4. Shear-free universes

The easiest case to analyse is when we set

otff) = 0.
If we introduce a function R(t) defined by

then equations (7) and (11) result

with p0, u>0 constants.
Finally, equation (10) gives

R

in

P
to

R

= Po-R"3.
= co0JR-2

ATTG p0

R 3 R?

which integrates out to give the Heckmann-Schiicking equation [7]

2 c o o

where e = + 1 or 0, T0 an arbitrary constant.
The case w0 = 0 is the shear-free, rotation-free case (isotropic) and has a strong

analogy with the Friedmann models of general relativity [4], even down to the
precise form of the dynamical equation (13).

However, with OJ0 ̂  0, the models have no apparent analogies in general
relativity, for a theorem of Schucking [11] tells us that all homogeneous shear-free
dust solutions (p = 0) of Einstein's equations must have either vanishing expansion
(that is, are stationary) or vanishing rotation (that is, are Friedmann models). The
theorem has been shown by Ellis [12] to hold even in the inhomogeneous case. The
stationary models have a Newtonian counterpart, on setting 6 = 0, a = 0 and after
a suitable orientation of axes

p = const, w = [0,0, J(2irGp)], <f> = - TrGp(x* +f).

The rotating expanding models defined by equation (13) can have no general
relativistic counterpart, by the Schiicking-Ellis theorem. They have the interesting
feature that they all bounce, attaining some minimum "radius" Ro where f(R0) = 0,
no matter how small a rotation a>0 is imparted to the model. For e = +1, a maxi-
mum radius Rx is attained, the solution oscillating forever between the two values
RQ and Rv while for e = 0 or — 1 the solutions contract from infinity to RQ then
expand back to infinity. All such singularity-free models are now known to be
impossible in general relativity as a consequence of powerful theorems of Hawking
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and Penrose [13]. However, they imply that an original hypothesis of Lifschitz and
Khalatnikov [14] concerning the possibility of a bounce being induced by rotation
is valid for Newtonian models. It leads us to speculate on whether the hypothesis
might not be valid in some weaker form of general relativity, for example by
hypothesizing that in some sense to be defined, almost all geodesies can be made to
escape the singularity in rotating models.

It should, however, be pointed out that the Heckmann-Schiicking formulation
of Newtonian cosmology is by no means universally accepted. For example, in a
version adopted by Davidson and Evans [15] none of the above conclusions follow.
Their assumptions amount to assuming that the gravitational field is isotropic,
that is

fii = —hrGp^ij
in our terminology. Then within this restricted class of cosmologies they show that
all models have singularities and that a^ = 0 implies Qu> = 0 just as in general
relativity. However, the reasons for these results holding are very different from
those in general relativity, and the absence of anisotropic components of fti is
equivalent to no "free" gravitational field, or Weyl tensor, in general relativity. As
this seems too strong a condition to impose, and is one which must of necessity be
abandoned in the perturbation theory which follows, we shall not adopt this
procedure here.

5. Comoving perturbations

In this section we discuss the theory of perturbations of the above models,
following a method originally used by Bonnor [5] for the isotropic case.

Consider a small perturbation of a Newtonian model

p->p+8p, p^>p+8p, <f}-><f>+8<l>, \->\+8\.

We will assume that p and p are connected by an equation of state

P=P(p)
such that

e dp r '

(cs = <](dp/dp) = speed of sound).

The perturbed equations (1H3) give

V/3.Sv = 0, (14)

(15)

(16)
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Bonnor's method of treating these equations is essentially the following. Consider
"comoving" Fourier components of the perturbed quantities

Sv = iu(0 exp(ik(/). r),

where k(r) is chosen such that the phase of the waves are "frozen" in the cosmic
fluid

For homogeneous models this is always possible, k(0 being any solution of the
differential equation

ki+Viiki = 0. (17)

The technique may be extendible to short wavelength perturbations (that is
| k | > | Vp/p|) in inhomogeneous models if we permit k to be a function of both t
and r.

It is now a straightforward matter to substitute these perturbations into (14)—(16)
for the homogeneous case (V/> = 0), to obtain

(18a)

= 0, (18b)

(18c)

Using (17) we find on differentiating (18a)

h+2kiViiui+(k2c2
s-47TGP)h = 0. (19)

If at t = t0, h = ho>O,uo = O, then from (18a) we have h0 = 0 and from (19)

whence ^0<0 if and only if

the standard Jeans criterion for stability.
It is worth noting here that the extreme generality of the above result does not

seem to be altered by including the effects of viscosity into our cosmology. The
fundamental cosmological equations should in this instance be altered by the
addition of terms

to the right-hand side of equation (2). vx and v2 are the first and second coefficients of
viscosity; the resulting equation is the well-known Navier-Stokes equation. It
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clearly has no effect on homogeneous solutions since in these v is a linear function
of r. For homogeneous cosmologies, vx and v2 will be at most (known) functions of
time and the above perturbation analysis may again be carried out, equation (19)
becoming modified to read

h+2Vijkiuj+(§v1+vJk*h + (c*k2-47rGP)h = 0.

Thus viscosity does not alter the Jeans criterion for stability, but it will act as a
damping term, causing unstable perturbations to grow at a slower rate.

6. Special cases

The rate of growth of perturbations is governed by a set of ordinary differential
equations (18a)-(18c) and (17), which it is difficult to analyse in detail. There are,
however, a few simple cases, which we now give, in which the rate of growth of the
fluctuation contrast density is governed by a single second order differential
equation.

(i) Friedmann models, <o = a = 0

In this case equation (19) reduces immediately to the second-order Bonnor-
Lifschitz equation [1,5]

h + 2jh + (k*cl-4nGP)h = 0. (20)

Integration of equation (17) gives immediately that k = k0R~1, thus the wavelength
of these perturbations grows with R(t) just as expected for comoving perturbations.
On the other hand, p = p0 R~3 so that the Jeans length Â  may be expected to grow
as Rlcs. Thus the question whether an initially unstable perturbation remains
unstable or will eventually stabilize depends on the nature of the function Ri cs(t),
namely on the time dependence of the speed of sound cs.

A particularly simple case is the Einstein-de Sitter model found by setting
e = a)0 = 0 in equation (13), to give

JRoc/*, 47r(7p = | r 2 .

For cold perturbations (8p = 0, ce = 0), equation (20) reduces immediately

the solution to which is easily seen to be

Thus the unstable perturbations grow as f *. Such a growth law appears to be quite
inadequate to account for the formation of galaxies with contrast densities of the
order of 106, particularly if the initial fluctuations are taken to be thermal.
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(ii) Shear-free homogeneous models
As derived previously in Section 4

Equation (17) gives

= - 2 - t o ,

k = ——k—kxu,
R

whence

(to.k)* = —3—(to.k), to.k = tOokoi?"3 (21)

and

(kxto)-= —3—(kxto)H-tox(kxto). (22)
R

On the other hand, equation (19) reduces in this case to

h-\—=-A + (A:2c| — 4rrGp) A + 2u. k x to = 0 (23)
R

and also we obtain

(n.kxb))' =—— u.kxto+2(uxto).(kxto).
R

Now if initially k x to = 0, that is k is parallel to the rotation vector to, then by (22)
it remains so, hence the last term in (23) reduces to zero, and we are back to the
Bonnor-Lifschitz equation (20).

The most general case is hard to analyse, but if initially to.k = 0, then by (21) k
remains perpendicular to to, hence

(u.kxto)- = - —u.kxto+-^p/i

which integrates to give

u.kxto = 2a>%(h—Aj)/?"4, hy = const

and (23) gives a generalized Bonnor-Lifschitz equation

h + —-/t + (A:2c2-47T<jp + 4ajg/?~4)A — 4cog/-1/?~4 = 0. (24)
R

Thus rotation has a small stabilizing effect on perturbations orthogonal to to, for it
makes the coefficient of h more positive. The easiest way to understand this
stabilizing effect is to consider perturbations of a static universe [16], R = 1, k = 0,
p = const. In this case an initial perturbation h0 > 0, Uq = 0 which is stable with
respect to w = 0 remains stable when we set a> > 0, but its period of oscillation is
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increased. If such an initial perturbation is unstable with respect to co = 0, that is if
k2c%—4nGp<0, then it will remain unstable if a> is small enough but with
diminished growth rate, while if w is large enough it eventually stabilizes the
perturbation by causing h{t) to oscillate between two positive values of which h0 is
the minimum. Such a situation might be termed metastable; it is initially unstable
but rotation acts as a secular stabilizer.

(iii) SheuTirlg, fiOfi-i'Oiuiifig models

Consider models having co = 0, and o-i;(?) diagonal, that is such that the principal
shear axes remain fixed in direction. In this case we may set

R-
Fi;- = —* 8tj (no summation on i)

and equations (7), (8) and (9) imply

p = Po/R1R2R3, (25)

(26)
i

Now for a comoving perturbation equation (17) gives at once that

kt = k^Rri

and equation (18b) integrates to give

Hence if initially at t = t0, the perturbation is stationary, u,, = 0, we may set a3- = 0
and substituting into equation (19) we obtain another Bonnor-Lifschitz equation

Tic

(Note this equation is also valid for arbitrary shear with ki satisfying equation
(17).) Thus for cold perturbations along a principal axis, say kq = (ko,O,0),

lit
0. (27)

For simplicity let us consider a power law time development

Ri = (W-
Then equations (25) and (26) imply that

(28)

and
4nGp = oct~2, a = 2-£/>f.

ii
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Thus for positive density we must have

When combined with equation (28) it is easy to show that this inequality implies
that

Equation (27) has the solution

where

Now the maximum value of a is readily seen to occur for p2 = p$ = 1 — \p^> whence

max a = \\\ - 2px + V(l+4Pl - 2/>f)],

and the maximum possible rate of growth of h occurs when

/>i = 0> P2=Pa=l, h = hot
a.

Thus shear does not appear to significantly modify the rate of growth of
perturbations.

7. Estimation of growth law

Given an arbitrary homogeneous cosmology, with Vti(t) a specified function of t,
it is in general quite difficult to estimate the rate of growth of the most unstable
mode of a density perturbation. Here we give an effective procedure for doing this
by a sequence of approximations reminiscent of the WKB technique. Consider an
arbitrary comoving perturbation having wave vector k(t), which must be a solution
of equation (17). Clearly such a mode is uniquely specified by giving the direction k0

(arbitrarily) at some initial time t = t0. Setting

h{i) = /roexp( a(t)dn, h0 = const,

we obtain, on substitution into the perturbation equations (18), the pair of equations

cJio-kjWi = O, (29)

* i + h it, h0+(«8<, + Vv) w, = 0. (30)

As a zeroth approximation we try "eikonal" perturbations, wt(t) = const. Then a
must be a root of the eigenvalue equation

j
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Let a(0)(0 be the root of this equation with largest real part (ifvj is negative and Vit

is "reasonable" in a sense which it is difficult to specify precisely, then it may
be assumed that this real part will be positive). Let us set the corresponding
eigenvector

w(o) = y<o>(O V

Substituting this into the first term of equation (30) we proceed to the first approxi-
mation a(1)(i), this being the root with iargest real part of the eigenvalue equation

= 0 .

This provides a new value for Wj, and again we set

which we feed back into equation (30). In this way we generate a well-defined
sequence a(0>(0> «u)(0>"-»a(n)(0»-" which hopefully converges to a definite
growth function a(t).

Although difficult to justify rigorously, this procedure does converge rapidly to
the correct growth law for the Einstein-de Sitter model, as the following analysis
shows. As in Section 6(i), we take

«$ = -t*8<3'* (that is cs = 0).

Thus setting 1% = (k0,0,0), it is easily verified that the zeroth approximation gives

2 \ 2 n

) 0

that is
a(0)

Furthermore, the eigenvector to be fed back into the next approximation is given by

where

Successive approximations result in

<*<n> = ajt, y(B) = bn kjt* ^ k%

where the «th eigenvalue equation gives
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and the corresponding eigenvector equation gives

Combining these two we see that bn = an, and an therefore satisfies the recurrence
relation

If we pick the positive root at each step this is easily seen to converge to the value a
satisfying the quadratic

that is

as required. The other root a = — 1 is the limit of the negative roots, so that the
stable mode is also obtainable by this procedure.

The rapidity of convergence may be seen by computing the first few terms

ao = 0-5486, ax = 0-6468, a2 = 0-6633, az = 0-6661 (a = 0-6667).

The success of the method in this example gives grounds for optimism that it
provides an effective computational method for the growth rate of fluctuations in
more general homogeneous models possessing rotation and shear. As all steps in
the method are purely algebraic it is ideally suited for performing computer
calculations.
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