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Abstract

A class of partially structured nonlinear programming problems, containing
the capacitated nonlinear minimum cost multicommodity flow problem, is
considered. Such problems, although large, can often be solved efficiently
and with minimal computational storage by gradient projection methods.

1. Introduction

It has been successfully demonstrated by Berry [1, 2] that the nonlinear minimum
cost multicommodity network flow problem (which is a large scale structured
nonlinear programming problem), arising from a study of designing economic
alternative routing telephone networks, can be efficiently solved by using a modified
version of Rosen's gradient projection method [11]. The success of this application
of Rosen's method hinges about the fact that the structure of the problem gives
rise to explicit analytic expressions for the direction vector and the estimates of the
Lagrange multipliers, thus eliminating any matrix manipulations. This is particu-
larly important as the programs have typically 5000-10,000 variables and further
the second order derivatives are not always available.

From consideration of this success, we have considered techniques for the
efficient solution of generalized programs which will now include the additional
link capacity constraints. In doing this, we have attempted to utilize fully the
structure of the original uncapacitated programs, with the aim of minimizing
computational storage and the computation involved.
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The mathematical programs under consideration are:
Minimize f(x) subject to

f6(fc)

Z^=b\ k=\,...,K,

S S y ^ ^ i=h...,L, (i.l)
k=l }=1

where/is a differentiable function. In addition, it is assumed that K will often be
much larger than L, and L will be relatively small (that is of the order of 200).

The structure that the constraints XfLk)xk = bk, k = 1,...,K, have is commonly
known as Generalized Upper Bounding (GUB). This structure has been thoroughly
investigated in linear programming. The results of this investigation have been
incorporated into the implementation of many commercial mathematical pro-
gramming systems when fix) is linear. However, when f(x) is nonlinear these
results do not generalize in an obvious way. Thus it is necessary to find an alternative
exploitation of the GUB structure.

2. Some properties of partitioned matrices

In the implementation of Rosen's method, where the matrix N has rows con-
taining the normals of the currently active constraints, the vector — V/(JC) is
projected by the projection matrix

into the subspace satisfying the active constraints, giving the search direction

v = -PV/(x). (2.2)

In addition, at various stages during the application of Rosen's method, the
estimates of the Lagrange multipliers

d = N+Vf(x), (2.3)
where

^ (2.4)

will be required.
It can be seen that, for large scale problems, the storage required for the matrices

[NNT]-\ N+ or P becomes prohibitive.
We will now state a result that shows that an orthogonal projection can be

computed in two parts, thus making the application of Rosen's method more
practical.
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[ N 1
—1 has full row rank. If Po and P are the

projection matrices corresponding to N-± and N, and if

T=N2P0Nl V = T-1NiP0, W=I-N?V,
then

(i) P = P0W, (2.5)

(//) N+=\ \ , \. (2.6)

The proof of this lemma can be found in most textbooks dealing with pseudo-
inverses (for example [4]).

There are two comments that can be made about the contents of this lemma.
Firstly, it is important that efficient and stable methods for handling the matrix
T-1 = (NZPQNJ)-1 are used. To do this we will use the Cholesky decomposition
of T and take advantage of the current state of the art for updating the factorization
when the set of active constraints changes.

Secondly, it can be seen from Berry [1] that if the rows of Nx contain the normals
of the currently active constraints of the form

AUc)

then for an arbitrary vector w= [w{... w^(1)... wf...wfiK)]'1 we have

!

0

0(fc) (2.7)

<-(!//>(*)) 2 Sf"7* otherwise,
where

01 otherwise,
and

4,1k)

P(k) = S «i*.
1=1

Also, the elements of N+ w corresponding to x!f = 0 are numerically equal to

(MM fc

3 1=1

and the elements of N^ w corresponding to S ^ ' x% = bk are

i=i

https://doi.org/10.1017/S033427000000237X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000237X


286 P. D. Simms [4]

Thus the operators Po and iVj can be applied efficiently to an arbitrary vector w.
This can be used to full advantage by letting the rows of JV2 contain the normals of
the active constraints of the form:

K 4>(k)

& = 1 3 = 1

and calculating the projection vector and estimates of the Lagrange multipliers
by (2.5) and (2.6) respectively.

3. Updating the factorization

3.1. Constraint added to JV2

If N2P0N% has the Cholesky decomposition LDLT then

will have the Cholesky decomposition LDLT, where L = T and

D = ft cj2 • The vector y is obtained as the solution to

LDy = NiPoyr+1

and the new diagonal element of D is

This simple updating procedure follows from the method described by Gill et al.
[6, p. 532], and has the advantage that it only requires one transformation of a
vector by the projection matrix Po. This updating procedure will be satisfactory if
LDLT is well conditioned, but otherwise it is not. This instability will occur if the
new constraint is nearly linearly dependent on the existing set of constraints, in
which case S2 is very small. The procedure will in fact fail if the quantity denning
S2 is either zero or negative.

An alternative, although more expensive, method for computing S2 is the
following,

solve LTw = y,

compute v = P0(yr+1 -

set S2 = ||»|||.
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This will ensure that S2 is non-negative but will still be unsatisfactory if 82 is
small. This follows by comparison with the classical Gram-Schmidt procedure
which is known to be numerically unreliable. If A = P0N^, the Gram-Schmidt
method would produce the factorization

A = ZLT, ZTZ=D

and the updating procedure is equivalent to performing the next step of the Gram-
Schmidt method, with the added disadvantage that the orthogonal matrix Z is not
available but instead is replaced by Z = /4(L~1)T.

3.2. Constraint added to iVj

If the new Nx matrix is i; and Po is the corresponding projection matrix,
L9 J

then from (2.5)

Thus

AT B fjT _ fj p ATT
Tf Q

where z = N2Poq and a = - l/(qTPoq).
Techniques for calculating LI>LT from LDLT + azzT have been extensively

reported in the literature. A recent comprehensive report of such techniques can
be found in Gill and Murray [7].

3.3. Constraints deleted from Nt

If the /th constraint from N is deleted, then it can be shown (see Appendix 1)
that the resulting projection matrix is

« . . . N

where ex is the /th column of the identity matrix.
If, in particular, the /th constraint is deleted from NX) then
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where y = N+Tei and a = l[\\y\\\, so that

[6]

where z = N2y. Again suitable techniques can be used to form the Cholesky
decomposition £JD£T of N2F0N^.

3.4. Constraint deleted from N2

Consider the case when the /th constraint is to be deleted. For convenience we
will partition L and D as follows

L = L2

0 0

1 0

_ L3 L4 L'5 J

and D =

D.•2 J

where L^ and Dt are ( / - l ) x ( / - l ) , LjeR1'1, L3 is ( r - / ) x ( / - l ) , Liel?-1 and
L5 and Z»a are (r—/) x (r—/). It can be shown [for example 7] that the new Cholesky
decomposition is Z5£T, where

and

4. Discussion

It was stated in Section 3.1 that both methods for extending the LDL?
factorization will be unsatisfactory if S2 is small. Consequently for practical
problems where LDLT is not well-conditioned the updating procedure will not
be satisfactory. However, if the QR factorization of PONJ were available a more
stable factorization could be obtained [6, p. 532].

In this case the orthogonal matrix is not available and although no satisfactory
algorithm is currently available there are two methods offering possible remedies
to this situation. These methods are both based on the method of iterative refine-
ment. This method has been used previously to refine least-squares solutions and
can be extended easily to include refinement of y and S2.

The problem of updating R is intimately connected with the least-square problem,
4x-6||3. A method that does not require Q has been given recently by
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Bjorck [3], in his Algorithm 2'. This may be described as follows with a slight
extension to obtain p = D*y and S.

1. Solve

LDip0 = N2 Po y r + 1 ) D*LT x0 = p0, r0 = P0(yr+1 -

2. For / = 0,1,2,. . . compute

using double precision accumulation. \
•• i V 2 rit )

Solve

Compute

Exit if II&H2 is sufficiently small.

3. Set 3 = |l'ilk-
Another known possibility is similar but a little simpler. This follows from a

suggestion by Kahan in the paper by Golub and Wilkinson [10].
1. Solve

LD *p0 = N2 Po yr+1, D* LT x0 = p0.

2. For i = 0,1,2,... compute

using double precision
(and saving ri as a double precision vector),

using double precision accumulation
1 2 % (single precision N2 times double rt).

Solve

Compute

Pi+i =Pi+ 8A> xi+1 = xi + 8xi.

Exit if \\gi\\z is sufficiently small.

3. Set 8 = 1 1 ^ .
In both methods it could be that ||go||2 is negligible, so that the extra work

involved will not necessarily be substantial. It is common practice to use only
single precision the first time through, which allows further economy for the
likely event that ||^0||2 does prove small.

K
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We now have a solution technique for large partially structured problems that has
a reasonable chance of success except that it is based on Rosen's gradient projection
method. This is nothing more than the method of steepest descent within various
subspaces, and the rate of convergence is typically extremely slow. However, the
algorithm that this solution technique is based on uses a modified version of the
gradient projection method, in that it allows the deletion of more than one con-
straint at the beginning of each iteration with due regard to preventing zig-zagging,

Acceleration devices have also proved to be successful in reducing the number
of iterations needed to obtain a good approximation to the optimal solution. The
conjugate gradient method of Goldfarb [9] can be used whenever the set of active
constraints remains unchanged from one iteration to the next. This method can
be described as follows:

1. p° = -

2. for k = 0,l, ...,n- 1 define

Another acceleration device that has proved to be successful is that of PART AN
acceleration. This has been discussed for the unconstrained case in [12]. The main
feature of this device is that it can effectively compensate for the frequent stalling
of the gradient projection method on steep ridges or in steep valleys.

An algorithm has been written to solve a large partially structured problem
which is, in fact, an extension of the problem solved by Berry [2]. The problem had
over 3400 variables and over 1100 GUB constraints. The new problem has the
additional feature of 50 link capacity constraints. The modified gradient pro-
jection method as well as the acceleration devices have subsequently proved to
offer a clear advantage over the standard gradient projection method. Near the
approximate optimal solution 45 of these 50 constraints were active and no
numerical instability was noticed so that the merits of the iterative refinement
schemes have not yet been investigated.

5. Conclusions

It has been seen that a solution technique can be constructed for a large partially
structured problem. The class of problems considered was that with GUB structure
with additional linear inequality constraints. The viability of this approach is
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mainly a result of (2.7), (2.8) and (2.9). In effect the information needed about a
large part of the active constraint matrix (Afx) has been incorporated into two
simply stated operators. This means that dense matrix methods are only needed
to be used on a matrix which is the same size as N2. This approach is however not
only limited to problems with GUB structure. For any problem for which similar
operators can be constructed, a similar solution technique can be used.

Another feature of the solution technique is that any sparseness that A/g might
have can be fully exploited.
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Appendix

From Fletcher's paper [5],

I Af + AT+
I •" fc+1 •*" k+1 r^T T/'0 J V v

where F is the (k + l)st row of iv"J+1. It then follows that

fc+1Jy k+1 i v fc+1" fc+1 yT y

Hence

P -P +

Thus, if the /th constraint in N is deleted, the new projection matrix P is given by

where ex is the /th column of the identity matrix.
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