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ASYMPTOTIC ANALYSIS OF HOPPE TREES
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Abstract

We introduce and analyze a random tree model associated to Hoppe’s urn. The tree is
built successively by adding nodes to the existing tree when starting with the single root
node. In each step a node is added to the tree as a child of an existing node, where these
parent nodes are chosen randomly with probabilities proportional to their weights. The
root node has weight ϑ > 0, a given fixed parameter, all other nodes have weight 1. This
resembles the stochastic dynamic of Hoppe’s urn. For ϑ = 1, the resulting tree is the well-
studied random recursive tree. We analyze the height, internal path length, and number
of leaves of the Hoppe tree with n nodes as well as the depth of the last inserted node
asymptotically as n → ∞. Mainly expectations, variances, and asymptotic distributions
of these parameters are derived.
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1. Introduction

We consider a random tree model associated and derived from Hoppe’s urn. In Hoppe’s
urn, see [9], there is initially one red ball. In each step one of the balls is drawn from the urn
independently with a probability proportional to the weight of the ball. The red ball has weight
ϑ > 0, all other balls have weight 1. Here the parameter ϑ > 0 is given and fixed throughout
the evolution of the urn. When a ball is drawn, it is returned to the urn together with a ball of
the same color unless the ball drawn is the red ball. In this case the red ball is returned to the
urn together with a ball of a color not yet present in the urn. This model has been introduced to
derive and interpret the Ewens sampling formula and is related to the infinite alleles model in
population genetics, with the parameter ϑ > 0 modeling the mutation rate. The decomposition
of the balls into groups of the same color (neglecting the red ball) leads to a Chinese restaurant
process, the (0, ϑ) seating plan; see [13, p. 61].

A random tree model, which we subsequently call the Hoppe tree, is associated to the Hoppe
urn as follows. The balls in the urn are represented by nodes in the tree. Each node v is a
child of node w in the tree if the ball corresponding to v was placed first in the urn together
with the ball corresponding to w when the w-ball was drawn. In other words, the tree grows
successively. In each step a node is chosen independently and with probability proportional to
the weight of the node (the root having weight ϑ and all other nodes having weight 1) and a new
node is added as a child of the chosen node. For ϑ = 1, this is a well-known and well-studied
random tree model, the random recursive tree; see, e.g. [15].
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Asymptotic analysis of Hoppe trees 229

The aim of the present paper, which is based on the first author’s masters thesis [10], is to
study asymptotic properties of the Hoppe tree as its size n tends to ∞. In particular, we are
interested in the deviation from the random recursive tree model caused by the perturbation of
the root weight from ϑ = 1 to ϑ �= 1. As characteristics of the tree, we study the depth D

(ϑ)
n

of the nth inserted node in the tree, defined as its distance to the root of the tree. Furthermore,
we study the tree’s height H

(ϑ)
n , which is the maximal depth max1≤i≤n D

(ϑ)
i , its internal path

length I
(ϑ)
n = ∑

1≤i≤n D
(ϑ)
i , and the number of leaves of the tree. A node is a leaf if it has no

child in the tree. Our results show that the perturbation of the root weight does not typically
affect the first-order behavior of the quantities, an exception being the variance and limit law
of the internal path length. Hence, we give second-order expansions to reveal the asymptotic
dependence on ϑ .

The paper is organized as follows. In Section 2 we state the results on the four quantities
mentioned above. The proofs are collected in Section 3.

2. Results

In this section the results on the depth, height, internal path length, and number of leaves
are stated. Throughout, the parameter ϑ > 0 is arbitrary and fixed. All asymptotic statements
as well as the use of the Bachmann–Landau symbols are understood as n, the number of
nodes in the Hoppe tree, tends to ∞. Moreover, we use the digamma and trigamma functions
� = d log �/ dx and �1 = d2 log �/ dx2, respectively. By the properties of the digamma and
trigamma functions, see, e.g. [1, Sections 6.3 and 6.4], we have

n−2∑
i=1

1

ϑ + i
= �(ϑ + n − 1) − �(ϑ + 1) = log n − �(ϑ + 1) + o(1),

∞∑
k=1

(
1

ϑ + k

)2

= � ′(ϑ + 1) = �1(ϑ + 1).

Depth of a node. For the depth D
(ϑ)
n , we have a distributional representation as the sum of

independent Bernoulli variables.

Theorem 2.1. For the depth D
(ϑ)
n of the nth node in a Hoppe tree, we have, for all n ≥ 2,

D(ϑ)
n

d= 1 +
n−2∑
i=1

Bi,

where B1, . . . , Bn−2 are independent and P(Bi = 1) = 1 − P(Bi = 0) = 1/(ϑ + i) for
i = 1, . . . , n − 2.

Asymptotic results can therefore be easily obtained, as we show in Corollary 2.1 below.
We denote by �(λ) the Poisson distribution with parameter λ > 0, by dTV the total variation
distance between probability measures, by ‘

d−→’ convergence in distribution, and by N (0, 1) a
real random variable with the standard normal distribution.

Corollary 2.1. The depth D
(ϑ)
n of the nth node in a Hoppe tree satisfies

E[D(ϑ)
n ] = 1 +

n−2∑
i=1

1

ϑ + i
= log n − �(ϑ + 1) + 1 + o(1),
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230 K. LECKEY AND R. NEININGER

var(D(ϑ)
n ) =

n−2∑
i=1

1

ϑ + i
−

n−2∑
i=1

(
1

ϑ + i

)2

= log n − �(ϑ + 1) − �1(ϑ + 1) + o(1),

D
(ϑ)
n − E[D(ϑ)

n ]√
var(D(ϑ)

n )

d−→ N (0, 1), (2.1)

dTV(L(D(ϑ)
n ), �(E[D(ϑ)

n ])) = O

(
1

log n

)
.

Height of the Hoppe tree. The height H
(ϑ)
n of the Hoppe tree can be analyzed using results

on the height of random recursive trees; see Addario-Berry and Ford [2], who, in particular,
showed that

Mn := E[H(1)
n ] = e log n − 3

2 log log n + O(1) (2.2)

as n → ∞. We transfer their results to arbitrary ϑ > 0.

Theorem 2.2. For the height H
(ϑ)
n of a Hoppe tree with n nodes, we have, for all α < 1/3e

and β < 1/2e, there exist constants Cα, Cβ > 0 such that, for all t > 0,

P(H (ϑ)
n − Mn ≥ t) ≤ Cβe−βt , P(H (ϑ)

n − Mn ≤ −t) ≤ Cαe−αt .

The constant Cβ can be chosen independently of ϑ .

Corollary 2.2. The height H
(ϑ)
n of a Hoppe tree with n nodes satisfies

E[H(ϑ)
n ] = e log n − 3

2 log log n + O(1), var(H (ϑ)
n ) = O(1).

Number of leaves. The number of leaves in a Hoppe tree is related to a two-color urn model.

Theorem 2.3. Let L
(ϑ)
n be the number of leaves in a Hoppe tree with n ≥ 2 nodes. Then

E[L(ϑ)
n ] = n

2
+ ϑ − 1

2
+ O

(
1

n

)
,

var(L(ϑ)
n ) = n

12
+ ϑ − 1

12
+ O

(
1

n

)
,

P(|Ln − E[Ln]| ≥ t) ≤ 2 exp

(
− 6t2

n + ϑ + 1

)
for all t > 0, n ≥ 1, (2.3)

L
(ϑ)
n − E[L(ϑ)

n ]√
var(L(ϑ)

n )

d−→ N (0, 1).

Internal path length. Moments of the internal path length can be obtained from our results
on the depths of the nodes.

Theorem 2.4. The internal path length I
(ϑ)
n of a Hoppe tree with n nodes satisfies

E[I (ϑ)
n ] = (ϑ + n − 1)

n−1∑
i=1

1

ϑ + i
= n log n − �(ϑ + 1)n + o(n),

var(I (ϑ)
n ) =

(
2

ϑ + 1
− �1(ϑ + 1)

)
n2 + o(n2).
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Figure 1: A Hoppe tree with 11 nodes. The decomposition into the subtree rooted at the node labelled 2
and the remaining part of the tree is indicated using dashed boxes.

Moreover, (
I

(ϑ)
n − E[I (ϑ)

n ]
ϑ + n − 1

)
n≥1

is a zero-mean martingale.

The internal path length can be analyzed either via martingale methods or the recursive
distributional decomposition explained in Figure 1, which allows us to apply the contraction
method.

Theorem 2.5. The internal path length I
(ϑ)
n of a Hoppe tree with n nodes satisfies

I
(ϑ)
n − n log n

n
→ X(ϑ)

for a nondegenerate random variable X(ϑ), where the convergence holds almost surely and
in L2. The distribution L(X(ϑ)) is the only integrable solution of the distributional fixed point
equation

X(ϑ) d= (1 − B)X(ϑ) + BX̃(1) + B log(B) + (1 − B) log(1 − B) + B, (2.4)

where X(ϑ), X̃(1), and B are independent, B has the beta(1, ϑ) distribution, and X̃(1) is
distributed as X(1). For ϑ �= 1, the solution of (2.4) is unique even without the integrability
assumption.

Theorem 2.6. The limit distribution L(X(ϑ)) in Theorem 2.5 has a Lebesgue density fϑ , which
is in the Schwartz space on R, i.e. fϑ is infinitely differentiable and, together with all its
derivatives, rapidly decreasing.

3. Proofs

In the analysis of the tree below the random decomposition of the Hoppe tree shown in
Figure 1 is used. The tree is decomposed into the subtree of the second inserted node (left
dashed box of Figure 1) and the remaining part of the tree (right dashed box of Figure 1).
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232 K. LECKEY AND R. NEININGER

The stochastic dynamic of the Hoppe tree with parameter ϑ implies that, conditioned on the
size Nn of the subtree of the second inserted node, this subtree is a random recursive tree,
whereas the remaining part is a Hoppe tree with parameter ϑ and size n − Nn. Moreover,
conditional on Nn, these two trees are independent. We have the asymptotic behavior

Nn

n
→ B almost surely as n → ∞, (3.1)

where B has the beta(1, ϑ) distribution with Lebesgue density x �→ ϑ(1 − x)ϑ−1, x ∈ [0, 1];
see [6].

Proof of Theorem 2.1. We calculate the depth of a node by counting its ancestors in the tree.
We have D

(ϑ)
n = ∑n−1

i=1 1Ai,n
, where Ai,j denotes the event that node i is an ancestor of node

j, i < j . Clearly, P(A1,n) = 1. Moreover, P(Ai,i+1) = 1/(ϑ + i − 1) for i ≥ 2 by definition
of the Hoppe tree. For general i < n, let ξi,n be the number of descendants of node i in a Hoppe
tree with n nodes, i.e. the size of the subtree rooted at i minus 1. By the dynamics of the Hoppe
tree we have

P(Ai,n | ξi,n−1) = 1 + ξi,n−1

ϑ + n − 2
. (3.2)

We calculate E[ξi,n−1] by the recursion

E[ξi,n−1] = E[ξi,n−2 + 1Ai,n−1 ] = E[ξi,n−2] + 1 + E[ξi,n−2]
ϑ + n − 3

.

This yields E[ξi,n−1] = (ϑ + n − 2)/(ϑ + i − 1) − 1 and, therefore, by (3.2),

P(Ai,n) = 1

ϑ + i − 1
. (3.3)

It remains to show that A2,n, . . . , An−1,n are independent. Note that, for i < j , Ai,j depends
only on where the nodes i + 1, . . . , j are inserted. Therefore, we get, for all 2 ≤ k ≤ n − 2
and 2 ≤ i1 < · · · < ik ≤ n − 1, independence of Ai1,i2 , Ai2,i3 , . . . , Aik,n. Since

⋂k
j=1 Aij ,n

occurs if and only if ij is an ancestor of ij+1 for every j ≤ k − 1 and ik is an ancestor of n, we
have

P

( k⋂
j=1

Aij ,n

)
= P(Ai1,i2 ∩ Ai2,i3 ∩ · · · ∩ Aik,n)

= P(Ai1,i2)P(Ai2,i3) · · · P(Aik,n)

=
k∏

j=1

P(Aij ,n),

where (3.3) was used in the last equality. With Bi = 1Ai+1,n
and 1A1,n = 1, this yields the

assertion.
For related reasoning in the analysis of the depth in other random tree models, see [5].

Proof of Corollary 2.1. Theorem 2.1 implies the expectation and variance of D
(ϑ)
n . More-

over, by Lindeberg’s version of the central limit theorem (CLT) we obtain the CLT for D
(ϑ)
n in

(2.1) and by [3, Equation (1.23)] we get dTV(L(D
(ϑ)
n ), �(E[D(ϑ)

n ])) = O(1/ log n).
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Proof of Theorem 2.2. Addario-Berry and Ford showed in [2, Corollary 1.3] that the
expected height Mn := E[H(1)] of a random recursive tree satisfies (2.2) and that, for all
c′ < 1/2e, there exists a constant C = C(c′) such that, for all n ≥ 1 and t > 0,

P(|H(1)
n − Mn| ≥ t) ≤ Ce−c′t .

Recall that in a Hoppe tree with n ≥ 1 nodes and parameter ϑ > 0, we denote by Nn the size of
the subtree rooted in node 2 and that this subtree, conditioned on its size, is a random recursive
tree.

By an obvious coupling argument between Hoppe trees for different parameters ϑ we have
H

(ϑ1)
n � H

(ϑ2)
n for all ϑ1 ≥ ϑ2, where ‘�’ denotes stochastic domination. In the extremal

case ϑ = 0 (for the definition of the tree, start with the root and one child) we obtain
H

(ϑ)
n � H

(0)
n

d= 1 + H
(1)
n−1 � 1 + H

(1)
n . Therefore, we get P(H

(ϑ)
n − Mn ≥ t) ≤ Ĉe−c′t , Ĉ =

Cec′
, using the result for random recursive trees.

In order to prove the left tail inequality, let H
(1)
Nn

be the height of the subtree rooted at node 2.
From H

(ϑ)
n ≥ H

(1)
Nn

we obtain, for all t > 0 and α > 0 (later we have to restrict to α as in the
theorem),

P(H (ϑ)
n − Mn ≤ −t) ≤ P({H(1)

Nn
− Mn ≤ −t} ∩ {Nn ≥ e−αtn})

+ P({H(1)
Nn

− Mn ≤ −t} ∩ {Nn < e−αtn})
≤ P(H

(1)

�e−αt n� − Mn ≤ −t) + P(Nn < e−αtn).

Again, by using the result for random recursive trees and Mn − E[H(1)

�e−αt n�] = eαt + O(1), we
obtain, for α = c′/(1 + ec′), a constant C1 such that

P(H
(1)

�e−αt n� − Mn ≤ −t) ≤ C1e−c′(1−eα)t = C1e−αt .

Hence, we have such an upper bound for all α < 1/3e. To obtain an upper bound for
P(Nn < e−αtn) note that, for all 1 ≤ k ≤ n − 1,

P(Nn = k) =
(

n − 2

k − 1

)
ϑ(ϑ + 1) · · · (ϑ + n − (k + 2))(k − 1)!

(ϑ + 1) · · · (ϑ + n − 2)
.

This yields, for all ε ∈ (0, 1),

P(Nn ≤ εn) ≤ 3(ϑ + 1)ε.

Therefore,
P(H (ϑ)

n − Mn ≤ −t) ≤ (C1 + 3(ϑ + 1))e−αt .

This implies the assertion.

Proof of Corollary 2.2. By Theorem 2.2 we have

E[|H(ϑ)
n − Mn|] = O(1).

Consequently, E[H(ϑ)
n ] = Mn + O(1) = e log n − 3

2 log log n + O(1).
Moreover, the tail bound from Theorem 2.2 implies that

var(H (ϑ)
n ) ≤ E[(H (ϑ)

n − Mn)
2] = O(1).
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For the proof of the tail bound in Theorem 2.3, we use the following version of Azuma–
Hoeffding’s inequality with conditional ranges.

Proposition 3.1. Let W1, . . . , Wn be a martingale difference sequence with respect to a
filtration (Fi )0≤i≤n with F0 = {∅, 
}. Suppose that, for every 1 ≤ i ≤ n, there exists a
constant ci ≥ 0 and an Fi−1-measurable random variable Zi such that Zi ≤ Wi ≤ Zi + ci

almost surely. Then we have, for all t > 0,

P

(∣∣∣∣
n∑

i=1

Wi

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1 c2
i

)
.

Proof of Theorem 2.3. We have L
(ϑ)
n = L

(ϑ)
n−1 + Yn, where

Yn =
{

1 if the parent of node n was not a leaf at time n − 1,

0 otherwise.

Therefore, for n ≥ 2, almost surely,

E[L(ϑ)
n+1 | L

(ϑ)
1 , . . . , L(ϑ)

n ] = L(ϑ)
n + 1 − L

(ϑ)
n

ϑ + n − 1
= ϑ + n − 2

ϑ + n − 1
L(ϑ)

n + 1.

With

Xn = (ϑ + n − 2)

(
L(ϑ)

n −
(

n − 1

2
+ ϑ(n − 1)

2(ϑ + n − 2)

))
, (3.4)

the sequence (Xn)n≥2 is a zero-mean martingale and

E[L(ϑ)
n ] = n − 1

2
+ ϑ(n − 1)

2(ϑ + n − 2)
= ϑ + n − 1

2
+ O

(
1

n

)
.

With the representation

Xi − Xi−1 = (ϑ + i − 2)(Yi − E[Yi]) + L
(ϑ)
i−1 − E[L(ϑ)

i−1], i ≥ 3,

we have Zi ≤ Xi −Xi−1 ≤ Zi +ϑ + i −2, where Zi = L
(ϑ)
i−1 − E[L(ϑ)

i−1] − (ϑ + i − 2)E[Yi].
By Proposition 3.1 we have, for all t > 0,

P(|Xn| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=3(i + ϑ − 2)2

)
.

Using the fact that the sum in the denominator of the latter exponent is bounded by (n + ϑ −
2)3/3 + (n + ϑ − 2)2 and the scaling in (3.4), we obtain (2.3).

In order to compute var(L(ϑ)
n ), we have Xn = (ϑ + n − 2)Xn−1/(ϑ + n − 3) + (ϑ + n −

2)(Yn − E[Yn]). Hence,

E[X2
n] =

(
ϑ + n − 2

ϑ + n − 3

)2

E[X2
n−1] + 2

(ϑ + n − 2)2

ϑ + n − 3
E[Xn−1(Yn − E[Yn])]

+ (ϑ + n − 2)2 var(Yn). (3.5)
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Using E[Xn−1] = 0, we have

E[Xn−1(Yn − E[Yn])] = E[Xn−1E[Yn | L
(ϑ)
1 , . . . , L

(ϑ)
n−1]]

= E

[
Xn−1

(
1 − L

(ϑ)
n−1

ϑ + n − 2

)]

= − 1

(ϑ + n − 2)(ϑ + n − 3)
E[X2

n−1].

Moreover, E[Yn] = 1 − E[L(ϑ)
n−1]/(ϑ + n − 2) = 1

2 + O(1/n2) and var(Yn) = 1
4 + O(1/n2).

Solving (3.5) by the substitution Qn = (ϑ + n − 3)E[X2
n]/(ϑ + n − 2) yields

var(L(ϑ)
n ) = ϑ + n − 1

12
+ O

(
1

n

)
.

To obtain the CLT for L
(ϑ)
n , the representation

L
(ϑ)
n − E[L(ϑ)

n ]√
var(L(ϑ)

n )

= Xn√
var(Xn)

allows us to apply a general martingale CLT; see, e.g. [8, Theorem 3.2]. It is sufficient to show
that

�n,i := 1√
var(Xn)

(Xi − Xi−1), n ≥ 3, 3 ≤ i ≤ n,

satisfies

(a) max3≤i≤n |�n,i | P−→ 0,

(b)
∑

3≤i≤n �2
n,i

P−→ 1,

(c) maxn≥3 E[max3≤i≤n �2
n,i] < ∞.

For (a) and (c), we have

|Xi − Xi−1| = |L(ϑ)
i − E[L(ϑ)

i ] + (ϑ + i − 3)(Yi − E[Yi])| ≤ ϑ + 2n + 3 for i ≤ n

and var(Xn) = (ϑ + n − 1)2var(L(ϑ)
n ) ∼ n3/12. Hence, |�n,i | ≤ (2n + ϑ + 3)/

√
var(Xn)

almost surely, which reveals that maxi |�n,i | P−→ 0 and that E[maxi �2
n,i] is bounded in n.

To compute
∑

i �2
n,i , note that, by (2.3) and the Borel–Cantelli lemma, we have (L

(ϑ)
n −

E[L(ϑ)
n ])/n → 0 almost surely. Hence, for all n ≥ 3,

n∑
i=3

�2
n,i = 1

var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L(ϑ)

i ])2

+ 2

var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L(ϑ)

i ])(ϑ + i − 3)(Yi − E[Yi])

+ 1

var(Xn)

n∑
i=3

(ϑ + i − 3)2(Yi − E[Yi])2. (3.6)
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236 K. LECKEY AND R. NEININGER

By (L
(ϑ)
n − E[L(ϑ)

n ])/n → 0, var(Xn) ∼ n3/12, and the Cesàro mean, we have

1

var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L(ϑ)

i ])2 ≤ n3

var(Xn)

1

n

n∑
i=3

(
L

(ϑ)
i − E[L(ϑ)

i ]
i

)2

→ 0

for the first summand in (3.6) and

∣∣∣∣ 2

var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L(ϑ)

i ])(ϑ + i − 3)(Yi − E[Yi])
∣∣∣∣

≤ 2n2(ϑ + n + 3)

var(Xn)

1

n

n∑
i=3

∣∣∣∣L
(ϑ)
i − E[L(ϑ)

i ]
i

∣∣∣∣
→ 0

for the second summand in (3.6). Because E[Yi] = 1
2 + O(1/i2) we have (Yi − E[Yi])2 =

1
4 + O(1/i2) almost surely and, therefore,

1

var(Xn)

n∑
i=3

(ϑ + i − 3)2(Yi − E[Yi])2→1 almost surely

for the last summand in (3.6). This implies that
∑

i �2
n,i

P−→ 1.

Proof of Theorem 2.4. For j ≥ 1, let Fj = σ(D
(ϑ)
1 , . . . , D

(ϑ)
j ). By the dynamics of the

Hoppe tree we have, almost surely,

E[D(ϑ)
n | Fn−1] = ϑ

ϑ + n − 2
(D

(ϑ)
1 + 1) +

n−1∑
i=2

1

ϑ + n − 2
(D

(ϑ)
i + 1)

= 1 + 1

ϑ + n − 2
I

(ϑ)
n−1.

Consequently,

E[I (ϑ)
n | Fn−1] = I

(ϑ)
n−1 + E[D(ϑ)

n | Fn−1] = ϑ + n − 1

ϑ + n − 2
I

(ϑ)
n−1 + 1

almost surely. Therefore,

Z(ϑ)
n := 1

ϑ + n − 1
I (ϑ)
n −

n−1∑
i=1

1

ϑ + i

is a zero-mean martingale and E[I (ϑ)
n ] = (ϑ + n − 1)

∑n−1
i=1 1/(ϑ + i).

The calculations to obtain the expansion for the variance of I
(ϑ)
n are similar to those carried

out in the proof of Theorem 2.3; for details, we refer the reader to [10].

Proof of Theorem 2.5. To apply a martingale convergence theorem, it is sufficient to have
a bound on the variance of the martingale uniformly in n. Hence, our expansion of var(I (ϑ)

n )

in Theorem 2.4 is sufficient to imply almost-sure and L2 convergence of the martingale there,
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which also applies to the slightly different scaling of I
(ϑ)
n in Theorem 2.5. By our decomposition

of the Hoppe tree, see Figure 1, we obtain the recurrence

I (ϑ)
n

d= I
(ϑ)
n−Nn

+ Ĩ
(1)
Nn

+ Nn, (3.7)

where (I
(ϑ)
j )j≥1, (Ĩ

(1)
j )j≥1, and Nn are independent, and (Ĩ

(1)
j )j≥1 is distributed as (I

(1)
j )j≥1.

For the scaling

X(ϑ)
n := I

(ϑ)
n − n log n

n
,

we obtain

X(ϑ)
n

d= n − Nn

n
X

(ϑ)
n−Nn

+ Nn

n
X̃

(1)
Nn

+ 1

n

(
Nn log

(
Nn

n

)
+ (n − Nn) log

(
n − Nn

n

)
+ Nn

)
, (3.8)

with independence and distributional conditions as in (3.7). This suggests that the limit X(ϑ)

of (X
(ϑ)
n )n≥1 should satisfy the recursive distributional equation

X(ϑ) d= (1 − B)X(ϑ) + BX̃(1) + B log(B) + (1 − B) log(1 − B) + B, (3.9)

where X(ϑ), X̃(1), and B are independent, and B has the beta(1, ϑ) distribution. Note that X̃(1)

is the limit distribution of the internal path length of the random recursive tree, which has been
obtained by martingale methods in [11] and by the contraction method in [4]. In particular, in [4]
it was shown that (X

(1)
n )n≥1 converges to its limit X(1) in the minimal 2 metric, i.e. weakly

and with second moments. This allows us to write recurrence (3.8) in the form

X(ϑ)
n

d= A(n)X
(ϑ)
n−Nn

+ b(n)

with coefficients

A(n) = n − Nn

n
,

b(n) = Nn

n
X̃

(1)
Nn

+ 1

n

(
Nn log

(
Nn

n

)
+ (n − Nn) log

(
n − Nn

n

)
+ Nn

)
.

Hence, we have convergence of the coefficients to the corresponding quantities in the recursive
distributional equation (3.9) in 1 and 2, in fact in any p, p ≥ 1. This allows us to apply
general convergence theorems in the framework of the contraction method; see [14, Theorem 3]
and [12, Theorem 4.1]. In particular, one can first apply Theorem 4.1 of [12] with the choice
s = 1. This implies convergence in distribution of X

(ϑ)
n to X(ϑ), where X(ϑ) is the unique

integrable solution of (3.9), and convergence of the expectations. With this knowledge on the
expectation, which, of course, is also covered by our explicit formula for E[I (ϑ)

n ], one can
apply either Theorem 4.1 of [12] with the choice s = 2 or Theorem 3 of [14] to also obtain
convergence of the second moments.

Alternatively to applying the contraction method we could as well use the almost-sure
convergence of X

(ϑ)
n from the martingale argument together with the almost-sure convergence

of Nn/n in (3.1) to argue that the limit X(ϑ) satisfies (3.9).
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Proof of Theorem 2.6. For the characteristic function ϕϑ(t) := E[exp(itX(ϑ))] of X(ϑ), the
recursive distributional equation in Theorem 2.5 implies that

|ϕϑ(t)| ≤
∫ 1

0
|ϕ1(xt)||ϕϑ((1 − x)t)|ϑ(1 − x)ϑ−1 dx, t ∈ R.

We can apply the techniques of Fill and Janson [7] to show that this relation together with an
initial bound on |ϕϑ | allows us to show that |ϕϑ | is rapidly decreasing. The details are carried
out in [10]. Since the Fourier transform is an automorphism on the Schwartz space, this implies
the assertion.
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