The influence of dietary folate supplementation on the incidence of teratogenesis in zinc-deficient rats

BY PATRICIA B. QUINN AND F. M. CREMIN

Department of Nutrition, University College, Cork, Republic of Ireland

AND V. R. O'SULLIVAN

Department of Anatomy, University College, Cork, Republic of Ireland

AND F. M. HEWEDI

Faculty of Agriculture, Cairo University, Egypt

AND R. J. BOND

Biological Services Unit, University College, Cork, Republic of Ireland

(Received 14 July 1989–Accepted 4 January 1990)

Two studies were conducted to investigate the possibility that pteroylmonoglutamic acid supplementation would alleviate teratogenesis in zinc-deficient rats. Pregnant rats of the Wistar strain were fed on Zn-deficient (< 0.5 mg Zn/kg) or Zn-supplemented (75 or 95 mg Zn/kg) diets from mating until day 18.5 of gestation. The basal level of pteroylmonoglutamic acid added to all diets (0.56 mg/kg) was supplemented with 30-200 mg/kg in selected diets. Dietary Zn deprivation resulted in fetal resorption, fetal growth retardation and reduced concentrations of Zn in fetuses and maternal plasma and tibia. Low maternal body-weight at conception emerged as an important determinant of risk of resorption in Zn-deficient rats. Dietary Zn deficiency resulted in reduced maternal plasma folate concentrations and these values were inversely correlated with litter size or weight in Zn-deficient rats. Pteroylmonoglutamic acid supplementation increased maternal plasma folate concentrations, but did not reduce the high incidence of teratogenesis which occurred in Zn-deficient rats. Supplementation of Zn-deficient rats with pteroylmonoglutamic acid significantly increased the incidence of clubbed foot and tended to increase the incidence of brain or meningeal abnormalities, or both, and cleft palate, but did not reduce maternal or fetal Zn status. Pteroylmonoglutamic acid supplementation also increased the weights of Zn-supplemented control fetuses.

Zinc deficiency: Folate supplementation: Teratogenesis: Rat
Table 1. Composition of basal diets for Expts 1 and 2

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken egg albumen</td>
<td>2600</td>
</tr>
<tr>
<td>Sucrose</td>
<td>592.4</td>
</tr>
<tr>
<td>Maize oil</td>
<td>80.0</td>
</tr>
<tr>
<td>Vitamin mixture†</td>
<td>20.0</td>
</tr>
<tr>
<td>Mineral mixture‡</td>
<td>40.0</td>
</tr>
<tr>
<td>Phytic acid§</td>
<td>7.6</td>
</tr>
</tbody>
</table>

* 0.4 mg zinc/kg by atomic absorption analysis.
† Vitamin mixture (mg/kg diet): myo-Inositol 471.4, ascorbic acid 94.28, calcium pantothenate 47.14, thiamin hydrochloride 28.28, pyridoxine hydrochloride 28.28, nicotinic acid 28.28, menadione sodium bisulphite 37.72, p-aminobenzoic acid 9-42, riboflavin 9-42, pteroylmethglutamic acid 0.56, biotin (2%) 11.94, cyanocobalamin (0.1%) 28.28, vitamin A (as retinol equivalents) 4.24, cholecalciferol 0.0354, α-tocopherol acetate 226.28, choline chloride 942.8, glucose 1800 (g/kg). Additional pteroylmethglutamic acid was incorporated into the vitamin mixture at the required levels for folic acid-deficient diets.
‡ Mineral mixture (g/kg diet): K2HPO4 12.78, CaCO3 9.28, NaCl 6.61, MgSO4 7H2O 3.28, CaHPO4 2H2O 9.0, FeSO4 7H2O 0.98, MnSO4 7H2O 0.19, KI 0.0316, CuSO4 5H2O 0.0116. Zn was added to the mineral mixture as ZnSO4 7H2O at the required levels for Zn-supplemented diets.
§ Sodium salt, 153% water.

1975; Rogozinski et al. 1983; Huber et al. 1988). Cherry et al. (1981) observed a significant correlation between the concentration of Zn and folic acid in plasma of pregnant women. Much emphasis in ‘at risk’ human pregnancies is placed on the prophylactic effects of pteroylmethglutamic acid supplementation (Laurence et al. 1981; Wald & Polani, 1984), but Zn supplements are rarely prescribed.

The objective of the present study was to investigate the possibility that part of the teratogenic effect of reduced Zn status may be mediated by the adverse effect of Zn deficiency on folic acid status. This suggestion was evaluated in Zn-deficient pregnant rats by treatment with pharmacological doses of pteroylmethglutamic acid.

EXPERIMENTAL PROCEDURES

Animals

Virgin female rats of the Wistar strain were obtained from the Biological Services Unit, University College, Cork, for Expt 1, and Charles River (UK) Ltd, Margate, Kent, for Expt 2. For not less than 5 d before mating, female rats were acclimatized on the Zn-supplemented control diet. The day a vaginal plug was detected was considered to be day 0.5 of gestation. Pregnant rats were then weighed and randomized into groups of similar weights and fed on the experimental diets. In these experiments distilled water was available ad lib. from glass bottles fitted with melamine caps from which the rubber seals had been removed.

The animal room was fitted with a continuous filtered air-flow system and maintained at a temperature of 22 ± 2°C, relative humidity of 50 ± 2%; and a 12 h light – 12 h dark cycle was operated. Rats were individually housed in suspended plastic cages with stainless-steel fittings, including grid bottoms.

Diets and feeding regimen

Test diets were formulated as shown in Table 1. They were chosen to result in a high incidence of Zn-deficiency-induced teratogenesis and were based on the soya-bean-protein diets of Hurley & Swenerton (1971). In the present study, egg albumin replaced soya-bean
protein and, because the phytic acid content of soya bean reduces Zn availability, phytic acid was added at a level equivalent to that estimated in a soya-bean diet of similar protein concentration. With the exception of their Zn and folic acid contents, all diets were identical in composition. From day 0.5 to day 11.5 of gestation, Zn-deficient diets were not fed ad lib., but to a predetermined cycle (Fig. 1), in which the feeding cycle of Zn-deficient rats (Williams & Mills, 1970) was synchronized to result in maximum teratogenesis. This feeding method was suggested by Record et al. (1985) and based on the idea that development of individual fetal organs is influenced by maternal serum Zn concentration at the time of organogenesis, which, in turn, is inversely related to recent food intake. Feeding rats on the Zn-deficient diet in a systematic cyclical manner to induce low maternal serum Zn concentrations on gestational days 8 and 9 led to a substantially higher incidence of teratogenesis when compared with feeding in the reverse cycle. Rats were fed ad lib. from day 11.5 to day 17.5 of gestation. At the conclusion of each experiment rats were anaesthetized with diethyl ether and killed by cervical dislocation.

Expt 1

Five groups of pregnant rats were studied, each of mean body-weight 225 g on day 0.5 of gestation. Groups A, B, C and D were fed on the basal Zn-deficient diet supplemented with 0, 30, 100 and 200 mg pteroylmonoglutamic acid/kg respectively. Group E was fed on the basal diet supplemented with 95 mg Zn/kg, also to the predetermined cycle (Fig. 1) until day 11.5 of gestation and, thereafter, ad lib. until day 17.5. Food intakes were recorded daily throughout gestation and rats were fasted overnight before killing on day 18.5. Fetuses were removed by Caesarian section and resorbed litters were noted. Fetuses were stored in formal saline and subsequently examined for gross external malformations using a stereomicroscope.

Expt 2

Four groups of pregnant rats were studied, each of mean body-weight 270 g on day 0.5 of gestation. Groups F and H consisted of eighteen rats each and were fed on the basal Zn-
deficient diet supplemented with 0 and 200 mg pteroylmonoglutamic acid/kg respectively. Groups G and J consisted of six rats each and were fed on the control diet (75 mg Zn/kg) supplemented with 0 and 200 mg pteroylmonoglutamic acid/kg respectively. Groups F and H were fed to the predetermined cycle (Fig. 1) from day 0-5 to day 11.5 of gestation and ad lib. thereafter. Groups G and J were pair-fed from day 0.5 to day 17.5 of gestation with six rats selected at random from each of groups F and H respectively. All rats were given 5 g food on the day before killing (day 17.5 of gestation) in order to minimize the elevating effect of fasting on plasma Zn concentration (Wallwork et al. 1981). On day 18.5 of gestation, rats were anaesthetized using diethyl ether and blood was withdrawn by retro-orbital puncture of the subretinal vein and collected in heparinized plastic tubes. Plasma was prepared within 3 h of withdrawal and stored at −20°C for determination of Zn and folic acid concentrations. Maternal plasma folate concentration was measured because it represents the pool of folate readily available to the fetus, and according to Abab & Gregory (1987) is a good indicator of folate status in short-term bioassays. Litter size, and fetal and placentinal weights were recorded. One fetus per litter was selected at random from each of nine litters in the Zn-deficient groups and from each litter in the control groups. These fetuses, and placentinal tissue from all litters, were frozen in liquid nitrogen and stored at −20°C for Zn analysis. The remaining fetuses were stored in formal saline and examined for gross external malformations.

Analytical methods
Folate was assayed in undiluted plasma using a chloramphenicol-resistant strain of Lactobacillus casei by the method of Scott et al. (1974) as modified by Wilson & Horne (1982). Plasma was diluted 1:10 using high-performance liquid chromatography grade water and analysed for Zn by plasma emission spectrophotometry (ICP emission spectrophotometer model 6500; Perkin-Elmer). Diets (0.5 g) and oven-dried whole tibias, fetuses and placentinal tissue were wet ashed in 15 ml of a mixture (2:1, v/v) of Analar grade nitric and perchloric acids, and analysed for Zn by atomic absorption spectrophotometry (flame atomic absorption spectrophotometer model SP9; Pye Unicam).

Statistical analysis of malformation and resorption incidences were carried out by the Mann-Whitney U test using the Minitab statistical package (Ryan et al. 1985). All other values were analysed by two-way analysis of variance using the SPSS-X statistical package.

RESULTS
In Expt 1, rats fed on diets adequate in Zn (group E) to the predetermined cycle exhibited a satisfactory pregnancy outcome (Table 2). Rats fed on the Zn-deficient diet (group A) exhibited a high rate of fetal resorption, 57% of the litters being totally resorbed. Folate supplementation did not reduce the incidence of litter resorption (groups B, C, D) incurred by Zn deficiency. Litter resorption tended to be increased in group D which was supplemented with 200 mg pteroylmonoglutamic acid/kg. Pregnancy outcome was also satisfactory in pair-fed Zn-replete rats in Expt 2 (group G). The incidence of litter resorption was 16-7% in Zn-deficient rats. Folate supplementation did not affect resorption incidence in Zn-deficient (group H) or Zn-replete (group J) rats. Analysis of body-weights within Expt 1 and between Expts 1 and 2 indicated that body-weight is an important determinant of resorption risk in Zn-deficient rats. Rats exhibiting a 100% resorption incidence in Expt 1 had significantly (P < 0.001) lower body-weights (mean 218.0 (SE 2.7) g) at conception than those with litters (mean 235.3 (SE 3.9) g). When rats of higher body-weights were used in Expt 2 (270 (SE 4.1) g), the incidence of litter resorption was substantially reduced.
Table 2. Expts 1 and 2. Incidence of litter resorption and fetal malformation

<table>
<thead>
<tr>
<th>Group …</th>
<th>Expt 1</th>
<th>Expt 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Dietary zinc (mg/kg†)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dietary folate (mg/kg‡)</td>
<td>0.56</td>
<td>30.56</td>
</tr>
<tr>
<td>No. of pregnant dams</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Starting body-wt (g)</td>
<td>225</td>
<td>226</td>
</tr>
<tr>
<td>Litters resorbed: %</td>
<td>85.2</td>
<td>54.0</td>
</tr>
<tr>
<td>No. of fetuses examined</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Malformation (incidence; % of fetuses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain or meningeal abnormalities, or both</td>
<td>40.7</td>
<td>62.5</td>
</tr>
<tr>
<td>Umbilical hernia</td>
<td>40.7</td>
<td>37.5</td>
</tr>
<tr>
<td>Tail deformities</td>
<td>77.8</td>
<td>87.5</td>
</tr>
<tr>
<td>Adactyly or syndactyly</td>
<td>85.2</td>
<td>75.0</td>
</tr>
<tr>
<td>Micro-ophthalmia or anophthalmia</td>
<td>51.9</td>
<td>59.4</td>
</tr>
<tr>
<td>Micrognathia or agnathia</td>
<td>18.5</td>
<td>18.8</td>
</tr>
<tr>
<td>Cleft of primary palate</td>
<td>0.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Cleft of secondary palate</td>
<td>25.9</td>
<td>59.4</td>
</tr>
<tr>
<td>Macroglossia</td>
<td>14.8</td>
<td>15.6</td>
</tr>
<tr>
<td>Club foot</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Value for group H was significantly higher than that for group F: *P < 0.05.
† By atomic absorption analysis all Zn-deficient diets contained <0.5 mg Zn/kg and Zn-supplemented diets contained indicated concentrations.
‡ Added as pteroylmonoglutamic acid.
§ Total litter resorption, no fetuses on examination.
Table 3. Expt 2. Effects of dietary zinc deficiency and folate supplementation on pregnancy outcome, maternal plasma folate concentrations and indices of maternal and fetal Zn status
(Mean values with their standard errors)

<table>
<thead>
<tr>
<th>Group...</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>Statistical significance of difference between groups*; P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary Zn (mg/kg)...</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dietary folate (mg/kg)†</td>
<td>0.56</td>
<td>0.56</td>
<td>200.56</td>
<td>200.56</td>
<td></td>
</tr>
<tr>
<td>Maternal rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>18</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Plasma Zn (mg/l)</td>
<td>0.55 ± 0.07</td>
<td>1.0 ± 0.07</td>
<td>0.54 ± 0.04</td>
<td>0.99 ± 0.04</td>
<td><0.001 NS</td>
</tr>
<tr>
<td>Plasma folate (μg/l)</td>
<td>16.6 ± 2.0</td>
<td>13.0 ± 4.4</td>
<td>10.5 ± 11.0</td>
<td>9.6 ± 9.1</td>
<td>NS <0.001</td>
</tr>
<tr>
<td>Tibia Zn‡ (μg/g)</td>
<td>167.7 ± 3.2</td>
<td>212.5 ± 6.0</td>
<td>177.3 ± 4.0</td>
<td>206.6 ± 9.5</td>
<td><0.001 NS</td>
</tr>
<tr>
<td>Fetal Zn‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(μg/g)</td>
<td>98.2 ± 4.2</td>
<td>126.8 ± 3.3</td>
<td>107.9 ± 2.0</td>
<td>129.5 ± 2.5</td>
<td><0.001 <0.05</td>
</tr>
<tr>
<td>Placental Zn‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(μg/g)</td>
<td>61.9 ± 1.5</td>
<td>78.4 ± 6.3</td>
<td>65.2 ± 2.4</td>
<td>70.1 ± 2.8</td>
<td><0.01 NS</td>
</tr>
<tr>
<td>No of fetuses per litter§</td>
<td>7.70 ± 1.31</td>
<td>13.33 ± 1.02</td>
<td>7.13 ± 0.98</td>
<td>12.83 ± 0.15</td>
<td><0.001 NS</td>
</tr>
<tr>
<td>Fetal wt</td>
<td></td>
<td>(g)</td>
<td>0.65 ± 0.07</td>
<td>1.12 ± 0.11</td>
<td>0.61 ± 0.03</td>
</tr>
<tr>
<td>Placental wt</td>
<td></td>
<td>(g)</td>
<td>0.24 ± 0.01</td>
<td>0.36 ± 0.02</td>
<td>0.25 ± 0.02</td>
</tr>
</tbody>
</table>

NS, not significant.
* Significance due to Zn or folate by two-way analysis of variance; no significant interaction was observed.
† Added as pteroylmonoglutamic acid.
‡ Expressed on a dry-weight basis.
§ Mean values excluding total litter resorptions.
|| Mean litter values, fresh weights.
The incidence of fetal malformations is also shown in Table 2. The occurrence of terata in Zn-supplemented rats was negligible in both experiments. In general, folate supplementation of Zn-deficient dams did not alleviate teratogenesis. The results of Expt 1 indicate that some malformations including brain and meningeal abnormalities, micrognathia or agnathia, and clefts of the primary and secondary palates may be increased by folate supplementation at 30 and 100 mg/kg diet. The incidence of terata varied slightly between experiments, but trends in Expt 2 were similar to those in Expt 1. Brain and meningeal abnormalities, umbilical hernia and cleft of the secondary palate were slightly
increased and the occurrence of club foot was significantly \((P < 0.05) \) increased by folate supplementation of Zn-deficient dams. Food intakes were unaffected by folate supplementation and, therefore, did not contribute to the incidence of teratogenesis.

Dietary Zn deprivation resulted in a significant reduction in maternal tibia and plasma Zn concentrations (Table 3). Fetal and placental Zn concentrations, litter sizes and fetal and placental weights were also depressed by Zn deficiency. Maternal plasma folate concentration (group G) was not significantly \((P > 0.05) \) decreased by Zn deficiency, but this lack of effect may have been due to the small litter sizes of Zn-deficient rats. Litter sizes and weights, and plasma folate concentrations varied from litter to litter within Zn-deficient (group F) rats. Regression analysis indicated significant inverse correlations between litter size \((r = -0.495, P < 0.05) \) or weight \((r = -0.630, P < 0.01) \) and maternal plasma folate concentrations (Fig. 2(a, b)) within this group. Impositions of average control litter size or weight on Fig. 2(a, b) indicate corresponding folate concentrations in Zn-deficient rats of 1.0-7 and 6.2 \(\mu g/l \) respectively. This compares with an actual average control (group G) value of 19.0 (se 4.4) \(\mu g/l \) and a Zn deficiency (group F) value of 16.6 (se 2.0) \(\mu g/l \).

A positive effect of pteroylmonoglutamic acid supplementation on maternal plasma folate was observed in Zn-deficient (group H) and control (group J) rats. Folic acid supplementation resulted in a significant increase in fetal Zn concentration of the Zn-deficient group and a non-significant increase in fetal weight of the control group. No other effects of dietary folate were observed on variables of reproductive outcome, or fetal or maternal Zn status (Table 3).

DISCUSSION

The results confirm the teratogenic effect of Zn deficiency and, with the exception of macroglossia, the incidence and pattern of malformations were similar to those previously reported (Hurley & Swenerton, 1966; Warkany & Petering, 1973; Rogers et al. 1985; Record et al. 1985). The sensitivity of a 20 g difference in maternal body-weight within Expt 1, or 50 g between Expts 1 and 2, highlights the critical nature of body-weight to litter resorption risk, an observation which concurs with that of Record & Dreosti (1988).

Adverse effects of Zn deficiency on folic acid metabolism including folylpolyglutamate absorption have been observed in man (Tamura et al. 1978) and rats (Canton et al. 1989). Reduced concentration of folate in liver (Williams et al. 1973), whole blood (Fuller et al. 1988) and plasma (Tamura et al. 1987) have also been reported in rats. The results of the present study confirm previous findings in rat plasma. The effect is more evident when Zn-deficient and control rats with similar litter sizes or weights are compared, as severely reduced litter sizes in Zn-deficient rats tends to mask the effect. Folate supplementation reversed the reduction in plasma folate observed in Zn-deficient rats, but the teratogenic effects of Zn deficiency were not reduced.

Failure of folic acid supplementation to reduce teratogenesis may indicate that folic acid deficiency did not occur in Zn-deficient rats, or that folic acid metabolism was impaired by Zn deficiency rendering the supplement ineffective. A number of studies suggest that \(\gamma \)-glutamyl hydrolase \((EC\ 3.4.22.12)\) requires Zn for activation (Silink et al. 1975; Wang et al. 1985; Chandler et al. 1986; Canton et al. 1989) and its activity may be decreased by Zn deficiency. In contrast, methionine synthetase activity is increased (Tamura et al. 1987) in Zn deficiency. Both enzymes may be important regulators of folate coenzyme distribution in tissues. In studies of uterine \(\gamma \)-glutamyl hydrolase activity during the oestrus cycle in the rat, Krumdieck et al. (1976) suggested that this enzyme may control uterine cell division by regulating the length of the \(\gamma \)-glutamyl side chain. It was suggested that chain length determines the ratio of metabolic inhibitor: active coenzyme form of folate for one carbon reaction and, thereby, tissue growth and differentiation. Failure of pteroylmonoglutamic
acid supplementation to ameliorate teratogenesis in Zn-deficient rats could, therefore, be caused by the inability of the Zn-deficient rats to convert the vitamin to the active metabolic form. Alternatively, because there was no evidence that Zn deficiency produced a severe folate deficiency, the induced reduction in folate status which did occur may not have been of sufficient severity to exacerbate the teratogenicity of the Zn deficiency. The use of grid-bottomed cages was the only precaution taken against coprophagy, and vitamin recycling may have occurred. Folate antagonists and antibiotics have been required to demonstrate the teratogenic potency of folate deficiency in rats (Nelson et al. 1955). Reproductive studies in which rats were fed on casein diets without added folate, or the use of antagonists or antibiotics, resulted in no adverse effects on pregnancy outcome (Fuller et al. 1988). Nevertheless, most interest focuses on the importance of folate nutriture in the prevention of neural tube defect recurrence in human pregnancy (Laurence et al. 1981; Smithells et al. 1981; Medico-Social Research Board, 1986). Comparison of the results of our study with those of the human investigations is difficult. The dietary Zn deficiency was extreme and with respect to folate the requirement of the pregnant rat is suggested to be 1 mg/kg diet (National Research Council, 1978) and the diets were supplemented to a level of 30–200 mg/kg.

In the current experiments, pteroylmonoglutamic acid supplementation tended to increase the incidence of teratogenesis in Zn-deficient groups, with the exception of group D. The lack of effect in this group may have been caused by the masking effect of litter resorption, as this group had the highest rate of resorption. Fetal distress in women taking prenatal vitamin supplements has been associated with low plasma Zn and high plasma folate concentrations (Mukherjee et al. 1984). A number of recent studies have drawn attention to a deleterious interaction between Zn and folic acid (Milne et al. 1984; McMaster et al. 1985; Ghishan et al. 1986; Simmer et al. 1987). These reports suggest that folic acid chelates intestinal Zn, thereby reducing the availability of dietary Zn. Others (Keating et al. 1987; Butterworth et al. 1988) failed to observe an effect. In the present study, neither the Zn status of the dams nor fetuses was compromised by folate supplementation. Failure to reduce Zn status may reflect the negligible concentration of Zn in the Zn-deficient diets. Fetal Zn is derived primarily from the breakdown of maternal tissues in Zn-deficient pregnancies. Masters et al. (1983) observed that two to three times more Zn was deposited in the products of conception of the rat than was consumed in the diet. The greater availability of tissue for catabolism and consequently Zn stores may also explain the lower rate of fetal resorption in Zn-deficient dams of higher body-weights. The higher incidence of malformations in Zn-deficient folate-supplemented rats may derive from the fact that folate has an avidity for a number of elements other than Zn (Albert, 1953), and in the absence of dietary Zn, binding of folate to other elements may be more important. In the present study the apparent teratogenic effects of Zn deficiency may have been exacerbated by reduced copper or manganese availability due to folate supplementation, as dietary deficiencies of these elements are also teratogenic. The observation that the Zn status of control rats was not compromised by folate supplementation is not surprising, as they were supplemented with 75 and 95 mg Zn/kg diet, quantities substantially greater than the requirement of the pregnant rat. Fuller et al. (1988) observed no effect of folate supplementation on maternal Zn concentration, fetal Zn concentration or pregnancy outcome of pregnant rats fed on marginal- or adequate-Zn diets. Fetal weight was enhanced by folate supplementation of control rats in the current study. Folic acid supplementation has also been reported to enhance human birth weight (Baumslag et al. 1970; Iyengar & Rajalakshmi, 1975; Blot et al. 1981). This effect may reflect the essential role of folic acid in cell multiplication and tissue growth (Morgan & Winick, 1978).

In summary, the results confirm the teratogenic effect of Zn deficiency. They also
demonstrate not only the inability of pteroylmonoglutamic acid supplementation to offset this effect, but indicate its possible potentiation. Maternal plasma folate concentration was inversely related to litter size or weight of Zn-deficient rats and pteroylmonoglutamic acid supplementation increased the size of offspring from Zn-supplemented rats. Low maternal body-weight at conception emerged as an important negative determinant of pregnancy outcome in Zn-deficient rats. The implications of this finding for pregnancy outcome in humans may be significant.

REFERENCES

Printed in Great Britain