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Introduction. In [3], Sharp and Taherizadeh introduced concepts of reduction and
integral closure of an ideal / of a commutative ring R (with identity) relative to an
Artinian fl-module A, and they showed that these concepts have properties which reflect
some of those of the classical concepts of reduction and integral closure introduced by
Northcott and Rees in [2].

We say that the ideal / of R is a reduction of the ideal J of R relative to A if I cj and
there exists seW such that (0 :A IF) = (0 :A Js+l). (We use N (respectively No) to denote
the set of positive (respectively non-negative) integers.) An element x of R is said to be
integrally dependent on I relative to A if there exists n eN such that

"-'f) c (0 :A x").

In fact, this is the case if and only if / is a reduction of I + Rx relative to A [3, Lemma
(2.2)]; moreover,

I* := {y e R :y is integrally dependent on / relative to A}

is an ideal of R, called the integral closure of 1 relative to A, and is the largest ideal of R
which has / as a reduction relative to A. In this paper, we shall indicate the dependence of
/* on the Artinian R-module A by means of the extended notation /*(/4).

In fact, this notation is very relevant to this paper, because its purpose is to
investigate how the ideal I*(A) depends on the Artinian module A in the context of exact
sequences: our main result is that, if

is an exact sequence of Artinian /^-modules, then I*(B) = I*iA) D /*(C).
Although this result does not appear to have any counterpart in the classical theory

of integral closure, where the underlying ring tended to be fixed at the outset, there is a
dual result which is perhaps worthy of mention. In [4, Section 1], dual concepts of
reduction and integral closure of the ideal / relative to a Noetherian R -module N were
introduced; we shall denote the integral closure of / relative to N by 7~(N). However, it
turns out that this integral closure is related to the classical integral closure of Northcott
and Rees: the ring R/(0 : N) is Noetherian, and, by [4, 1.6], I~w ^ (0: N) and

/-(JV)/(0 : N) = ((/ + (0 : N))/(0 : N))~,

where the ordinary, classical integral closure of an ideal J of a commutative Noetherian
ring R' is denoted by /~. This fact means that we can quickly deduce the following.

1.1. PROPOSITION. Let
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be an exact sequence of Noetherian modules over the commutative ring R (with identity),
and let I be an ideal of R. Then /"(M) = r(L) n l~(N\

Proof. Let xeI~(M), so that, in view of the comment immediately preceding the
statement of this proposition, there exist n e N and elements cu . . . , cn e R with c, e /' for
i = 1,. . . , n such that

x"+cix
n~l + .. . +cn_lx + cne(0:M).

But (0:M) e (0:L) fl (0:/V), and so it again follows from [4,1.6] that

x + (0: N) e ((/ + (0: N))/(0 :N))~ = /~ w / ( 0 : N)

and x e / " ( A ° . Similarly x e I~(L\ and so we have proved that / ' ( M ) c 1~(L) D l~w.
The reverse inclusion is almost as easy to prove. Let x e I~iL) D /~(N); thus there

exist n e N and elements cu . . . ,cne R with c,: e / ' for i = 1,. . . , n such that

xn + c ,*"- ' + . . . + c _ , x + cn 6 (0: L),

and there exist A e N and elements du . . . ,dheR with d, 6 / ' for / = 1,. . . , /z such that

x/l + d1x
/l~' + . . .+dh_ix + dhe(Q:N).

But then

(x" + 2 c*x""') (x* + 2 rf/x*"') e (0: L)(0: /V) c (0: M),

and it follows from this that x e I~(M). This completes the proof.

We have not found it so easy to prove the corresponding result for a short exact
sequence of Artinian modules, and our proof of this dual result forms the content of the
next section.

2. The result. Throughout, R denotes a commutative ring (with identity). We begin
with some preparatory comments which will be helpful in the proof of the main result.

2.1. REMARK. Let A, B and C be Artinian /?-modules, and let / be an ideal of R.
Then it follows from [3, (1.5) and (1.6)(i)] that there exists a finitely generated ideal / '
of R such that / ' c / and, for all neN,

(0:Arn) = (0:AF), (0:B/'n) = (0:B/n), (0:c/ '") = (0:c /n) .

Note that such an / ' must be a reduction of / relative to each of A, B, C, so that, by [3,

We shall make use of the following fact from [3].

2.2. PROPOSITION [3, (1.7)]. Let A be an Artinian R-module, and let I, J be ideals of R
such that Icj and I is finitely generated by ru . . . ,rs. Let Xu.. . ,Xs be independent
indeterminates over R, and consider R[X\,. . . , Xs] as a graded ring in the usual way. Let
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GA(J) = G = 0 Gn be the graded R[XU . . . , Xs]-module defined as follows: for n e Z,

| 0 for n>0,
" \A/(0:AJ'") for n < 0 ;

the ideas of [1, p. 55] arc used fo turn G into a graded R[XU. . . , Xs]-module in such a
way that, for a negative integer n and a eA,

for i = 1,. . . , s.
Then GA(J) is an Artinian R[XU . . . , Xs]-module if and only if I is a reduction of J

relative to A.

2.3. COROLLARY. Let B be an Artinian R-module, and let I, J be ideals of R such that
I c i and I is finitely generated by ru . . . ,rs. Let A be a submodule of B such that I is a
reduction of J relative to B/A.

Let HB A(J) = H = 0 Hn be defined as follows: for n e Z, set
neZ

R fO for « > 0 ,
" {B/(A + (0:BJ-n)) for n < 0 ;

then the R-module HBA{J) can be turned into a graded R[X{,. . . , Xs]-module in such a
way that, for a negative integer n and b e B,

Xi(b + (A + (0:s/""))) = rjb + (A + (0:BJ~"~1))

for i = 1,. . . , s.
Then HBA(J) is an Artinian R[XU . . . , Xs]-module.

Proof. Let GB A(J) = G = 0 Gn be defined as follows: for n e Z, set

- _ JO for n > 0 ,
n~[B/(A:BJ-") for n<0;

turn the /^-module G into a graded R[XU. . . , A'J-module in such a way that, for a
negative integer n and b e B,

Xt{b + (A :BJ-")) = nb + (A :Br"-1)

for i = 1,. . . , s. By 2.2 applied to B/A, the R[XU . . . , Z5]-module GBA{J) is Artinian.
By Kirby's 'Artin-Rees' Lemma for Artinian modules [1, Proposition 3], there exists

/ e Mo such that

A + (0:BJ") = ((A + (0:BJ')):BJ"~') for all n>t.

Now let H = 0 Hn be defined as follows: for n e Z, set
neZ

- fO for n>0,
" \B/(A:BJ-n-') for n<0,

https://doi.org/10.1017/S0017089500008582 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008582


106 R. Y. SHARP AND Y. TIRA§

where Jh is to be interpreted as R when the integer h is negative; turn the R-module H
into a graded R[XU . . . , A^J-module in such a way that, for a negative integer n and
beB,

X,(b + (A V" - ' ) ) = nb + (A :BJ—<-1)

for / = 1 , . . . ,s. It follows easily from [1, Theorem l(ii)], together with the above-
mentioned fact that GB,A(J) is an Artinian R[XU . . . , A^v]-module, that H is an Artinian
R[XU... ,*s]-module.'

Next note that, for all n e Z with n £ —t, we have

(A :BJ-n-) <= {(A + (0 :BJ')) :*/—') =A + (0 :Brn),

while AcA + (0:BJ~") for —/<«<(). It is now easy to construct an R[XU. . . ,XS]-
epimorphism H—*HBA(J), and so the result follows.

We are now in a position to prove the main result of this note.

2.4 THEOREM. Let

be an exact sequence of Artinian R-modules, and let I be an ideal of R. Then
j*(B) _ i*(A) p j*(C)

Proof. We can assume that A is a submodule of B, that C = B/A, that / is the
inclusion map, and that g is the canonical epimorphism. By 2.1, we can, and do, assunie
that / is finitely generated, say by ru . . . , rs.

Set J = I*(A) n /*(C). By [3, (1.8) and (2.4)], the ideal J has / as a reduction relative to
each of A and C; our aim is to show that / is a reduction of J relative to B.

Consider the graded R[XU . . . , A;]-modules GA{J), GB(J) and HBA(J), as in 2.2 and
2.3: by those results, GA(J) and HB A{J) are Artinian R[XU . . . ,XS]- modules. For each
n e No, there is an exact sequence of /^-modules

0->A/(P:AJn)->B/(0:BJn)->B/(A + (0:Br))->0.

It is easy to obtain from this an exact sequence

of R[Xt,. . . , A'J-modules and R[Xt,. . . , A^.]-homomorphisms. Hence GB(J) is an
Artinian R[XU. . . , A^]-module, and so it follows from 2.2 that / is a reduction of J
relative to B. Hence, by [3, (2.4)],

j = i*w n /*(C) <z I*(B)

The reverse inclusion can be proved more easily. Let K = /*(B); by 2.2, and with the
notation thereof, GB(K) is an Artinian R[XU . . . , ̂ s]-module; it is easy to see that there
exist an R[XU . . . , A^]-monomorphism GA(K)^>GB(K) and an R[Xlt. . . ,XS]-
epimorphism GB{K)^> GBM{K); hence GA(K) and GB/A(K) are Artinian R[XU . . . ,XS]-
modules; it therefore follows from 2.2 again that / is a reduction of K relative to each of
A and B/A; and so, by [3, (2.4)] again,

[( _ J*(B) c j*(A)

This completes the proof.
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2.5. CONCLUDING REMARKS. It follows from 2.4 that if A is either a submodule or a
homomorphic image of the Artinian R -module B, and / is an ideal of R, then
j*w ^ y*(/») Thy^ speaking loosely, we see that the smaller the Artinian module, the
larger the integral closure of / relative to it; indeed, /*(0), the integral closure of / relative
to the (Artinian!) module 0, is R itself. In the case when R is semi-local and Noetherian
and E is an Artinian injective cogenerator (see [5, p. 46]) for R, it follows from [4, 2.1]
that /*( £ ) = /~, the classical integral closure of / studied by Northcott and Rees;
moreover, in this situation, / ~ c / * ( B ) for every Artinian R-module B. It is perhaps
interesting to ask which ideals of R that contain / " can arise as the integral closure of /
relative to some Artinian R-module. The above Theorem 2.4 might be of some assistance
with such an investigation.
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