INTEGRAL CLOSURES OF IDEALS RELATIVE TO ARTINIAN MODULES, AND EXACT SEQUENCES

by R. Y. SHARP and Y. TIRAŞ

(Received 15 October, 1990)

Introduction. In [3], Sharp and Taherizadeh introduced concepts of reduction and integral closure of an ideal I of a commutative ring R (with identity) relative to an Artinian R-module A, and they showed that these concepts have properties which reflect some of those of the classical concepts of reduction and integral closure introduced by Northcott and Rees in [2].

We say that the ideal I of R is a reduction of the ideal J of R relative to A if $I \subseteq J$ and there exists $s \in \mathbb{N}$ such that $(0:_A IJ^s) = (0:_A J^{s+1})$. (We use \mathbb{N} (respectively \mathbb{N}_0) to denote the set of positive (respectively non-negative) integers.) An element x of R is said to be integrally dependent on I relative to A if there exists $n \in \mathbb{N}$ such that

$$\left(0:_{A}\sum_{i=1}^{n}x^{n-i}I^{i}\right)\subseteq(0:_{A}x^{n}).$$

In fact, this is the case if and only if I is a reduction of I + Rx relative to A [3, Lemma (2.2)]; moreover,

 $I^* := \{y \in R : y \text{ is integrally dependent on } I \text{ relative to } A\}$

is an ideal of R, called the *integral closure of I relative to A*, and is the largest ideal of R which has I as a reduction relative to A. In this paper, we shall indicate the dependence of I^* on the Artinian R-module A by means of the extended notation $I^{*(A)}$.

In fact, this notation is very relevant to this paper, because its purpose is to investigate how the ideal $I^{*(A)}$ depends on the Artinian module A in the context of exact sequences: our main result is that, if

$$0 \to A \to B \to C \to 0$$

is an exact sequence of Artinian R-modules, then $I^{*(B)} = I^{*(A)} \cap I^{*(C)}$.

Although this result does not appear to have any counterpart in the classical theory of integral closure, where the underlying ring tended to be fixed at the outset, there is a dual result which is perhaps worthy of mention. In [4, Section 1], dual concepts of reduction and integral closure of the ideal I relative to a Noetherian R-module N were introduced; we shall denote the integral closure of I relative to N by $I^{-(N)}$. However, it turns out that this integral closure is related to the classical integral closure of Northcott and Rees: the ring R/(0:N) is Noetherian, and, by [4, 1.6], $I^{-(N)} \supseteq (0:N)$ and

$$I^{-(N)}/(0:N) = ((I + (0:N))/(0:N))^{-},$$

where the ordinary, classical integral closure of an ideal J of a commutative Noetherian ring R' is denoted by J^- . This fact means that we can quickly deduce the following.

1.1. PROPOSITION. Let

$$0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$$

Glasgow Math. J. 34 (1992) 103-107.

be an exact sequence of Noetherian modules over the commutative ring R (with identity), and let I be an ideal of R. Then $I^{-(M)} = I^{-(L)} \cap I^{-(N)}$.

Proof. Let $x \in I^{-(M)}$, so that, in view of the comment immediately preceding the statement of this proposition, there exist $n \in \mathbb{N}$ and elements $c_1, \ldots, c_n \in R$ with $c_i \in I^i$ for $i = 1, \ldots, n$ such that

$$x^{n} + c_{1}x^{n-1} + \ldots + c_{n-1}x + c_{n} \in (0:M).$$

But $(0:M) \subseteq (0:L) \cap (0:N)$, and so it again follows from [4, 1.6] that

$$x + (0:N) \in ((I + (0:N))/(0:N))^{-} = I^{-(N)}/(0:N)$$

and $x \in I^{-(N)}$. Similarly $x \in I^{-(L)}$, and so we have proved that $I^{-(M)} \subseteq I^{-(L)} \cap I^{-(N)}$.

The reverse inclusion is almost as easy to prove. Let $x \in I^{-(L)} \cap I^{-(N)}$; thus there exist $n \in \mathbb{N}$ and elements $c_1, \ldots, c_n \in R$ with $c_i \in I'$ for $i = 1, \ldots, n$ such that

$$x^{n} + c_{1}x^{n-1} + \ldots + c_{n-1}x + c_{n} \in (0:L),$$

and there exist $h \in \mathbb{N}$ and elements $d_1, \ldots, d_h \in R$ with $d_i \in I^i$ for $i = 1, \ldots, h$ such that

$$x^{h} + d_{1}x^{h-1} + \ldots + d_{h-1}x + d_{h} \in (0:N).$$

But then

$$\left(x^{n} + \sum_{i=1}^{n} c_{i} x^{n-i}\right) \left(x^{h} + \sum_{i=1}^{h} d_{i} x^{h-i}\right) \in (0:L)(0:N) \subseteq (0:M),$$

and it follows from this that $x \in I^{-(M)}$. This completes the proof.

We have not found it so easy to prove the corresponding result for a short exact sequence of Artinian modules, and our proof of this dual result forms the content of the next section.

2. The result. Throughout, R denotes a commutative ring (with identity). We begin with some preparatory comments which will be helpful in the proof of the main result.

2.1. REMARK. Let A, B and C be Artinian R-modules, and let I be an ideal of R. Then it follows from [3, (1.5) and (1.6)(i)] that there exists a finitely generated ideal I' of R such that $I' \subseteq I$ and, for all $n \in \mathbb{N}$,

$$(0:_{A}I'^{n}) = (0:_{A}I^{n}), \quad (0:_{B}I'^{n}) = (0:_{B}I^{n}), \quad (0:_{C}I'^{n}) = (0:_{C}I^{n}).$$

Note that such an I' must be a reduction of I relative to each of A, B, C, so that, by [3, (2.4)(iv)],

 $I'^{*(A)} = I^{*(A)}, \qquad I'^{*(B)} = I^{*(B)}, \qquad I'^{*(C)} = I^{*(C)}.$

We shall make use of the following fact from [3].

2.2. PROPOSITION [3, (1.7)]. Let A be an Artinian R-module, and let I, J be ideals of R such that $I \subseteq J$ and I is finitely generated by r_1, \ldots, r_s . Let X_1, \ldots, X_s be independent indeterminates over R, and consider $R[X_1, \ldots, X_s]$ as a graded ring in the usual way. Let

 $G_A(J) = G = \bigoplus_{n \in \mathbb{Z}} G_n$ be the graded $R[X_1, \ldots, X_s]$ -module defined as follows: for $n \in \mathbb{Z}$,

$$G_n = \begin{cases} 0 & \text{for } n > 0, \\ A/(0:_A J^{-n}) & \text{for } n \le 0; \end{cases}$$

the ideas of [1, p. 55] are used to turn G into a graded $R[X_1, \ldots, X_s]$ -module in such a way that, for a negative integer n and $a \in A$,

$$X_i(a + (0:_A J^{-n})) = r_i a + (0:_A J^{-n-1})$$

for i = 1, ..., s.

Then $G_A(J)$ is an Artinian $R[X_1, \ldots, X_s]$ -module if and only if I is a reduction of J relative to A.

2.3. COROLLARY. Let B be an Artinian R-module, and let I, J be ideals of R such that $I \subseteq J$ and I is finitely generated by r_1, \ldots, r_s . Let A be a submodule of B such that I is a reduction of J relative to B/A.

Let $H_{B,A}(J) = H = \bigoplus_{n \in \mathbb{Z}} H_n$ be defined as follows: for $n \in \mathbb{Z}$, set

$$H_n = \begin{cases} 0 & \text{for } n > 0, \\ B/(A + (0:_B J^{-n})) & \text{for } n \le 0; \end{cases}$$

then the R-module $H_{B,A}(J)$ can be turned into a graded $R[X_1, \ldots, X_s]$ -module in such a way that, for a negative integer n and $b \in B$,

$$X_i(b + (A + (0:_B J^{-n}))) = r_i b + (A + (0:_B J^{-n-1}))$$

for i = 1, ..., s.

Then $H_{B,A}(J)$ is an Artinian $R[X_1, \ldots, X_s]$ -module.

Proof. Let $\tilde{G}_{B,A}(J) = \tilde{G} = \bigoplus_{n \in \mathbb{Z}} \tilde{G}_n$ be defined as follows: for $n \in \mathbb{Z}$, set $\tilde{G}_n = \begin{cases} 0 & \text{for } n > 0, \\ B/(A:B^{J^{-n}}) & \text{for } n \leq 0; \end{cases}$

turn the *R*-module
$$\tilde{G}$$
 into a graded $R[X_1, \ldots, X_s]$ -module in such a way that, for a negative integer *n* and $b \in B$,

$$X_i(b + (A:_B J^{-n})) = r_i b + (A:_B J^{-n-1})$$

for i = 1, ..., s. By 2.2 applied to B/A, the $R[X_1, ..., X_s]$ -module $\tilde{G}_{B,A}(J)$ is Artinian.

By Kirby's 'Artin-Rees' Lemma for Artinian modules [1, Proposition 3], there exists $t \in \mathbb{N}_0$ such that

$$A + (0:_B J^n) = ((A + (0:_B J^t)):_B J^{n-t})$$
 for all $n \ge t$.

Now let $\tilde{H} = \bigoplus_{n \in \mathbb{Z}} \tilde{H}_n$ be defined as follows: for $n \in \mathbb{Z}$, set

$$\tilde{H}_n = \begin{cases} 0 & \text{for } n > 0, \\ B/(A:_B J^{-n-t}) & \text{for } n \le 0, \end{cases}$$

where J^h is to be interpreted as R when the integer h is negative; turn the R-module \tilde{H} into a graded $R[X_1, \ldots, X_s]$ -module in such a way that, for a negative integer n and $b \in B$,

$$X_i(b + (A_{B}J^{-n-t})) = r_ib + (A_{B}J^{-n-t-1})$$

for i = 1, ..., s. It follows easily from [1, Theorem 1(ii)], together with the abovementioned fact that $\tilde{G}_{B,A}(J)$ is an Artinian $R[X_1, ..., X_s]$ -module, that \tilde{H} is an Artinian $R[X_1, ..., X_s]$ -module.

Next note that, for all $n \in \mathbb{Z}$ with $n \leq -t$, we have

$$(A:_B J^{-n-t}) \subseteq ((A + (0:_B J^t)):_B J^{-n-t}) = A + (0:_B J^{-n}),$$

while $A \subseteq A + (0_{B}J^{-n})$ for $-t < n \le 0$. It is now easy to construct an $R[X_1, \ldots, X_s]$ -epimorphism $\tilde{H} \to H_{B,A}(J)$, and so the result follows.

We are now in a position to prove the main result of this note.

2.4 THEOREM. Let

$$0 \to A \xrightarrow{j} B \xrightarrow{g} C \to 0$$

be an exact sequence of Artinian R-modules, and let I be an ideal of R. Then $I^{*(B)} = I^{*(A)} \cap I^{*(C)}$.

Proof. We can assume that A is a submodule of B, that C = B/A, that f is the inclusion map, and that g is the canonical epimorphism. By 2.1, we can, and do, assume that I is finitely generated, say by r_1, \ldots, r_s .

Set $J = I^{*(A)} \cap I^{*(C)}$. By [3, (1.8) and (2.4)], the ideal J has I as a reduction relative to each of A and C; our aim is to show that I is a reduction of J relative to B.

Consider the graded $R[X_1, \ldots, X_s]$ -modules $G_A(J)$, $G_B(J)$ and $H_{B,A}(J)$, as in 2.2 and 2.3: by those results, $G_A(J)$ and $H_{B,A}(J)$ are Artinian $R[X_1, \ldots, X_s]$ -modules. For each $n \in \mathbb{N}_0$, there is an exact sequence of R-modules

$$0 \to A/(0:_A J^n) \to B/(0:_B J^n) \to B/(A + (0:_B J^n)) \to 0.$$

It is easy to obtain from this an exact sequence

$$0 \to G_A(J) \to G_B(J) \to H_{B,A}(J) \to 0$$

of $R[X_1, \ldots, X_s]$ -modules and $R[X_1, \ldots, X_s]$ -homomorphisms. Hence $G_B(J)$ is an Artinian $R[X_1, \ldots, X_s]$ -module, and so it follows from 2.2 that I is a reduction of J relative to B. Hence, by [3, (2.4)],

$$J = I^{*(A)} \cap I^{*(C)} \subset I^{*(B)}.$$

The reverse inclusion can be proved more easily. Let $K = I^{*(B)}$; by 2.2, and with the notation thereof, $G_B(K)$ is an Artinian $R[X_1, \ldots, X_s]$ -module; it is easy to see that there exist an $R[X_1, \ldots, X_s]$ -monomorphism $G_A(K) \rightarrow G_B(K)$ and an $R[X_1, \ldots, X_s]$ -epimorphism $G_B(K) \rightarrow G_{B/A}(K)$; hence $G_A(K)$ and $G_{B/A}(K)$ are Artinian $R[X_1, \ldots, X_s]$ -modules; it therefore follows from 2.2 again that I is a reduction of K relative to each of A and B/A; and so, by [3, (2.4)] again,

$$K = I^{*(B)} \subseteq I^{*(A)} \cap I^{*(C)}.$$

This completes the proof.

106

2.5. CONCLUDING REMARKS. It follows from 2.4 that if A is either a submodule or a homomorphic image of the Artinian R-module B, and I is an ideal of R, then $I^{*(B)} \subseteq I^{*(A)}$. Thus, speaking loosely, we see that the smaller the Artinian module, the larger the integral closure of I relative to it; indeed, $I^{*(0)}$, the integral closure of I relative to the (Artinian!) module 0, is R itself. In the case when R is semi-local and Noetherian and E is an Artinian injective cogenerator (see [5, p. 46]) for R, it follows from [4, 2.1] that $I^{*(E)} = I^-$, the classical integral closure of I studied by Northcott and Rees; moreover, in this situation, $I^- \subseteq I^{*(B)}$ for every Artinian R-module B. It is perhaps interesting to ask which ideals of R that contain I^- can arise as the integral closure of I relative to some Artinian R-module. The above Theorem 2.4 might be of some assistance with such an investigation.

REFERENCES

1. D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24 (1973), 47-57.

2. D. G. Northcott and D. Rees, Reductions of ideals in local rings, *Proc. Cambridge Philos.* Soc. 50 (1954), 145-158.

3. R. Y. Sharp and A.-J. Taherizadeh, Reductions and integral closures of ideals relative to an Artinian module, J. London Math. Soc. (2) 37 (1988), 203-218.

4. R. Y. Sharp, Y. Tiraş and M. Yassi, Integral closures of ideals relative to local cohomology modules over quasi-unmixed local rings, J. London Math. Soc. (2) 42 (1990), 385-392.

5. D. W. Sharpe and P. Vámos, *Injective modules* (Cambridge University Press, 1972).

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF SHEFFIELD HICKS BUILDING SHEFFIELD S3 7RH