BULL. AUSTRAL. MATH. Soc. Vol. 40 (1989) [243-254]

PERMUTABLE WORD PRODUCTS IN GROUPS

P.S. KIM AND A.H. RHEMTULLA

Dedicated to Professor B.H. Neumann on his eightieth birthday

Let $u(x_1, \ldots, x_n) = x_{11} \ldots x_{1m}$ be a word in the alphabet x_1, \ldots, x_n such that $x_{1i} \neq x_{1i+1}$ for all $i = 1, \ldots, m-1$. If (H_1, \ldots, H_n) is an *n*-tuple of subgroups of a group G then denote by $u(H_1, \ldots, H_n)$ the set $\{u(h_1, \ldots, h_n) \mid h_i \in H_i\}$. If $\sigma \in S_n$ then denote by $u_{\sigma}(H_1, \ldots, H_n)$ the set $u(H_{\sigma(1)}, \ldots, H_{\sigma(n)})$. We study groups G with the property that for each *n*-tuple (H_1, \ldots, H_n) of subgroups of G, there is some $\sigma \in S_n$, $\sigma \neq 1$ such that $u(H_1, \ldots, H_n) = u_{\sigma}(H_1, \ldots, H_n)$. If G is a finitely generated soluble group then G has this property for some word u if and only if G is nilpotent-by-finite. In the paper we also look at some specific words u and study the properties of the associated groups.

1. INTRODUCTION

Let *n* be a fixed positive integer, $X = \{x_1, \ldots, x_n\}$ a set of *n* symbols and F = F(X) the free group on *X*. Let $U = \{u_1, u_2, \ldots\}$ and $V = \{v_1, v_2, \ldots\}$ be non-empty sets of elements in *F*. Define the class P(U, V) to consist of groups *G* such that given an *n*-tuple (g_1, \ldots, g_n) of elements in *G*, $u(g_1, \ldots, g_n) = v(g_1, \ldots, g_n)$ for some $u \in U$ and some $v \in V$, $v \neq u$. Some examples:

1.1. Let $U = \{u\}$ where $u(x_1, \ldots, x_n) = x_1 x_2 \ldots x_n$ and $V = \{u_\sigma \mid \sigma \in S_n \setminus 1\}$ where S_n is the symmetric group of degree n and

$$u_{\sigma}(x_1,\ldots,x_n)=uig(x_{\sigma(1)},\ldots,x_{\sigma(n)}ig)=x_{\sigma(1)}x_{\sigma(2)}\ldots x_{\sigma(n)}.$$

Then every group in P(U, V) is finite-by-abelian-by-finite. Conversely every finite-byabelian-by-finite group is in P(U, V) for some suitable *n*. This was shown by Curzio, Longobardi, Maj and Robinson in [2]. These groups are more commonly referred to as P_n -groups.

1.2. Let $u = u(x_1, \ldots, x_n) = x_1 x_2 \ldots x_n$, $U = \{u_\sigma \mid \sigma \in S_n\}$ and V = U. Then P(U, V)-groups, more commonly referred to as Q_n -groups or rewritable groups, are again finite-by-abelian-by-finite groups as shown by Blyth in [1]. That an abelian-by finite group is in Q_n for some n is implicit in Theorem 1 of Kaplansky [4].

Received 28 March 1989

Partial support by NSERC is gratefully acknowledged by the second author.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

1.3. If we take n = 2, $u = u(x_1, x_2) = (x_1x_2)^r$, $v = v(x_1, x_2) = (x_2x_1)^r$ where r > 0 is fixed and $U = \{u\}$, $V = \{v\}$ then $G \in P(U, V)$ if and only if G/Z(G) is of exponent r. This is not difficult to verify.

In general the classes P(U, V) may be viewed as generalising varieties and, except for some specific sets U and V, it is very difficult to describe them. We now turn to related classes of groups.

Let n > 0 be fixed, $X = \{x_1, \ldots, x_n\}$ be a set of idempotent variables and S = S(X) the free semigroup generated by X. Thus for any $u \in S$, $u = u(x_1, \ldots, x_n) = x_{11}x_{12}\ldots x_{1m}$ where $x_{1i} \in X$ and $x_{1i} \neq x_{1i+1}$ for all $i = 1, \ldots, m-1$. If (H_1, \ldots, H_n) is an n-tuple of subgroups of a group G then denote by $u(H_1, \ldots, H_n)$ the set $\{u(h_1, \ldots, h_n) \mid h_i \in H_i\}$. Thus if $u(x_1, \ldots, x_n)$ is as above then

$$u(H_1,\ldots,H_n)=H_{11}H_{12}\ldots H_{1m}$$

If U and V are sets of elements in S then define the class SP(U, V) to consist of groups G such that for any n-tuple (H_1, \ldots, H_n) of subgroups of G, $u(H_1, \ldots, H_n) = v(H_1, \ldots, H_n)$ for some $u \in U$ and some $v \in V$, $v \neq u$. Some examples:

1.4. Let $U = \{u\}$ where $u(x_1, \ldots, x_n) = x_1 x_2 \ldots x_n$ and $V = \{u_\sigma \mid \sigma \in S_n \setminus 1\}$. As in 1.1, $u_\sigma(x_1, \ldots, x_n) = u(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. Finitely generated soluble SP(U, V) groups are finite-by-abelian. Conversely every finite-by-abelian group is an SP(U, V) group for some integer n. These results are contained in [6]. From [5] we know that periodic SP(U, V)-groups are locally finite. The structure of SP(U, V)-groups in general seems difficult to determine.

1.5. For each positive integer r let $u_r = u_r(x,y) = (xy)^r$, and $v_r = v_r(x,y) = (yx)^r$. Let $U = \{u_r, r = 1, 2, ...\}$ and $V = \{v_r, r = 1, 2, ...\}$. Then the class SP(U, V) is precisely the class of groups in which every subgroup is elliptically embedded. Groups with this property are considered in [7, 8]. It is known that a finitely generated soluble group G is in this class if and only if it is finite-by-nilpotent. The same is true if we replace "soluble group" by "residually finite p-group" in the above statement.

In this paper we shall not look at P(U, V)-groups, but concentrate our attention on SP(U, V)-groups. The two main results are as follows:

THEOREM 1. Let G be a finitely generated soluble group, $U = \{u\}$ where $u = u(x_1, \ldots, x_n) = (x_1 \ldots x_n)^r$ and $V = \{u_\sigma \mid \sigma \in S_n\}$ where $u_\sigma(x_1, \ldots, x_n) = u(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. Then G is an SP(U, V) group for some n > 1, r > 0 if and only if G is finite-by-nilpotent.

THEOREM 2. Let $U = \{u\}$ where u is a word in idempotent variables x_1, \ldots, x_n , n > 1; and let $V = \{u_{\sigma} \mid \sigma \in S_n\}$. If G is a finitely generated soluble group in SP(U, V), then G is nilpotent-by-finite.

We can not replace "nilpotent-by-finite" in Theorem 2 by the stronger condition "finite-by-nilpotent" of Theorem 1. It is tedious, but we will show that the infinite dihedral group D_{∞} lies in SP(U,V) where $U = \{u\}$, $V = \{u_{\sigma} \mid \sigma \in S_n\}$ and $u = u(x_1, x_2, x_3, x_4) = x_1 x_4 x_2 x_3 x_2 x_3 x_4 x_1$ and it is well-known that D_{∞} is not finiteby-nilpotent.

At present little is known about the various classes SP(U, V) and P(U, V). The following questions stand a good chance of getting answered, at least partially, in the not too distant future!

QUESTION 1: Let U and V be finite sets of words in S = S(X) where $X = \{x_1, \ldots, x_n\}$ and let G be a finitely generated soluble group in the class SP(U, V). Is G nilpotent-by-finite?

QUESTION 2: For which words u in S = S(X), $X = \{x_1, \ldots, x_n\}$ are the periodic SP(U, V) groups locally finite; where $U = \{u\}$ and $V = \{u_\sigma, \sigma \in S_n\}$.

QUESTION 3: Let G be a finitely generated residually finite p-group, p a prime. For which sets U, V of words in S = S(X), $X = \{x_1, \ldots, x_1\}$; would $G \in SP(U, V)$ imply G is nilpotent-by-finite?

Finally we ask if the classes SP(U, V) can contain finitely generated infinite simple groups.

2. PROOFS

Since the hypothesis of Theorem 1 is a more restricted form of the hypothesis of Theorem 2, it would be proper to prove Theorem 2 and then establish the extra property required in Theorem 1. The reduction from soluble to nilpotent-by-finite will be achieved using two intermediate steps; these are dealt with in the following lemmas.

LEMMA 2.1. The wreath product of a cyclic group of order p with the infinite cyclic group is not in the class SP(U, V) where U, V are as in the statement of Theorem 2.

LEMMA 2.2. Let $G = \langle A, t \rangle$ where A is a torsion-free abelian group of finite rank on which $\langle t \rangle$ acts rationally irreducibly. If $G \in SP(U, V)$ where U, V are as in the statement of Theorem 2, then for some positive integer k, $\langle t^k \rangle$ acts trivially on A.

LEMMA 2.3. If $G = \langle A, t \rangle$, where $A \leq G$ and is abelian of finite rank, and $G \in SP(U, V)$ where U, V are as in the statement of Theorem 2, then for some $\ell > 0$, $\langle A, t^{\ell} \rangle$ has a non-trivial centre.

LEMMA 2.4. Let $G = \langle A, t \rangle$ where A is a torsion-free abelian group of finite rank on which $\langle t \rangle$ acts rationally irreducibly. If $G \in SP(U, V)$ where U, V are as in the statement of Theorem 1, then $\langle t \rangle$ acts trivially on A. PROOF OF THEOREM 2: By hypothesis, $X = \{x_1, \ldots, x_n\}$ $u = u(X) = x_{11}x_{12} \ldots x_{1m}$ where $x_{1i} \in X$ for all $i = 1, \ldots, m$ and $x_{1i} \neq x_{1i+1}$ for all $i = 1, \ldots, m-1$. Let G be a finitely generated soluble group such that for any n-tuple (H_1, \ldots, H_n) of subgroups of G, there is a permutation $\sigma \neq 1$ in S_n such that

$$u(H_1,\ldots,H_n)=H_{11}H_{12}\ldots H_{1m}=u(H_{\sigma(1)},\ldots,H_{\sigma(n)})=H_{\sigma(11)}\ldots H_{\sigma(1m)}$$

We need to show that G is nilpotent-by-finite, and we proceed by induction on the solubility length of G. If G is abelian then there is nothing to prove. Let G be soluble of length d and assume that the result holds for soluble groups of smaller length. Since the class SP(U, V) is subgroup and quotient closed, we may suppose that G has a normal abelian subgroup A such that G/A is nilpotent-by-finite. In particular G is abelian by polycyclic. If G does not have finite rank then it has a section isomorphic to the wreath product of a cyclic group of prime order p and the infinite cyclic group. This is not possible by Lemma 2.1. Hence we conclude that G has finite rank.

As G is finitely generated abelian-by-polycyclic, it satisfies the maximal condition for normal subgroups. If G is not nilpotent-by-finite, then let B be a maximal normal subgroup of G such that G/B is not nilpotent-by-finite. Now we replace G by G/Band hence assume that every proper quotient of G is nilpotent-by-finite.

Let T be the torsion subgroup of A. Then T has finite rank and is of bounded exponent since G satisfies the maximal condition for normal subgroups. Thus T is finite, and $C = C_G(T)$, the centraliser of T in G, is of finite index in G. If $T \neq 1$ then G/T is nilpotent-by-finite and hence C/T is nilpotent-by-finite. Since $T \leq Z(C)$, the centre of C, then C and hence G would be nilpotent-by-finite. Thus we assume T = 1and hence A is torsion-free, and by passing to a suitable subgroup of finite index in G, if necessary, we may assume further that G/A is a finitely generated torsion-free nilpotent group. Thus there exists a finite set $T = \{t_1, \ldots, t_r\}$ of elements in G such that $G = \langle A, T \rangle$ and

$$A = G_0 \leqslant \langle G_0, t_1 \rangle = G_1 \leqslant \ldots \leqslant \langle G_{r-1}, t_r \rangle = G_r = G$$

is a central series from A to G with torsion-free factors.

If r = 1 then $G = \langle A, t_1 \rangle$. By Lemma 2.3 $Z(\langle A, t_1^{\ell_1} \rangle) \neq 1$ for some $\ell_1 > 0$ and hence $D = A \cap Z(\langle A, t_1^{\ell_1} \rangle)$ is a non-trivial normal subgroup of G. By our choice of G, G/D is nilpotent-by-finite and hence G is nilpotent-by-finite.

Now suppose we have established the result for the case r < d and suppose r = d. Then G_{d-1} is nilpotent-by-finite and $G = \langle G_{d-1}, t_d \rangle$. Let $H = \langle A, G_{d-1}^{\ell} \rangle$ for some suitable $\ell > 0$ so that H is nilpotent. Let $Y = A \cap Z(H)$ then Y is normal in $\langle H, t_d \rangle$ which is of finite index in G. Moreover $Z(\langle Y, t_d^{\ell_1} \rangle) \neq 1$ for some $\ell_1 > 0$ by Lemma 2.3, so that $D_1 = Y \cap Z\left(\langle Y, t_d^{\ell_1} \rangle\right)$ is a non-trivial subgroup of G contained in the centre of $\langle H, t_d^{\ell_1} \rangle$ which is of finite index in G. We may replace $\langle H, t_d^{\ell_1} \rangle$ by its normal interior in G, if necessary; it still contains A and hence D_1 . Now $\langle H, t_d^{\ell_1} \rangle/D_1$ is nilpotent-by-finite, $D_1 \leq Z\left(\langle H, t_d^{\ell_1} \rangle\right)$ and $\langle H, t_d^{\ell_1} \rangle$ is of finite index in G. Thus G is nilpotent-by-finite, as required.

PROOF OF THEOREM 1: Since the hypotheses of Theorem 2 are satisfied by the group of Theorem 1, we may assume G to be finitely generated nilpotent-by-finite. Let T be the maximal finite normal subgroup of G. Since we wish to show that G is finite-by-nilpotent we may look at G/T, if necessary, and hence assume that G has no non-trivial finite normal subgroup. Let F be the Fitting subgroup of G. If $F \neq G$ then pick any $t \in G \setminus F$ such that $t^p \in F$. Clearly it is sufficient to show that $\langle F, t \rangle$ is nilpotent for G/F is finite and soluble, we can reach G from F by a subnormal series with factors of prime order. Thus we assume $G = \langle F, t \rangle$, $t^p \in F$ and F is torsion-free.

Let *H* be the hypercentre of *G*. Then $H \cap F$ is isolated in *F*. This may be seen by first checking it for $Z(G) \cap F$ and then by taking the quotient of *G* by this subgroup, and using induction. Observe that if $H \notin F$ then G = HF and *G* is nilpotent. So assume $H \leqslant F$. Next we look at G/H. If G/H is nilpotent then so is *G*. So we assume H = 1. Let *A* be a non-trivial normal subgroup of *G* of least Hirsch length and $A \leqslant Z(F)$. Since $\langle A, t \rangle \in SP(U, V)$, $\langle t \rangle$ acts trivially on *A* by Lemma 2.4. Thus $A \leqslant Z(G)$ contradicting the assumption that Z(G) = 1. This concludes the proof that if $G \in SP(U, V)$ then *G* is finite-by-nilpotent.

Now suppose that G is a finitely generated finite-by-nilpotent group. For any subgroup L of G let $\gamma(L)$ denote the nilpotent residual of L. Thus $\gamma(L)$ is the intersection of the terms of the lower central series of L. Let $F = \gamma(G)$. It is finite by hypothesis and G/F is nilpotent of class c_1 for some $c_1 > 0$. Thus $\gamma(L) = \gamma_c(L)$ for all $L \leq G$ where $c = |F| + c_1$. We show, by induction on $|\gamma\langle H, K\rangle| = s$, that $(HK)^{d_s} = (KH)^{d_s} = \langle H, K \rangle$ for all subgroups H, K of G where $d_1 = (4r)^c, r = \text{rank}$ of G; $d_i = d_{i-1} + 2i(i+d_1), i > 1$. In particular $(HK)^d = (KH)^d = \langle H, K \rangle$ for all H, K where $d = d_f$, and f = |F|.

By Proposition 2 of [7], $\Gamma(HK)^t = \Gamma(KH)^t = \langle K, H \rangle$ where $\Gamma = \gamma \langle K, H \rangle$, $t = (4r)^c$, and r is the rank of G. Thus if $\Gamma = 1$ then $d_1 = t$ will suffice.

For any $a \in (HK)^t$, a = gb for some $g \in \Gamma$ and $b \in (KH)^t$ so that $ab^{-1} = g \in \Gamma \cap (HK)^{2t}$. If $\Gamma \cap (KH)^{2t} = 1$, then a = b and $(HK)^t = (KH)^t$. This implies $(H, K) = (HK)^t$, and again $d_1 = t$ suffices.

If $\Gamma_1 = \Gamma \cap (HK)^{2t} \neq 1$, then for each integer $m \ge 1$ let $\Gamma_{m+1} = \Gamma_m \cup \Gamma_m^{HK}$ so that $\Gamma_m \subseteq (HK)^{2t+2m}$. Observe that $\Gamma_m = \Gamma_{m+1}$ implies $\langle \Gamma_m \rangle = \langle \Gamma_m^H \rangle = \langle \Gamma_m^K \rangle$. Since $\Gamma_m \subseteq \Gamma$ and $|\Gamma| = s$, $\Gamma_s = \Gamma_{s+1}$. Also note that $\langle \Gamma_m \rangle \subseteq \Gamma_s^m$. Thus the normal closure

N of Γ_1 in $\langle H, K \rangle$ lies in $(HK)^{\lambda}$ where $\lambda = \lambda_s = 2(s^2 + ts)$.

Now *NH* and *NK* both lie in $(HK)^{\lambda}$ and $(NHNK)^{m} \subseteq (HK)^{\lambda+m}$ for all m > 0. Rank of $\langle H, K \rangle / N$ is no greater than $r, \gamma(\langle H, K \rangle / N) = \gamma_{c}(\langle H, K \rangle / N)$ and $|\gamma(\langle H, K \rangle / N)| < |\gamma(\langle H, K \rangle)|$. Thus by the induction hypothesis, $N(HK)^{d'} = N(KH)^{d'} = \langle H, K \rangle$ where $d' = t + \lambda_{2} + \cdots + \lambda_{s-1} = d_{s-1}$. Since $(HK)^{\lambda} \ge N$, we obtain $(HK)^{d_{s}} = (KH)^{d_{s}} = \langle H, K \rangle$ where $d_{s} = d_{s-1} + \lambda_{s}$.

Now that we have shown that for a finitely generated finite-by-nilpotent group G there is an integer d such that $(HK)^d = (KH)^d$ for all subgroups H, K of G, we let $u = u(x, y) = (xy)^d$, $v = v(x, y) = (yx)^d$ then $G \in SP(u, v)$. This completes the proof of the second part of the theorem.

PROOF OF LEMMA 2.1: Let G be the wreath product of a cyclic group of order p and an infinite cyclic group $\langle t \rangle$. Then we can identify each element of G by a pair $(f(t), t^{\alpha})$ where $f(t) \in F_p(t)$, the additive group of the group ring of the infinite cyclic group $\langle t \rangle$ over the field F_p of p elements, and $\alpha \in \mathbb{Z}$. The product of two such elements is then given by the rule: $(f(t), t^{\alpha})(g(t), t^{\beta}) = (f(t) + t^{\alpha} \cdot g(t), t^{\alpha+\beta})$. The elements of the base group correspond to those pairs where $\alpha = 0$ and the elements of the top group correspond to those pairs where f(t) = 0.

We are given $X = \{x_1, \ldots, x_n\}, u = u(X) = x_{11}x_{12} \ldots x_{1m}; x_{1i} \in X, x_{1i} \neq x_{1i+1}, i = 1, \ldots, m-1$ and we are required to show that there exist subgroups H_1, \ldots, H_n of G such that $H_{11}H_{12} \ldots H_{1m} \neq H_{\phi(11)}H_{\phi(12)} \ldots H_{\phi(1m)}$ for any $\phi \neq 1$ in S_n .

Take $H_i = \langle h_i \rangle$ where $h_i = ((1 - t^{\alpha_i})f_i, t^{\alpha_i})$; $f_i = f_i(t)$ and α_i are to be chosen appropriately. Note that $h_i^k = ((1 - t^{k\alpha_i})f_i, t^{k\alpha_i})$, and a general element of $u(H_1, \ldots, H_n)$ is $h_{11}^{k_1} \ldots h_{1m}^{k_m} =$

$$((1-t^{k_1\alpha_{11}})f_{11},t^{k_1\alpha_{11}})\dots((1-t^{k_m\alpha_{1m}})f_{1m},t^{k_m\alpha_{1m}}) ((1-t^{k_1\alpha_{11}})f_{11}+t^{\lambda_1}(1-t^{k_2\alpha_{12}})f_{12}+\dots+t^{\lambda_{m-1}}(1-t^{k_m\alpha_{1m}})f_{1m},t^{\lambda_m})$$

where $\lambda_i = k_1 \alpha_{11} + \dots + k_i \alpha_{1i}$, $i = 1, \dots, m$. Partition the set $\{1, \dots, m\}$ as the union $S_1 \cup \dots \cup S_n$ where $S_i = \{j \mid x_{ij} = x_i\}$. Then a general element of $u(H_1, \dots, H_n)$ is of the form $\left(\sum_{i=1}^n \left(f_i \sum_{j \in S_i} \left(t^{\lambda_{j-1}} - t^{\lambda_j}\right)\right), t^{\lambda_m}\right)$ with the understanding that $\lambda_0 = 0$. Likewise $u(H_{\sigma(1)}, \dots, H_{\sigma(n)})$ consists of elements of the form $\left(\sum_{i=1}^n \left(f_{\phi(i)} \sum_{j \in S_i} \left(t^{\mu_{j-1}} - t^{\mu_j}\right)\right), t^{\mu_m}\right)$ where $\mu_i = \ell_1 \alpha_{\phi(11)} + \dots + \ell_i \alpha_{\phi(1i)}, i = 1, \dots, m$ and $\mu_0 = 0$. If σ denotes the inverse

of ϕ , then we may write these elements as $\left(\sum_{i=1}^{n} \left(f_{i} \sum_{j \in S_{\sigma(i)}} \left(t^{\mu_{j-1}} - t^{\mu_{j}}\right)\right), t^{\mu_{m}}\right)$.

N

Now
$$(\sum_{i=1}^{n} (f_i \sum_{j \in S_i} (t^{\lambda_{j-1}} - t^{\lambda_j})), t^{\lambda_m}) = (\sum_{i=1}^{n} (f_i \sum_{j \in S_{\sigma(i)}} (t^{\mu_{j-1}} - t^{\mu_j})), t^{\mu_m})$$

implies $\lambda_m = \mu_m$ and

(1)
$$\sum_{i=1}^{n} f_i(\sum_{j \in S_i} (t^{\lambda_{j-1}} - t^{\lambda_j})) = \sum_{i=1}^{n} f_i(\sum_{j \in S_{\sigma(i)}} (t^{\mu_{j-1}} - t^{\mu_j}))$$

Let p_1, \ldots, p_n be distinct primes, each greater than m. Put $p = p_1 \ldots p_n$, $k_i = 1$ and $\alpha_i = p/p_i, i = 1, \dots, n$. Then for each $i > 0, \lambda_i = \alpha_{11} + \dots + \alpha_{1i}$. Let $f_i = t^{p^i}$. Note that $\lambda_j < p$ for all j and they are all distinct. Also note that $f_i t^{\lambda_j} = f_{i'} t^{\mu_{j'}}$ implies $p^i + \lambda_i = p^{i'} + \mu_{i'}$. Hence $\mu_{i'} \equiv \lambda_i \mod p$ so that $\mu_{i'} \not\equiv \lambda_i \mod p$ for any $i \neq j$. Thus each λ_i is congruent modulo p to precisely one $\mu_{i'}$.

Now $1 \in S_{\sigma(k)}$ for some k. Thus $f_k(t^{\mu_0} - t^{\mu_1})$ is a term on the right hand side of (1). Since $\mu_0 = 0$ and the only λ_i equal to zero is λ_0 , $f_k(t^{\lambda_0} - t^{\lambda_1})$ appears on the left hand side of (1). In particular $1 \in S_k$. Since S_1, \ldots, S_n partition the set $\{1, \ldots, m\}$ and $1 \in S_k \cap S_{\sigma(k)}$, it follows that $\sigma(k) = k$. Hence μ_1 and λ_1 are both congruent to zero mod p/p_k ; it follows that $\mu_1 = \lambda_1$.

Suppose, by way of induction, that we have established that $\mu_j = \lambda_j$ for all j < e. Then $\mu_e - \mu_{e-1} = \ell_e \alpha_{\phi(1e)}$ which is congruent to zero mod all primes p_i except possibly one namely. $p_{\phi(1e)}$. Now we look at $\{\lambda_j - \lambda_{e-1}, j = e, \dots, m\}$. $\lambda_e - \lambda_{e-1} = \alpha_{1e}$ is congruent to zero mod all primes p_i , $p_i \neq p_{1e}$. For each of the other $\lambda_j - \lambda_{e-1}$, we can find at least two primes amongst $\{p_1, \ldots, p_n\}$ such that $\lambda_j - \lambda_{e-1}$ is not congruent to zero mod either of them. Hence $0 \neq \alpha_{1e} \equiv \ell_e \alpha_{\phi(1e)} \mod p_{1e}$. But $\alpha_{\phi(1e)} \neq \alpha_{1e}$ implies $\alpha_{\phi(1e)} \equiv 0 \mod p_{1e}$. Thus $\alpha_{\phi(1e)} = \alpha_{1e}$, and $x_{1e} = x_{\phi(1e)} = x_{k'}$, say. Thus $\sigma(k') = k'$ and $e \in S_{k'}$. Thus $f_{k'}(t^{\mu_{e-1}} - t^{\mu_e}) = f_{k'}(t^{\lambda_{e-1}} - t^{\lambda_e})$ and $\lambda_e = \mu_e$.

It is now clear that $\phi(j) = j$ for all j = 1, ..., n and hence ϕ is the identity permutation of the set $\{1, \ldots, n\}$ as required.

PROOF OF LEMMA 2.2: We are given a group $G = \langle A, t \rangle$ where A is torsionfree abelian of finite rank on which $\langle t \rangle$ acts rationally irreducibly. Let us assume, if possible, that $[A, t] \neq 1$. Then $V = A \otimes_{\mathbb{Z}} \mathbb{Q}$ is an irreducible $\mathbb{Q}(t)$ -module and by Schur's Lemma, the centraliser ring $\Gamma = \operatorname{End}_{Q(t)} V$ is a division ring of finite dimension over Q. The image of $\langle t \rangle$ in End_QV clearly lies in and spans Γ so that Γ is an algebraic number field. Moreover, regarded as a Γ -space, V is one-dimensional. Thus we may consider A to be an additive subgroup of $Q(\tau)$ for some algebraic number τ and the action of conjugation by t as multiplication by τ .

Let $h_i = b_i(1 - \tau^{\alpha_i})t^{\alpha_i}$ for suitable integer α_i and $b_i(1 - \tau^{\alpha_i}) \in A$. Let $H_i = \langle h_i \rangle$. Note that $h_i^k = b_i(1 - \tau^{k\alpha_i})t^{k\alpha_i}$.

As in Lemma 2.1, we are given $u = u(x_1, \ldots, x_n) = x_{11}x_{12}\ldots x_{1m}$; $x_{1i} \in \{x_1, \ldots, x_n\}, x_{1i} \neq x_{1i+1}, i = 1, \ldots, m-1$; and we need to show that with proper choice of b_i and α_i , subgroups H_1, \ldots, H_n can be found such that $H_{11} \ldots H_{1m} \neq H_{\phi(11)} \ldots H_{\phi(1m)}$ for any $\phi \neq 1$ in S_n . Now

$$\begin{aligned} h_{11}^{k_1} \dots h_{1m}^{k_m} &= b_{11} \left(1 - \tau^{k_1 \alpha_{11}} \right) t^{k_1 \alpha_{11}} \dots b_{1m} \left(1 - \tau^{k_m \alpha_{1m}} \right) t^{k_m \alpha_{1m}} \\ &= b_{11} \left(1 - \tau^{\lambda_1} \right) + b_{12} \left(\tau^{\lambda_1} - \tau^{\lambda_2} \right) + \dots + b_{1m} \left(\tau^{\lambda_{m-1}} - \tau^{\lambda_m} \right) t^{\lambda_m} \\ \lambda_i &= k_1 \alpha_{11} + \dots + k_i \alpha_{1i}, \quad i = 1, \dots, m. \end{aligned}$$

where

We shall put $\lambda_0 = 0$ and write $1 = \tau^0 = \tau^{\lambda_0}$.

Thus a general element of $u(H_1, \ldots, H_n)$ has the form

$$\sum_{i=1}^n \left(b_i \sum_{j \in S_i} \left(\tau^{\lambda_{j-1}} - \tau^{\lambda_j} \right) \right) t^{\lambda_m}$$

where $S_i = \{j; x_{1j} = x_i\}$ so that $\{1, \ldots, m\}$ is the disjoint union of S_1, \ldots, S_n . Likewise the general element of $u(H_{\phi(1)} \ldots H_{\phi(n)})$ has the form

$$\sum_{i=1}^n \left(b_i \sum_{j \in S_{\sigma(i)}} \left(\tau^{\mu_{j-1}} - \tau^{\mu_j} \right) \right) t^{\mu_m}$$

where $\mu_i = \ell_1 \alpha_{\phi(1)} + \cdots + \ell_i \alpha_{\phi(1i)}$, $i = 1, \dots, m$; $\mu_0 = 0$ and $\sigma = \phi^{-1}$. This is shown in the same way as in the proof of Lemma 2.1. In particular $\mu_m = \lambda_m$ and

(2)
$$\sum_{i=1}^{n} b_i \Big(\sum_{j \in S_i} \left(\tau^{\lambda_{j-1}} - \tau^{\lambda_j} \right) - \sum_{j \in S_{\sigma(i)}} \left(\tau^{\mu_{j-1}} - \tau^{\mu_j} \right) \Big) = 0.$$

Now we return to pick b_i and α_i appropriately. For each integer r > 1, pick primes p_{r1}, \ldots, p_{rn} to satisfy $2^r < p_{r1}$ and $p_{ri}^2 < p_{ri+1}$, $i = 1, \ldots, n-1$. Put $q_r = p_{r1} \ldots p_{rn}$, $b_{ri}(y) = y^{q_r^i}$ and $\alpha_{ri} = q_r/p_{ri}$, $i = 1, \ldots, n$. To make the notation simpler, we shall write b_i for b_{ri} and α_i for α_{ri} , where there is no ambiguity. Since there are infinitely many choices of q_r and each choice of q_r determines the sequence H_1, \ldots, H_n of subgroups which in turn corresponds to some permutation $\phi \neq 1$ such that $u(H_1, \ldots, H_n) = u(H_{\phi(1)}, \ldots, H_{\phi(n)})$, there is an infinite number of choices of rsuch that q_r correspond to the same permutation ϕ . If, for some value of r, we have the following stronger version of (2):

$$\sum_{i=1}^{n} b_i(y) L_i(y) - \sum_{i=1}^{n} b_i(y) M_i(y) = 0$$
$$L_i(y) = \sum_{j \in S_i} (y^{\lambda_{j-1}} - y^{\lambda_j}), \quad M_i(y) = \sum_{j \in S_{\sigma(i)}} (y^{\mu_{j-1}} - y^{\mu_j})$$

where

and y is an indeterminant; then $\mu_j = \lambda_j$ for all j and $\phi = 1$. This is seen using arguments similar to those in the proof of Lemma 2.1. Thus we may suppose that for every r,

$$P(y) = \sum_{i=1}^{n} b_i(y) L_i(y) - \sum_{i=1}^{n} b_i(y) M_i(y)$$

is not zero but $P(\tau) = 0$. If Q(y) is any non-trivial segment of P(y) such that $Q(\tau) = 0$, then Q'(y) = P(y) - Q(y) is a segment of P(y) with $Q'(\tau) = 0$. Moreover one or both of Q(y) or Q'(y) contains at least as many monomials from $\sum_{i=1}^{n} b_i(y)L_i(y)$ as from $\sum_{i=1}^{n} b_i(y)M_i(y)$. Let Q(y) be such a segment of P(y) of shortest length. Thus I. $Q(y) \neq 0$ II. $Q(\tau) = 0$

III. Q(y) contains at least as many monomials from $\sum_{i=1}^{n} b_i(y) L_i(y)$ as from $\sum_{i=1}^{n} b_i(y) M_i(y)$ and

IV. No proper segment has properties I and II.

We write $Q(y) = Q_1(y) - Q_2(y)$ where $Q_1(y)$ is a segment $\sum_{i=1}^{u} \pm y^{\lambda'_i}$ of $\sum_{i=1}^{n} b_i(y)L_i(y)$, $Q_2(y)$ a segment $\sum_{i=1}^{v} \pm y^{\mu'_i}$ of $\sum_{i=1}^{n} b_i(y)M_i(y)$ and we may suppose that there is no term in $Q_1(y)$ equal to any term in $Q_2(y)$. If $Q_1(y)$ has only one term in it, then $Q(y) = \pm y^{\lambda}$ or $\pm y^{\lambda} \pm y^{\mu}$ where $0 \neq \lambda$ and $\mu \neq \lambda$. In both cases $Q(\tau) = 0$ implies τ is a root of unity and $[t^k, A] = 1$ for some k > 0, as required.

We may therefore assume that $Q_1(y) = \sum_{i=1}^{u} \pm y^{\lambda'_i}$ has more than one term; $\lambda'_i = q^{i'} + \lambda_{j_i}$ and $0 \leq \lambda'_1 < \cdots < \lambda'_u$. Similarly $Q_2(y) = \sum_{i=1}^{\nu} \pm y^{\mu'_i}$ where $\mu'_1 \leq \cdots \leq \mu'_v$. Let

$$u_1 = \min\{\lambda'_1, \mu'_1\} \quad \text{and} \quad \nu_2 = \max\{\lambda'_u, \mu'_v\}.$$

Then $y^{-\nu_1} \cdot Q(y)$ is a polynomial of degree $\nu_2 - \nu_1$ with non-zero constant term. Moreover $\nu_2 - \nu_1 \ge \lambda'_u - \lambda'_1 > 2^r$. Thus the degree of the polynomial increases with r, and hence there are infinitely many expressions

$$1 = \sum_{i=1}^{u+v} \varepsilon_i \tau^{\gamma_i}$$

where $\gamma_i \ge 0$, $\varepsilon_i \in \{-1, 0, 1\}$ and no subsum of the right hand side of the equation is zero. But this is not possible by Theorem 1 of [9] which we state below for convenience. This completes the proof.

THEOREM. (Van Der Poorten) Let K be a field of characteristic zero and II a finitely generated subgroup of the multiplicative group of K. Then for each integer m > 0 there are only finitely many relations $u_1 + \cdots + u_m = 1$ with each $u_i \in H$ and no subsum of the left hand side is zero.

A result very similar to the above was proved by Evertse in [3]. One can avoid using the above deep result and use Lemma 1 and 2 of [7] and modify the argument slightly to get the required contradiction.

PROOF OF LEMMA 2.3: If the torsion subgroup of A is non-trivial then it has a non-trivial normal subgroup A_1 of exponent p for some prime p. This is finite since Ahas finite rank, hence it is centralised by t^{ℓ} for some $\ell > 0$ and A_1 lies in the centre of $\langle A, t^{\ell} \rangle$. We may thus assume that A is torsion-free. Let D be a non-trivial subgroup of A of least rank subject to $D \leq G$. Lemma 2.2 applies to $\langle D, t \rangle$ and we conclude that $\langle D, t^k \rangle$ is abelian for some k > 0. Hence D lies in the centre of $\langle A, t^k \rangle$.

PROOF OF LEMMA 2.4: As the hypothesis of Theorem 1 is stronger than that of Theorem 2, Lemma 2.2 and its proof applies. We follow the proof of Lemma 2.2 and reach the situation where we may assume A to be an additive subgroup of $Q(\tau)$ for some algebraic number τ and the action of t under conjugation is that of multiplication by τ . Furthermore we may assume τ to be a primitive kth root of unity and we need to show that $\tau = 1$.

Let $h_i = (k^i(1-\tau), t^{-1})$, and $H_i = \langle h_i \rangle$. Observe that $h_i^{\lambda} = (k^i(1-\tau^{\lambda}), t^{-\lambda})$ and $h_i^k = t^{-k}$. Let $X = (H_1 \dots H_n)^r$ and suppose that for some $\phi \neq 1$ in S_n , $X = (H_{\phi(1)} \dots H_{\phi(n)})^r$. If $\phi(1) \neq 1$, then $\langle H_1, H_{\phi(1)} \rangle \subseteq X$. But this is not possible since X is the union of a finite number of cosets of $\langle t^k \rangle$ whereas $\langle H_1, H_{\phi(1)} \rangle$ contains the subgroup generated by $(k^{\phi(1)} - k)(1-\tau)$, an infinite cyclic subgroup of $Q(\tau)$, not contained in any finite union of cosets of $\langle t^k \rangle$. Hence $\phi(1) = 1$ and similarly $\phi(n) = n$.

For any permutation π in S_n , a typical element x of $H_{\pi(1)} \ldots H_{\pi(n)}$ has the form

$$\begin{aligned} x &= h_{\pi(1)}^{\lambda_1} \dots h_{\pi(n)}^{\lambda_n} \\ &= \left(k^{\pi(1)} (1 - \tau^{\lambda_1}) + k^{\pi(2)} (1 - \tau^{\lambda_2}) \tau^{\lambda_1} + \dots + k^{\pi(n)} (1 - \tau^{\lambda_n}) \tau^{\lambda_1 + \dots + \lambda_{n-1}}, t^{-\mu} \right) \end{aligned}$$

[10]

where $\mu = \lambda_1 + \cdots + \lambda_n$ and λ_i are arbitrary integers. In turn these elements may be written as

$$\left(k^{\pi(1)}(1-\tau^{\alpha_1})+k^{\pi(2)}(\tau^{\alpha_1}-\tau^{\alpha_2})+\cdots+\ldots k^{\pi(n)}(\tau^{\alpha_{n-1}}-\tau^{\alpha_n}),\,t^{-\alpha_n}\right)$$

where α_i are arbitrary integers. In particular $t^{-\alpha_0}x$ has the form $(h, t^{-\alpha_n})$ where

$$h = k^{\pi(1)} (\tau^{\alpha_0} - \tau^{\alpha_1}) + k^{\pi(2)} (\tau^{\alpha_1} - \tau^{\alpha_2}) + \dots + k^{\pi(n)} (\tau^{\alpha_{n-1}} - \tau^{\alpha_n})$$

= $(k^{\pi(1)} \tau^{\alpha_0} + \tau^{\alpha_1} (k^{\pi(2)} - k^{\pi(1)}) + \dots + \tau^{\alpha_{n-1}} (k^{\pi(n)} - k^{\pi(n-1)}) - \tau^{\alpha_n} k^{\pi(n)}$

Thus, if α_0 is a given fixed integer, the real part of h is maximised by choosing $\alpha_i \equiv 0 \pmod{k}$ if $\pi(i+1) > \pi(i)$, $\alpha_i \equiv q \pmod{k}$ where $q = \lfloor k/2 \rfloor$ if $\pi(i+1) < \pi(i)$; $i = 1, \ldots n-1$ and $\alpha_n \equiv q \pmod{k}$. If π is the identity permutation then this value is $k \cos(2\pi\alpha_0)/(k) + (k^n - k) - k^n \cos(2\pi q)/k$.

On the other hand if $\pi \neq 1$ and $\pi(1) = 1$, $\pi(n) = n$, then the maximum real part of the value of h is

$$k\cosrac{2\pilpha_0}{k} + (k^n - k) - k^n\cosrac{2\pi q}{k} + \sum \left(k^{\pi(i)} - k^{\pi(i+1)}
ight)\left(1 - \cosrac{2\pi q}{k}
ight)$$

where the sum is over all values of i such that $\pi(i) > \pi(i+1)$. This value is clearly greater than the value obtained for the identity permutation π .

Now the general element of $(H_{\pi(1)} \dots H_{\pi(n)})^r$ is $(h, t^{-\alpha})$ where h is expressible in the form

$$\sum_{i=1}^{r} k^{\pi(1)} \tau^{\alpha_{i0}} + \tau^{\alpha_{i1}} \left(k^{\pi(2)} - k^{\pi(1)} \right) + \dots + \tau^{\alpha_{in-1}} \left(k^{\pi(n)} - k^{\pi(n-1)} \right) - \tau^{\alpha_{in}} k^{\pi(n)}$$

where $\alpha_{10} = 0$, $\alpha_{in} = \alpha_{i+10}$, i = 1, ..., r-1, $\alpha_{rn} = \alpha$. By picking the values for α_{ij} to maximise the real part of h as above, it is clear that the value achieved when $\pi \neq 1$ is greater than for $\pi = 1$. Thus $(H_{\phi(1)} \ldots H_{\phi(n)})^r$, $\phi(1) = 1$, $\phi(n) = n$, $\phi \neq 1$, contains elements not contained in $(H_1 \ldots H_n)^r$. This completes the proof.

3. EXAMPLE

Let $U = \{u\}$ where $u = u(x_1, \ldots, x_4) = x_1 x_4 x_2 x_3 x_2 x_3 x_4 x_1$ and $V = \{u_\sigma \mid \sigma \in S_4\}$. Then the infinite dihedral group G is in SP(U, V).

Consider $u(H_1, H_2, H_3, H_4)$ for given subgroups H_1, H_2, H_3, H_4 of G. If H_1 or H_4 is normal in G then $u(H_1, H_2, H_3, H_4) = u(H_4, H_2, H_3, H_1)$. If H_2 or H_3 is normal in G then $u(H_1, H_2, H_3, H_4) = u(H_1, H_3, H_2, H_4)$. So assume none of the H_i 's is normal in G. If for some i, H_i is not of order two, then it contains a subgroup K_i normal

[12]

in G and of index two in H_i . Moreover $u(H_{\sigma(1)} \dots H_{\sigma(4)}) = K_i u(H_{\sigma(1)} \dots H_{\sigma(4)})$ for all $\sigma \in S_n$, and we may replace G by G/K_i and each of H_j by $H_j K_i/K_i$. Thus the essential case to be considered is one where each H_i is of order two.

Now $G = \langle a, t \rangle$ where $a^t = a^{-1}$ and $t^2 = 1$. $H_i = \langle a^{\lambda_i} t \rangle$, i = 1, 2, 3, 4. We will show that the set $L = H_4 H_2 H_3 H_2 H_3 H_4$ equals the set $R = H_4 H_3 H_2 H_3 H_2 H_4$. From this it follows that $u(H_1, H_2, H_3, H_4) = H_1 L H_1 = H_1 R H_1 = u(H_1, H_3, H_2, H_4)$.

Now $a^{\lambda} \in H_2H_3H_2H_3$ if and only if $\lambda = 0$, $\lambda_2 - \lambda_3$, $\lambda_3 - \lambda_2$ or $2\lambda_2 - 2\lambda_3$. $a^{\lambda}t \in H_2H_3H_2H_3$ if and only if $\lambda = \lambda_2, \lambda_3, 2\lambda_2 - \lambda_3$ or $2\lambda_3 - \lambda_2$. Hence $H_2H_3H_2H_3H_2H_3H_2$ consists of $a^{2\lambda_2-2\lambda_3}$ only and $H_3H_2H_3H_2H_3H_2H_3$ consists of $a^{2\lambda_3-2\lambda_2}$ only. But $H_4 a^{2\lambda_2-2\lambda_3}H_4$ consists of a^{λ} where

 $\lambda \in \{2\lambda_2 - 2\lambda_3, 2\lambda_3 - 2\lambda_2\}$ and $a^{\lambda}t$ where $\lambda \in \{\lambda_4 - 2\lambda_2 + 2\lambda_3, \lambda_4 + 2\lambda_2 - 2\lambda_3\}$. From the symmetry between λ_2 and λ_3 above it is clear that $H_4 a^{2\lambda_2 - 2\lambda_3}H_4 = H_4 a^{2\lambda_3 - 2\lambda_2}H_4$. Thus the sets L and R are equal and $G \in SP(U, V)$.

We have not tried to analyse conditions on words u for which $D_{\infty} \notin SP(U,V)$ where $U = \{u\}$ and $V = \{u_{\sigma} \mid \sigma \in S_n\}$.

References

- [1] R.D. Blyth, 'Rewriting products of group elements I', J. Algebra 116 (1988), 506-521.
- [2] M. Curzio, P. Longobardi, M. Maj and D.J.S. Robinson, 'A permutational property of groups', Arch. Math. (Basel) 44 (1985), 385-389.
- [3] J.H. Evertse, 'On sums of S-units and linear recurrences', Compositio Math. 53 (1984), 225-244.
- [4] I. Kaplansky, 'Groups with representations of bounded degree', Canad. J. Math. 1 (1949), 105-112.
- [5] P. Longobardi, M. Maj and A.H. Rhemtulla, 'Periodic groups with permutable subgroup products', Math. Proc. Cambridge Philos. Soc. (to appear).
- [6] A.H. Rheintulla and A.R. Weiss, 'Groups with permutable subgroup products', in Group Theory: Proceedings of the 1987 Singapore Conference, Ed. K.N. Cheng and Y.K. Leong, pp. 485-495 (DeGruyter 1989).
- [7] A.H. Rhemtulla and J.S. Wilson, 'On elliptically embedded subgroups of soluble groups', Canad. J. Math. 39 (1987), 956-968.
- [8] H. Smith, 'Elliptically embedded subgroups and nilpotent products'. (submitted).
- A.J. Van der Poorten, 'Additive relations in number fields', Séminaire de Théorie des Nombres de Paris, (1982-1983), 259-266..

Department of Mathematics University of Alberta, Edmonton Alberta, Canada T6G 2G1