ALMOST CONTINUITY IMPLIES CLOSURE CONTINUITY[†] *bv* MOHAMMAD SALEH

(Received 5 November, 1996)

Abstract. The purpose of this note is to answer in the affirmative a long standing open question raised by Singal and Singal—whether every almost continuous function is closure continuous (θ -continuous).

Introduction. Among other generalizations of continuity, the concepts of weak and closure continuity have been studied by many mathematicians: D. R. Andrew, J. Chew, L. Herrington, N. Levine, P. E. Long, T. Noire, J. Porter, M. Saleh, J. Tong, E. K. Whittlesy and others. In 1961, Levine introduced the concept of weak continuity as a generalization of continuity: later in 1966, Andrew and Whittlesy [2] introduced the concept of closure continuity which is stronger than weak continuity. Indeed closure continuity was introduced many years earlier by S. Fomin [3] precisely in 1941 as θ -continuity, but it seems that Andrew and Whittlesy were not aware of the paper by Fomin. In 1968, Singal and Singal [9] introduced almost continuity as another generalization and raised the following question in Remark 3.3: is every almost continuous function θ -continuous? In this short note we answer this question positively.

Definitions and notation. Let A be a subset of a topological space X. The closure and the interior of A in X are denoted, respectively, by \overline{A} , A° . A function $f: X \to Y$ is closure continuous (θ -continuous) at $x \in X$ if, given any open set V in Y containing f(x), there exists an open set U in X containing x such that $f(\overline{U}) \subseteq \overline{V}$. If this condition is satisfied at each $x \in X$, then f is said to be closure continuous (θ -continuous). A function $f: X \to Y$ is said to be almost continuous in the sense of Singal and Singal if for each point $x \in X$ and each open set V in Y containing f(x), there exists an open set U in X containing f(x).

THEOREM 1. Let $f: X \to Y$ be almost continuous. Then f is closure continuous.

Proof. Let $x \in X$ and let V be an open set containing f(x). By almost continuity of f, there exists an open set U containing x such that $f(U) \subseteq \overline{V}^\circ$. Let $y \in \overline{U}$. For any open set W containing f(y) there exists, by almost continuity of f, an open set A containing y such that $f(A) \subseteq \overline{W}^\circ$. Since $y \in \overline{U}$, we have $A \cap U \neq \emptyset$. Therefore, $\emptyset \neq f(A \cap U) \subseteq \overline{V}^\circ \cap \overline{W}^\circ \subseteq \overline{W}$. Since $\overline{V}^\circ \cap \overline{W}^\circ$ is open we have $\overline{V}^\circ \cap \overline{W}^\circ \cap W \neq \emptyset$: that is, $\overline{V}^\circ \cap W \neq \emptyset$. Since this is true for every open set containing f(y) we have $f(y) \in \overline{V}$. Also since this is true for every $y \in \overline{U}$ we obtain $f(\overline{U}) \subseteq \overline{V}^\circ$: that is, f is closure continuous.

Recall that a subset A of a space X is called *closure* (almost) compact if every open cover of A has a finite subcollection whose closures cover A. Closure compactness was introduced as H(i)-spaces in [8] as a generalization of absolutely closed (H-closed) spaces in [1].

[†]The author was supported by Birzeit University under grant 235-17-98-9.

Glasgow Math. J. 40 (1998) 263-264.

MOHAMMAD SALEH

Clearly every compact set is closure compact but not conversely as is shown in the next example.

EXAMPLE 1. Let X be any uncountable space with the cocountable topology. Then every subset of X is closure compact, but the only compact subsets of X are the finite ones.

The next theorem shows that closure compactness is preserved under closure continuous functions.

THEOREM 2. Let $f: X \to Y$ be closure continuous and let K be a closure compact subset of X. Then f(K) is a closure compact subset of Y.

Proof. Let \mathcal{V} be an open cover of f(K). For each $k \in K$, $f(k) \in V_k$ for some $V_k \in \mathcal{V}$. By closure continuity of f, there exists an open set U_k containing x such that $f(\overline{U}_k) \subseteq \overline{V}_k$. The collection $\{U_k : k \in K\}$ is an open cover of K and so, since K is closure compact, there is a finite subcollection $\{U_k : k \in K_0\}$, where K_0 is a finite subset of K, and $\{\overline{U}_k : k \in K_0\}$ covers K. Clearly $\{\overline{V}_k : k \in K_0\}$ covers f(K) and thus f(K) is a closure compact subset of Y.

COROLLARY 1. Let $f: X \to Y$ be almost continuous and let K be a closure compact subset of X. Then f(K) is a closure compact subset of Y.

As a consequence of the corollary, we get Theorem 3.3 and Lemmas 3.2, 3.3 in [10] and Theorem 3.4 in [4].

REFERENCES

1. P. Alexandroff and P. Urysohn, Mèmoire sur les espaces topologiques compacts, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. I 14 (1929), 1–96.

2. D. R. Andrew and E. K. Whittlesy, Closure continuity, Amer. Math. Monthly 73 (1966), 758-759.

3. S. V. Fomin, Extensions of topological spaces, C. R. Dokl. Akad. Sci. URSS (M. S.) 32 (1941), 114–116.

4. L. Herrington, Properties of nearly-compact spaces, Proc. Amer. Math. Soc. 45 (1974), 431-436.

5. P. E. Long and E. E. McGehee, Properties of almost continuous functions, *Proc. Amer. Math. Soc.* 24 (1970), 175–180.

6. P. E. Long and D. A. Carnahan, Comparing almost continuous functions, *Proc. Amer. Math. Soc.* 38 (1973), 413–418.

7. T. Noire, On weakly continuous mappings, Proc. Amer. Math. Soc. 46(1) (1974), 120-124.

8. C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131-147.

9. M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J. 16 (1968), 63-73.

10. M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital. 4(2) (1969), 702-710.

MATHEMATICS DEPARTMENT BIRZEIT UNIVERSITY PO Box 14 BIRZEIT WEST BANK PALESTINE

264