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THE DOUBLE SHUFFLE RELATIONS FOR
MULTIPLE EISENSTEIN SERIES

HENRIK BACHMANN and KOJI TASAKA

Abstract. We study the multiple Eisenstein series introduced by Gangl,

Kaneko and Zagier. We give a proof of (restricted) finite double shuffle relations

for multiple Eisenstein series by revealing an explicit connection between the

Fourier expansion of multiple Eisenstein series and the Goncharov co-product

on Hopf algebras of iterated integrals.

§1. Introduction

The purpose of this paper is to study the multiple Eisenstein series,

which are holomorphic functions on the upper half-plane {τ ∈ C | Im(τ)> 0}
and which can be viewed as a multivariate generalization of the classical

Eisenstein series, defined as an iterated multiple sum

(1)

Gn1,...,nr(τ) =
∑

0≺λ1≺···≺λr
λ1,...,λr∈Zτ+Z

1

λn1
1 · · · λ

nr
r

(n1, . . . , nr−1 ∈ Z>2, nr ∈ Z>3),

where the positivity lτ +m� 0 of a lattice point is defined to be either

l > 0 or l = 0, m> 0, and lτ +m� l′τ +m′ means (l − l′)τ + (m−m′)� 0.

These functions were first introduced and studied by Gangl, Kaneko and

Zagier [7, Section 7], where they investigated the double shuffle relation

satisfied by double zeta values for the double Eisenstein series Gn1,n2(τ).

Here the double zeta value is the special case of multiple zeta values defined

by

(2)

ζ(n1, . . . , nr) =
∑

0<m1<···<mr
m1,...,mr∈Z

1

mn1
1 · · ·m

nr
r

(n1, . . . , nr−1 ∈ Z>1, nr ∈ Z>2).
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Their results were extended to the double Eisenstein series for higher level

(congruence subgroup of level N) in [12] (N = 2) and in [16] (N : general),

and have interesting applications to the theory of modular forms (see [15])

as well as the study of double zeta values of level N . Our aim of this paper

is to give a framework of and a proof of double shuffle relations for multiple

Eisenstein series.

The double shuffle relation, or rather, the finite double shuffle relation

(cf. e.g. [10]) describes a collection of Q-linear relations among multiple

zeta values arising from two ways of expressing multiple zeta values as

iterated sums (2) and as iterated integrals (12). Each expression produces

an algebraic structure on the Q-vector space spanned by all multiple zeta

values. The product associated to (2) (resp. (12)) is called the harmonic

product (resp. shuffle product). For example, using the harmonic product,

we have

ζ(3)ζ(3) = 2ζ(3, 3) + ζ(6),

and by the shuffle product formulas one obtains

(3) ζ(3)ζ(3) = 12ζ(1, 5) + 6ζ(2, 4) + 2ζ(3, 3).

Combining these equations gives the relation

12ζ(1, 5) + 6ζ(2, 4)− ζ(6) = 0.

For the multiple Eisenstein series (1), it is easily seen that the harmonic

product formulas hold when the series defining Gn1,...,nr(τ) converges

absolutely, that is, n1, . . . , nr−1 ∈ Z>2 and nr ∈ Z>3, but the shuffle product

is not the case—the shuffle product formula (3) replacing ζ with G does

not make sense because an undefined multiple Eisenstein series G1,5(τ) is

involved. This paper develops the shuffle product of multiple Eisenstein

series by revealing an explicit connection between the multiple Eisenstein

series and the Goncharov coproduct, and as a consequence the validity of a

restricted version of the finite double shuffle relations for multiple Eisenstein

series is obtained.

This paper begins by computing the Fourier expansion of Gn1,...,nr(τ) for

n1, . . . , nr > 2 (the case nr = 2 will be treated by a certain limit argument

in Definition 2.1) in Section 2. The Fourier expansion is intimately related

with the Goncharov coproduct ∆ (see (15)) on Hopf algebras of iterated

integrals introduced by Goncharov [8, Section 2], which was first observed by

Kaneko in several cases and studied by Belcher [6]. His Hopf algebra I•(S) is
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182 H. BACHMANN AND K. TASAKA

reviewed in Section 3.2, and we observe a relationship between the Fourier

expansion and the Goncharov coproduct ∆ in the quotient Hopf algebra

I1
• := I•/I(0; 0; 1)I• (I• := I• ({0, 1}), which cannot be seen in I• itself.

The space I1
• has a linear basis (Proposition 3.5)

{I(n1, . . . , nr) | r > 0, n1, . . . , nr ∈ Z>0},

and we express the Goncharov coproduct ∆(I(n1, . . . , nr)) as a certain

algebraic combination of the above basis (Propositions 3.8 and 3.12). As

an example of this expression (see (21)), one has

∆(I(2, 3)) = I(2, 3)⊗ 1 + 3I(3)⊗ I(2) + 2I(2)⊗ I(3) + 1⊗ I(2, 3).

The relationship is then obtained by comparing the formula for

∆(I(n1, . . . , nr)) with the Fourier expansion of Gn1,...,nr(τ), which in the

case of r = 2 can be found by (21) and (11). More precisely, let us define

the Q-linear maps zx : I1
• → R and g : I1

• → C[[q]] given by I(n1, . . . , nr) 7→
ζx(n1, . . . , nr) and I(n1, . . . , nr) 7→ gn1,...,nr(q), where ζx(n1, . . . , nr) is

the regularized multiple zeta value with respect to the shuffle product

(Definition 3.1) and gn1,...,nr(q) is the generating series of the multiple

divisor sum appearing in the Fourier expansion of multiple Eisenstein series

(see (7)). For instance, by (11) we have

G2,3(τ) = ζ(2, 3) + 3ζ(3)g2(q) + 2ζ(2)g3(q) + g2,3(q),

and hence
(
zx ⊗ g

)
◦∆(I(2, 3)) =G2,3(τ). In general, we have the following

theorem which is the first main result of this paper (proved in Section 3.5).

Theorem 1.1. For integers n1, . . . , nr > 2 we have(
zx ⊗ g

)
◦∆(I(n1, . . . , nr)) =Gn1,...,nr(τ) (q = e2π

√
−1τ ).

The maps ∆ : I1
• →I1

• ⊗ I1
• and zx : I1

• → R are algebra homomorphisms

(Propositions 3.4 and 3.7) but the map g : I1
• → C[[q]] is not an algebra

homomorphism (see Remark 4.7). Thus we cannot expect a validity of

the shuffle product formulas for the q-series
(
zx ⊗ g

)
◦∆(I(n1, . . . , nr))

(n1, . . . , nr ∈ Z>1) which can be naturally regarded as an extension of

Gn1,...,nr(τ) to the indices with ni = 1.

We shall construct in Section 4.1 an algebra homomorphism gx : I1
• →

C[[q]] (Definition 4.5) using certain q-series, and in Section 4.2 we define a
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regularized multiple Eisenstein series (Definition 4.8)

Gx
n1,...,nr(q) :=

(
zx ⊗ gx

)
◦∆(I(n1, . . . , nr)) ∈ C[[q]]

(n1, . . . , nr ∈ Z>1).

It follows from the definition that the q-series Gx
n1,...,nr(q) (n1, . . . , nr ∈ Z>1)

satisfy the shuffle product formulas. We prove that Gx
n1,...,nr(q) coincides

with the Fourier expansion of Gn1,...,nr(τ) when n1, . . . , nr > 2 and q =

e2π
√
−1τ (Theorem 4.10). Then, combining the shuffle product of Gx’s and

the harmonic product of G’s yields the double shuffle relation for multiple

Eisenstein series, which is the second main result of this paper (proved in

Section 4.2).

Theorem 1.2. The restricted finite double shuffle relations hold for

Gx
n1,...,nr(q) (n1, . . . , nr ∈ Z>1).

The organization of this paper is as follows. In Section 2, the Fourier

expansion of the multiple Eisenstein series Gn1,...,nr(τ) is considered. In Sec-

tion 3, we first recall the regularized multiple zeta value and Hopf algebras

of iterated integrals introduced by Goncharov. Then we define the map zx

that assigns regularized multiple zeta value to formal iterated integrals. We

also present the formula expressing ∆(I(n1, . . . , nr)) as a certain algebraic

combination of I(k1, . . . , ki)’s, and finally proves Theorem 1.1. Section 4

gives the definition of the algebra homomorphism gx and proves double

shuffle relations for multiple Eisenstein series. A future problem with the

dimension of the space of Gx’s will be discussed in the end of this section.

§2. The Fourier expansion of multiple Eisenstein series

2.1 Multiple Eisenstein series

In this subsection, we define the multiple Eisenstein series and compute

its Fourier expansion.

Recall the computation of the Fourier expansion of Gn1(τ), which is well-

known (see also [7, Section 7]):

Gn1(τ) =
∑

0≺lτ+m

1

(lτ +m)n1
=
∑
m>0

1

mn1
+
∑
l>0

∑
m∈Z

1

(lτ +m)n1

= ζ(n1) +
(−2π

√
−1)n1

(n1 − 1)!

∑
n>0

σn1−1(n)qn,
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184 H. BACHMANN AND K. TASAKA

where σk(n) =
∑

d|n d
k is the divisor function and q = e2π

√
−1τ . Here for the

last equality we have used the Lipschitz formula

(4)
∑
m∈Z

1

(τ +m)n1
=

(−2π
√
−1)n1

(n1 − 1)!

∑
0<c1

cn1−1
1 qc1 (n1 > 2).

When n1 = 2, the above computation (the second equality) can be justified

by using a limit argument which in general is treated in Definition 2.1 below.

We remark that the function Gn1(τ) is a modular form of weight n1 for

SL2(Z) when n1 is even (> 2) (G2(τ) is called the quasimodular form) and

a nontrivial holomorphic function even if n1 is odd.

The following definition enables us to compute the Fourier expansion

of Gn1,...,nr(τ) for integers n1, . . . , nr > 2 and coincides with the iterated

multiple sum (1) when the series defining (1) converges absolutely, that is,

n1, . . . , nr−1 > 2 and nr > 3.

Definition 2.1. For integers n1, . . . , nr > 2, we define the holomorphic

function Gn1,...,nr(τ) on the upper half-plane called the multiple Eisenstein

series by

Gn1,...,nr(τ) := lim
L→∞

lim
M→∞

∑
0≺λ1≺···≺λr
λi∈ZLτ+ZM

1

λn1
1 · · · λ

nr
r

= lim
L→∞

lim
M→∞

∑
0≺(l1τ+m1)≺···≺(lrτ+mr)

−L6l1,...,lr6L
−M6m1,...,mr6M

1

(l1τ +m1)n1 · · · (lrτ +mr)nr
,

where we set ZM = {−M,−M + 1, . . . ,−1, 0, 1, . . . , M − 1, M} for an

integer M > 0.

The Fourier expansion of Gn1,...,nr(τ) for integers n1, . . . , nr > 2 is

obtained by splitting up the sum into 2r terms, which was first done in

[7] for the case r = 2 and in [1] for the general case (they use the opposite

convention, so that the λi’s are ordered by λ1 � · · · � λr � 0). To describe

each term we introduce the holomorphic function Gn1,...,nr(w1 · · · wr; τ) on

the upper half-plane below. For convenience, we express the set P of positive

elements in the lattice Zτ + Z as the disjoint union of two sets

Px := {lτ +m ∈ Zτ + Z | l = 0 ∧m> 0} ,

Py := {lτ +m ∈ Zτ + Z | l > 0} ,
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that is, Px are the lattice points on the positive real axis, Py are the

lattice points in the upper half-plane and P = Px ∪ Py. We notice that

λ1 ≺ λ2 is equivalent to λ2 − λ1 ∈ P . Let us denote by {x, y}∗ the set of

all words consisting of letters x and y. For integers n1, . . . , nr > 2 and a

word w1 · · · wr ∈ {x, y}∗ (wi ∈ {x, y}) we define

Gn1,...,nr(w1 · · · wr) = Gn1,...,nr(w1 · · · wr; τ)

:= lim
L→∞

lim
M→∞

∑
λ1−λ0∈Pw1

...
λr−λr−1∈Pwr

λ1,...,λr∈ZLτ+ZM

1

λn1
1 · · · λ

nr
r
,

where λ0 := 0. Note that in the above sum, adjoining elements λi − λi−1 =

(li − li−1)τ + (mi −mi−1), . . . , λj − λj−1 = (lj − lj−1)τ + (mj −mj−1) are

in Px (i.e., wi = · · ·= wj = x with i6 j) if and only if they satisfy mi−1 <

mi < · · ·<mj with li−1 = li = · · ·= lj (since (l − l′)τ + (m−m′) ∈ Px if

and only if l = l′ and m>m′), and hence the function Gn1,...,nr(w1 · · · wr)
is expressible in terms of the following function:

Ψn1,...,nr(τ) =
∑

−∞<m1<···<mr<∞

1

(τ +m1)n1 · · · (τ +mr)nr
,

which was studied thoroughly in [3]. In fact, as is easily seen that the series

defining Ψn1,...,nr(τ) converges absolutely when n1, . . . , nr > 2, we obtain

the following expression:

Gn1,...,nr(w1 · · · wr)

= ζ(n1, . . . , nt1−1)
∑

0<l1<···<lh

Ψnt1 ,...,nt2−1(l1τ) · · ·Ψnth ,...,nr
(lhτ),(5)

where 0< t1 < · · ·< th < r + 1 describe the positions of y’s in the word

w1 · · · wr, that is,

w1 · · · wr = x · · · x︸ ︷︷ ︸
t1−1

y x · · · x︸ ︷︷ ︸
t2−t1−1

yx · · · y x · · · x︸ ︷︷ ︸
th−th−1−1

y x · · · x︸ ︷︷ ︸
r−th

,

and ζ(n1, . . . , nt1−1) = 1 when t1 = 1.

We remark that the above expression of words gives a one-to-one

correspondence between words of length r in {x, y}∗ and the ordered subsets

https://doi.org/10.1017/nmj.2017.9 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.9


186 H. BACHMANN AND K. TASAKA

of {1, 2, . . . , r}. As we use later, this correspondence is written as the map

(6)
ρ : {x, y}∗r −→ 2{1,2,...,r}

w1 · · · wr 7−→ {t1, . . . , th},

where {x, y}∗r is the set of words of length r and 2{1,2,...,r} is the set of all

subsets of {1, 2, . . . , r}. For instance, we have ρ(xyxyxr−4) = {2, 4} and

ρ(xr) = {∅}.

Proposition 2.2. For integers n1, . . . , nr > 2, we have

Gn1,...,nr(τ) =
∑

w1,...,wr∈{x,y}

Gn1,...,nr(w1 · · · wr).

Proof. For λ1, . . . , λr ∈ ZLτ + ZM , the condition 0≺ λ1 ≺ · · · ≺ λr is by

definition equivalent to λi − λi−1 ∈ P = Px ∪ Py for all 1 6 i6 r − 1 (recall

λ0 = 0). Since λi − λi−1 can be either in Px or in Py we complete the

proof.

Example 2.3. In the case of r = 2, one has for n1 > 2, n2 > 3

Gn1,n2(τ) =
∑

0≺λ1≺λ2
λ1,λ2∈Zτ+Z

λ−n1
1 λ−n2

2 =
∑

λ1−λ0∈P
λ2−λ1∈P

λ1,λ2∈Zτ+Z

λ−n1
1 λ−n2

2

=

( ∑
λ1−λ0∈Px
λ2−λ1∈Px
λ1,λ2∈Zτ+Z

+
∑

λ1−λ0∈Px
λ2−λ1∈Py

λ1,λ2∈Zτ+Z

+
∑

λ1−λ0∈Py

λ2−λ1∈Px
λ1,λ2∈Zτ+Z

+
∑

λ1−λ0∈Py

λ2−λ1∈Py

λ1,λ2∈Zτ+Z

)
λ−n1

1 λ−n2
2

= Gn1,n2(xx) +Gn1,n2(xy) +Gn1,n2(yx) +Gn1,n2(yy).

2.2 Computing the Fourier expansion

In this subsection, we give a Fourier expansion of Gn1,...,nr(w1 · · · wr).
Let us define the q-series gn1,...,nr(q) for integers n1, . . . , nr > 1 by

(7)

gn1,...,nr(q) =
(−2π

√
−1)n1+···+nr

(n1 − 1)! · · · (nr − 1)!

∑
0<d1<···<dr
c1,...,cr∈N
d1,...,dr∈N

cn1−1
1 · · · cnr−1

r qc1d1+···+crdr ,

which divided by (−2π
√
−1)n1+···+nr was studied in [2]. We remark that

since gn1(q) is the generating series of the divisor function σn1−1(n) up to
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a scalar factor, the coefficient of qn in the q-series gn1,...,nr(q) is called the

multiple divisor sum in [2] with the opposite convention:

σn1,...,nr(n) =
∑

c1d1+···+crdr=n
0<d1<···<dr
c1,...,cr∈N
d1,...,dr∈N

cn1−1
1 · · · cnr−1

r ,

which is regarded as a multiple version of the divisor sum (we do not discuss

their properties in this paper). We investigate an algebraic structure related

to the q-series gn1,...,nr(q) in a subsequent paper.

To give the Fourier expansion of Gn1,...,nr(w1, . . . , wr), we need the

following lemma.

Lemma 2.4. For integers n1, . . . , nr > 2, we have

r∑
q=1

∑
k1+···+kr=n1+···+nr

ki>ni,kq=1

(
(−1)nq+kq+1+···+kr

r∏
j=1
j 6=q

(
kj − 1

nj − 1

)

× ζ(kq−1, kq−2, . . . , k1)ζ(kq+1, kq+2, . . . , kr)

)
= 0,

where ζ(n1, . . . , nr) = 1 when r = 0.

Proof. This was shown by using an iterated integral expression of

multiple zeta values in [3, Section 5.5] (his notations T enr,...,n1(z) and

Zenr,...,n1 correspond to our Ψn1,...,nr(z) and ζ(n1, . . . , nr), respectively).

We remark that he proved the identities in Lemma 2.4 for n1, . . . , nr > 1

with n1, nr > 2.

Proposition 2.5. For integers n1, . . . , nr > 2 and a word w1 · · · wr ∈
{x, y}∗, we set Ntm = ntm + · · ·+ ntm+1−1 for m ∈ {1, . . . , h} where
{t1, . . . , th}= ρ(w1 · · · wr) given by (6) and th+1 = r + 1. Then the function
Gn1,...,nr(w1 · · · wr; τ) has the following Fourier expansion:

Gn1,...,nr (w1 · · · wr) = ζ(n1, . . . , nt1−1)

×
∑

t16q16t2−1
t26q26t3−1

...
th6qh6r

∑
kt1+···+kt2−1=Nt1
kt2+···+kt3−1=Nt2

...
kth+···+kr=Nth
kt1 ,kt1+1,...,kr>2

{
(−1)

∑h
m=1(Ntm+nqm+kqm+1+kqm+2+···+kqm+1−1)
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188 H. BACHMANN AND K. TASAKA

×
( r∏

j=t1
j 6=q1,...,qh

(
kj − 1

nj − 1

))( h∏
m=1

ζ(kqm−1, . . . , ktm︸ ︷︷ ︸
qm−tm

)ζ(kqm+1, . . . , ktm+1−1︸ ︷︷ ︸
tm+1−qm−1

)

)

× gkq1 ,...,kqh (q)

}
,

where q = e2π
√
−1τ , ζ(n1, . . . , nr) = gn1,...,nr(q) = 1 whenever r = 0 and∏r

j=t1
j 6=q1,...,qh

(kj−1
nj−1

)
= 1 when the product is empty, that is, when {t1, t1 +

1, . . . , r}= {q1, . . . , qh}.

Proof. Put N = n1 + · · ·+ nr. Using the partial fraction decomposition

1

(τ +m1)n1 · · · (τ +mr)nr

=
r∑
q=1

∑
k1+···+kr=N
k1,...,kr>1

q−1∏
j=1

(kj−1
nj−1

)
(mq −mj)kj

 (−1)N+nq

(τ +mq)kq

×

 r∏
j=q+1

(−1)kj
(kj−1
nj−1

)
(mj −mq)kj

 ,

we obtain

Ψn1,...,nr(τ) =
r∑
q=1

∑
k1+···+kr=N
k1,...,kr>1

(
(−1)N+nq+kq+1+···+kr

r∏
j=1
j 6=q

(
kj − 1

nj − 1

)

× ζ(kq−1, kq−2, . . . , k1︸ ︷︷ ︸
q−1

)Ψkq(τ)ζ(kq+1, kq+2, . . . , kr︸ ︷︷ ︸
r−q

)

)
,(8)

where the implied interchange of order of summation is justified because the

binomial coefficient
(
ki−1
ni−1

)
vanishes if k1 = 1 or kr = 1 and by Lemma 2.4

the coefficient of Ψ1(τ) is zero. Using the Lipschitz formula (4) we easily

find that

(9) gn1,...,nr(q) =
∑

0<d1<···<dr

Ψn1(d1τ) . . .Ψnr(drτ)

for integers n1, . . . , nr > 2. Thus, combining the above formulas (8) and (9)

with (5), we have the desired formula.
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We remark that the formula (8), which in the case of r = 2 was done in

[7, Proof of Theorem 6], is found in [3, Theorem 3] and holds when n1, . . . ,

nr > 1 with n1, nr > 2, but we use only the formula (8) for n1, . . . , nr > 2

in this paper.

Let us illustrate a few examples.

Example 2.6. When r = 1, we have for n1 > 1

Gn1(x; τ) = ζ(n1) and Gn1(y; τ) =
∑
0<l

Ψn1(lτ) = gn1(q),

and hence

Gn1(τ) = ζ(n1) + gn1(q).

Example 2.7. We compute the case r = 2, which was carried out in [7].

From (5) and (9), it follows

Gn1,n2(xx) = ζ(n1, n2),

Gn1,n2(xy) = ζ(n1)
∑
0<l

Ψn2(lτ) = ζ(n1)gn2(q),

Gn1,n2(yy) =
∑

0<l1<l2

Ψn1(l1τ)Ψn2(l2τ) = gn1,n2(q),

and using (8), we have

Gn1,n2(yx) =
∑
0<l

Ψn1,n2(lτ) =
∑

k1+k2=n1+n2
k1,k2>2

bk1n1,n2
ζ(k1)gk2(q),

where for integers n, n′, k > 0 we set

(10) bkn,n′ = (−1)n
(
k − 1

n− 1

)
+ (−1)k−n

′
(
k − 1

n′ − 1

)
.

Thus the Fourier expansion of Gn1,n2(τ) is given by

(11)

Gn1,n2(τ) = ζ(n1, n2) +
∑

k1+k2=n1+n2
k1,k2>2

(
δn1,k1 + bk1n1,n2

)
ζ(k1)gk2(q) + gn1,n2(q),

where δn,k is the Kronecker delta.
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Example 2.8. For the future literature, we present the Fourier expan-

sion of Gn1,n2,n3(τ) with n1, n2, n3 > 2:

Gn1,n2,n3(τ)

= ζ(n1, n2, n3) + ζ(n1, n2)gn3(q) + ζ(n1)gn2,n3(q) + gn1,n2,n3(q)

+
∑

k1+k2+k3=n1+n2+n3
k1,k2,k3>2

{
(δn3,k3b

k1
n1,n2

+ δn1,k2b
k1
n2,n3

)ζ(k1)gk2,k3(q)

+

(
(−1)n1+k3

(
k2 − 1

n3 − 1

)
+ (−1)n1+n2

(
k2 − 1

n1 − 1

))
×
(
k1 − 1

n2 − 1

)
ζ(k1, k2)gk3(q)

+

(
(−1)n1+n3+k2

(
k1 − 1

n1 − 1

)(
k2 − 1

n3 − 1

)
+ δk1,n1b

k2
n2,n3

)
ζ(k1)ζ(k2)gk3(q)

}
.

§3. A relationship between multiple Eisenstein series and the

Goncharov coproduct

3.1 Regularized multiple zeta values

In this subsection, we recall the regularized multiple zeta value with

respect to the shuffle product defined in [10]. We first review an iterated

integral expression of the multiple zeta value due to Kontsevich and

Drinfel’d, and then recall the algebraic setup of multiple zeta values given

by Hoffman.

We denote by ω0(t) = dt
t and ω1(t) = dt

1−t holomorphic 1-forms on the

smooth manifold P1
C\{0, 1,∞}. For integers n1, . . . , nr−1 > 1 and nr > 2

with N = n1 + · · ·+ nr, the multiple zeta value ζ(n1, . . . , nr) is expressible

as an iterated integral on the smooth manifold P1
C\{0, 1,∞}:

(12) ζ(n1, . . . , nr) =

∫
· · ·
∫

0<t1<t2<···<tN<1

ωa1(t1) ∧ ωa2(t2) ∧ · · · ∧ ωaN (tN ),

where ai = 1 if i ∈ {1, n1 + 1, n1 + n2 + 1, . . . , n1 + · · ·+ nr−1 + 1} and

ai = 0 otherwise.

Let H = Q〈e0, e1〉 be the noncommutative polynomial algebra in two

indeterminates e0 and e1, and H1 := Q + e1H and H0 := Q + e1He0 its
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subalgebras. Set

yn := e1e
n−1
0 = e1 e0 · · · e0︸ ︷︷ ︸

n−1

for each positive integer n > 0. It is easily seen that the subalgebra H1 is

freely generated by yn’s (n> 1) as a noncommutative polynomial algebra:

H1 = Q〈y1, y2, y3, . . .〉.

We define the shuffle product, a Q-bilinear product on H, inductively by

uw x vw′ = u(w x vw′) + v(uw x w′),

with the initial condition w x 1 = 1 x w = w (1 ∈Q), where w, w′ ∈ H

and u, v ∈ {e0, e1}. This provides the structures of commutative Q-algebras

for spaces H, H1 and H0 (see [14]), which we denote by Hx, H
1
x and H0

x,

respectively. By taking the iterated integral (12), with the identification

wi(t)↔ ei (i ∈ {0, 1}), one can define an algebra homomorphism

Z : H0
x −→ R

yn1 · · · ynr 7−→ ζ(n1, . . . , nr) (nr > 1)

with Z(1) = 1, since it is shown by Chen [5] that the iterated integral (12)

satisfies the shuffle product formulas. By [10, Proposition 1], there is a

Q-algebra homomorphism

Zx : H1
x→ R[T ]

which is uniquely determined by the properties that Zx
∣∣
H0
x

= Z and

Zx(e1) = T . We note that the image of the word yn1 · · · ynr in H1
x under the

map Zx is a polynomial in T whose coefficients are expressed as Q-linear

combinations of multiple zeta values.

Definition 3.1. The regularized multiple zeta value, denoted by

ζx(n1, . . . , nr), is defined as the constant term of Zx(yn1 · · · ynr) in T :

ζx(n1, . . . , nr) := Zx(yn1 · · · ynr)
∣∣
T=0

.

For example, we have ζx(2, 1) =−2ζ(1, 2) and

(13) ζx(n1, . . . , nr) = ζ(n1, . . . , nr) (nr > 2).
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3.2 Hopf algebras of iterated integrals

In this subsection, we recall Hopf algebras of formal iterated integrals

introduced by Goncharov.

In his paper [8, Section 2], Goncharov considered a formal version of the

iterated integrals

(14)

∫ aN+1

a0

dt1
t1 − a1

· · ·
∫ aN+1

tN−2

dtN−1

tN−1 − aN−1

∫ aN+1

tN−1

dtN
tN − aN

(ai ∈ C).

He proved that the space I•(S) generated by such formal iterated integrals

carries a Hopf algebra structure. Let us recall the definition of the space

I•(S).

Definition 3.2. Let S be a set. Let us denote by I•(S) the commutative

graded algebra over Q generated by the elements

I(a0; a1, . . . , aN ; aN+1), N > 0, ai ∈ S

with degree N which are subject to the following relations.

(I1) For any a, b ∈ S, the unit is given by I(a; b) := I(a; ∅; b) = 1.

(I2) The product is given by the shuffle product: for all integers N, N ′ > 0

and ai ∈ S, one has

I(a0; a1, . . . , aN ; aN+N ′+1)I(a0; aN+1, . . . , aN+N ′ ; aN+N ′+1)

=
∑

σ∈Σ(N,N ′)

I(a0; aσ−1(1), . . . , aσ−1(N+N ′); aN+N ′+1),

where Σ(N, N ′) is the set of σ in the symmetric group SN+N ′ such

that σ(1)< · · ·< σ(N) and σ(N + 1)< · · ·< σ(N +N ′).

(I3) The path composition formula holds: for any N > 0 and ai, x ∈ S, one

has

I(a0; a1, . . . , aN ; aN+1)

=
N∑
k=0

I(a0; a1, . . . , ak; x)I(x; ak+1, . . . , aN ; aN+1).

(I4) For N > 1 and ai, a ∈ S, I(a; a1, . . . , aN ; a) = 0.
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We remark that the element I(a0; a1, . . . , aN ; aN+1) is an analogue of the

iterated integral (14), since by Chen [5] iterated integrals satisfy (I1) to (I4)

when the integral converges.

The Goncharov coproduct ∆ : I•(S)→I•(S)⊗ I•(S) is defined by

∆
(
I(a0; a1, . . . , aN ; aN+1)

)
=

∑
06k6N

i0=0<i1<···<ik<ik+1=N+1

k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)

⊗ I(a0; ai1 , . . . , aik ; aN+1),(15)

for any N > 0 and ai ∈ S, and then extending by Q-linearity. The formula

(15) can be found in [4] (see Equation (2.18)), originally given by Goncharov

(see [8, Equation (27)]) with the factors interchanged.

Proposition 3.3. [8, Proposition 2.2] The Goncharov coproduct ∆

gives I•(S) the structure of a commutative graded Hopf algebra, where the

counit ε is determined by the condition that it kills I>0(S).

We remark that the antipode S of the above Hopf algebra is uniquely

and inductively determined by the definition (see [8, Lemma A.1]). For

example, since ∆(I(a0; a1; a2)) = I(a0; a1; a2)⊗ 1 + 1⊗ I(a0; a1; a2) for any

a0, a1, a2 ∈ S, we have

S(I(a0; a1; a2)) + I(a0; a1; a2) = 0 = u ◦ ε(I(a0; a1; a2)),

where u : Q→I•(S) is the unit. In general, the formula is obtained from

the fact that

S(I(a0; a1, . . . , aN ; aN+1)) + I(a0; a1, . . . , aN ; aN+1)

= a Z-linear combination of products of I’s of degree <N,

which we do not develop the precise formula in this paper.

3.3 Formal iterated integrals and regularized multiple zeta

values

In this subsection, we define the map zx described in the introduction.

Hereafter, we restrict only the Hopf algebra I• := I•(S) to the case with

S = {0, 1}.
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Consider the quotient algebra

I1
• := I•/I(0; 0; 1)I•.

It is easy to verify that I(0; 0; 1) is primitive, that is, ∆(I(0; 0; 1)) = 1⊗
I(0; 0; 1) + I(0; 0; 1)⊗ 1. Thus the ideal I(0; 0; 1)I• generated by I(0; 0; 1)

in the Q-algebra I• becomes a Hopf ideal, and hence the quotient map

I•→I1
• induces a Hopf algebra structure on the quotient algebra I1

• . Let

us denote by

I(a0; a1, . . . , aN ; aN+1) ∈ I1
•

an image of I(a0; a1, . . . , aN ; aN+1) in I1
• and by the same symbol ∆ the

induced coproduct on I1
• given by the same formula as (15) replacing I with

I. As a result, we have the following proposition which we use later.

Proposition 3.4. The coproduct ∆ : I1
• →I1

• ⊗ I1
• is an algebra homo-

morphism, where the product on I1
• ⊗ I1

• is defined in the standard way by

(w1 ⊗ w2)(w′1 ⊗ w′2) = w1w
′
1 ⊗ w2w

′
2 and the product on each summand I1

•
is given by the shuffle product (I2).

We remark that dividing I• by I(0; 0; 1)I• can be viewed as a regu-

larization for “
∫ 1

0 dt/t=− log(0)” which plays a role as I(0; 0; 1) in the

evaluation of iterated integrals. For example, one can write I(0; 0, 1, 0; 1) =

−2I(0; 1, 0, 0; 1) in I1
• since it follows I(0; 0, 1, 0; 1) = I(0; 0; 1)I(0; 1, 0; 1)−

2I(0; 1, 0, 0; 1), and this computation corresponds to taking the constant

term of
∫ 1
ε
dt1
t1

∫ t1
ε

dt2
1−t2

∫ t2
ε

dt3
t3

as a polynomial of log(ε) and letting ε→ 0.

By the standard calculation about the shuffle product formulas, we obtain

more identities in the space I1
• (see [4, p. 955]).

(1) For n> 1 and a, b ∈ {0, 1}, we have

(16) I(a; 0, . . . , 0︸ ︷︷ ︸
n

; b) = 0.

(2) For integers n> 0, n1, . . . , nr > 1, we have

I(0; 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1)

= (−1)n
∑

k1+···+kr=n1+···+nr+n
k1,...,kr>1

( r∏
j=1

(
kj − 1

nj − 1

))
I(k1, . . . , kr),(17)
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where we set

I(n1, . . . , nr) := I(0; 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1).

In order to define the map zx as a Q-linear map, we give a linear basis

of the space I1
• first.

Proposition 3.5. The set of elements {I(n1, . . . , nr) | r > 0, ni > 1} is

a linear basis of the space I1
• .

Proof. Recall the result of Goncharov [8, Proposition 2.1]: for each integer

N > 0 and a0, . . . , aN+1 ∈ {0, 1} one has

(18) I(a0; a1, . . . , aN ; aN+1) = (−1)N I(aN+1; aN , . . . , a1; a0),

which essentially follows from (I3) and (I4). Then, we find that the collection

{I(0; a1, . . . , aN ; 1) |N > 0, ai ∈ {0, 1}}

forms a linear basis of the linear space I•, since none of the relations (I1)

to (I4) yield Q-linear relations among them. Combining this with (17), we

obtain the desired basis.

Definition 3.6. Let zx : I1
• → R be the Q-linear map given by

zx : I1
• −→ R

I(n1, . . . , nr) 7−→ ζx(n1, . . . , nr)

and zx(1) = 1.

Proposition 3.7. The map zx : I1
• → R is an algebra homomorphism.

Proof. By Proposition 3.5, we find that the Q-linear map H1
x→I1

• given

by ea1 · · · eaN 7→ I(0; a1, . . . , aN ; 1) is an isomorphism between Q-algebras.

Then the result follows from the standard fact that the map Zx
∣∣
T=0

: H1
x→

R given by yn1 · · · ynr 7→ ζx(n1, . . . , nr) is an algebra homomorphism.

3.4 Computing the Goncharov coproduct

In this subsection, we rewrite the Goncharov coproduct ∆ for

I(n1, . . . , nr) in terms of I(k1, . . . , ki)’s. Although one can compute the

formula by using Propositions 3.8 and 3.12, we do not give explicit formulas
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for ∆(I(n1, . . . , nr)) in general. We present an explicit formula for only

∆(I(n1, n2, n3)) in the end of this subsection.

To describe the formula, it is convenient to use the algebraic setup.

Let H′ := 〈e0, e1, e
′
0, e
′
1〉 be the noncommutative polynomial algebra in four

indeterminates e0, e1, e
′
0 and e′1. For integers 0< i1 < i2 < · · ·< ik <N + 1

(0 6 k 6N), we define

ei1,...,ik(a1, . . . , aN )

:= ea1 · · · eai1−1

k−1∏
p=1

e′aipeaip+1 · · · eaip+1−1

 e′aik
eaik+1 · · · eaN

with each aj = 0 or 1, where the product
∏k−1
p=1 means the concatenation

product. Let

ϕ : H′→I1
• ⊗ I1

•

be the Q-linear map that assigns to each word ei1,...,ik(a1, . . . , aN ) the factor

of the right-hand side of the equation (15) with a0 = 0 and aN+1 = 1:

ϕ(ei1,...,ik(a1, . . . , aN ))

=

k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)⊗ I(0; ai1 , . . . , aik ; 1),

where we set ai0 = 0 and aik+1
= 1. For example, we have

ϕ(e2,3(a1, . . . , a4)) = ϕ(ea1e
′
a2e
′
a3ea4)

= I(0; a1; a2)I(a2; a3)I(a3; a4; 1)⊗ I(0; a2, a3; 1).

In the rest of this subsection, for integers n1, . . . , nr > 1 with N = n1 +

· · ·+ nr, we set

{a1, . . . , aN}= {1, 0, . . . , 0︸ ︷︷ ︸
n1−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n2−1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr−1

},

and write ei1,...,ik(n1, . . . , nr) := ei1,...,ik(a1, . . . , aN ). We note that aj = 1 if

j lies in the set

Pn1,...,nr := {1, n1 + 1, . . . , n1 + · · ·+ nr−1 + 1},

and aj = 0 otherwise.
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Using the above notations, one has

(19) ∆(I(n1, . . . , nr)) =
N∑
k=0

∑
0<i1<···<ik<N+1

ϕ(ei1,...,ik(n1, . . . , nr)).

To compute (19), we split the right-hand side of (19) into 2r sums of

ψn1,...,nr(w1 · · · wr) defined below.

Define the map

ιn1,...,nr : 2{1,2,...,r} −→ 2Pn1,...,nr

given by 1 7→ 1 and i 7→ n1 + · · ·+ ni−1 + 1 (2 6 i6 r), where for a set X

the set of all subsets of X is denoted by 2X . It follows that the map ιn1,...,nr

is bijective. Let

ρn1,...,nr := ιn1,...,nr ◦ ρ : {x, y}∗r −→ 2Pn1,...,nr ,

where ρ is defined in (6). The map ρ is also bijective. For instance, we have

ρn1,...,nr(yxyxr−3) = {1, n1 + n2 + 1} and ρn1,...,nr(x
r) = {∅}. With the map

ρn1,...,nr , for integers n1, . . . , nr > 1 and a word w1 · · · wr (wi ∈ {x, y}) we

define

ψn1,...,nr(w1 · · · wr)

:=
N∑
k=h

∑
0<i1<···<ik<N+1

{i1,...,ik}∩Pn1,...,nr=ρn1,...,nr (w1···wr)

ϕ(ei1,...,ik(n1, . . . , nr)),(20)

where h is the number of y’s in the word w1 · · · wr (i.e., h=

degy(w1 · · · wr)).

Proposition 3.8. For integers n1, . . . , nr > 1, we have

∆
(
I(n1, . . . , nr)

)
=

∑
w1,...,wr∈{x,y}

ψn1,...,nr(w1 · · · wr).

Proof. For the word ei1,...,ik(n1, . . . , nr), we denote by h the number of

e′1’s in the prime symbols e′ai1
, . . . , e′aik

, that is,

h= dege′1(ei1,...,ik(n1, . . . , nr)).
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Since aj = 1 if and only if j ∈ Pn1,...,nr , we have

h= ]({i1, . . . , ik} ∩ Pn1,...,nr).

We notice that h can be chosen from {0, 1, . . . ,min{r, k}} for each k. With

this, the formula (19) can be written in the form

(19) =
N∑
k=0

min{r,k}∑
h=0

∑
0<i1<···<ik<N+1

]({i1,...,ik}∩Pn1,...,nr )=h

ϕ(ei1,...,ik(n1, . . . , nr))

=
r∑

h=0

N∑
k=h

∑
0<i1<···<ik<N+1

]({i1,...,ik}∩Pn1,...,nr )=h

ϕ(ei1,...,ik(n1, . . . , nr)).

By specifying the subset of Pn1,...,nr with length h, the above third sum can

be split into the following sums:

(19) =
r∑

h=0

N∑
k=h

∑
{j1,...,jh}⊂Pn1,...,nr

j1<···<jh

∑
0<i1<···<ik<N+1

{i1,...,ik}∩Pn1,...,nr={j1,...,jh}

ϕ(ei1,...,ik(n1, . . . , nr))

=
r∑

h=0

∑
{j1,...,jh}⊂Pn1,...,nr

j1<···<jh

N∑
k=h

∑
0<i1<···<ik<N+1

{i1,...,ik}∩Pn1,...,nr={j1,...,jh}

ϕ(ei1,...,ik(n1, . . . , nr))

=
r∑

h=0

∑
w1,...,wr∈{x,y}
degy w1···wr=h

ψn1,...,nr(w1 · · · wr)

=
∑

w1,...,wr∈{x,y}

ψn1,...,nr(w1 · · · wr),

which completes the proof.

We express (20) as algebraic combinations of I(k1, . . . , ki)’s. To do this,

we extract possible nonzero terms from the right-hand side of (20) by using

(I4). For a positive integer n, we define η0(n) as the sum of all words of

degree n− 1 consisting of e0 and a consecutive e′0:

η0(n) =
∑

α+k+β=n
α,β>0
k>1

eα0 (e′0)k−1eβ0 .
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Proposition 3.9. For integers n1, . . . , nr > 1 and a word w1 · · · wr of
length r in {x, y}∗, we have

ψn1,...,nr (w1 · · · wr)

=
∑

t16q16t2−1
t26q26t3−1

.

.

.
th6qh6r

ϕ

(
yn1 · · · ynt1−1

h∏
m=1

(
e
′
1 e
ntm−1

0 yntm+1
· · · ynqm−1

e1︸ ︷︷ ︸
degree in e1=qm−tm

η0(nqm )ynqm+1
· · · yntm+1−1

))
,

where {t1, . . . , th}= ρ(w1 · · · wr) given by (6), th+1 = r + 1 and the product∏h
m=1 means the concatenation product of words.

Proof. It follows ψn1,...,nr(x
r) = ϕ(yn1 · · · ynr), so we consider the case

h > 0 which means the number of y’s in w1 · · · wr is greater than 0. We note

that the sum defining (20) runs over all words ca1 · · · caN (cai ∈ {eai , e′ai})
with k (h6 k 6N) prime symbols whose positions of e′1’s are placed on the

set {j1, . . . , jh}= ρn1,...,nr(w1 · · · wr):

(20) =

N∑
k=h

∑
w0,w1,...,wh∈{e0,e1,e′0}∗
dege′0

(w0w1···wh)=k−h
deg(w0)=j1−1

deg(e′1wm)=jm+1−jm (16m6h)
jh+1=N+1

ϕ
(
w0

h∏
m=1

(
e′1wm

))
.

We find by (I4) that ϕ(ei1,...,ik(n1, . . . , nr)) is 0 whenever ai1 = 0 (notice

that a0 = 0 and a1 = 1). This implies that if the degree of the above w0 in

the letter e′0 is greater than 0, then ϕ
(
w0
∏h
m=1(e′1wm)

)
= 0. For a word

w ∈ H′, we also find ϕ(w) = 0 if w contains a subword of the form e′0ve
′
0

with v ∈ H (v 6= ∅), that is, w = w1e
′
0ve
′
0w2 for some w1, w2 ∈ H′, because

the factor of the left-hand side of ϕ(w) involves I(0; v; 0) which by (I4) is 0.

This implies that the above second sum regarding wm (1 6m6 h) of the

form wm = w1e
′
0ve
′
0w2 with v ∈ {e0, e1}∗ (v 6= ∅) and w1, w2 ∈ {e0, e1, e

′
0}∗

can be excluded. Thus, the possible nonzero terms in (20), sieved out by

(I4), occur if w0 = yn1 · · · ynt1−1 and wm is written in the form

e
ntm−1
0 yntm+1 · · · ynqm−1

e1︸ ︷︷ ︸
degree in e1=qm−tm

eα0 (e′0)keβ0ynqm+1 · · · yntm+1−1 ,

where qm ∈ {tm, tm + 1, . . . , tm+1 − 1}, α, β, k ∈ Z>0 with α+ k + β =

nqm − 1 and {t1, . . . , th}= ρ(w1 · · · wr). This completes the proof.
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Before giving an explicit formula for ψn1,...,nr(w1 · · · wr), we illustrate

examples for r = 1 and 2.

Example 3.10. By definition, for n1 > 1 one has ψn1(x) = ϕ(e1e
n1−1
0 ) =

I(n1)⊗ 1. By (16), we obtain

ψn1(y) =
∑

α+k+β=n1
α,β>0
k>1

ϕ(e′1e
α
0 (e′0)k−1eβ0 ) = 1⊗ I(n1).

Thus, we get

∆(I(n1)) = I(n1)⊗ 1 + 1⊗ I(n1).

Example 3.11. It follows ψn1,n2(xx) = ϕ(e1e
n1−1
0 e1e

n2−1
0 ) =

I(n1, n2)⊗ 1. By (16) one can compute

ψn1,n2(xy) =
∑

α+k+β=n2
α,β>0
k>1

ϕ(e1e
n1−1
0 e′1e

α
0 (e′0)k−1eβ0 ) = I(n1)⊗ I(n2),

ψn1,n2(yy) =
∑

α1+k1+β1=n1
α1,β1>0
k1>1

∑
α2+k2+β2=n2

α2,β2>0
k2>1

ϕ(e′1e
α1
0 (e′0)k1−1eβ10 e

′
1e
α2
0 (e′0)k2−1eβ20 )

= 1⊗ I(n1, n2),

and using (17) and (18) we have

ψn1,n2(yx) =
∑

α+k+β=n1
α,β>0
k>1

ϕ(e′1e
α
0 (e′0)k−1eβ0e1e

n2−1
0 )

+
∑

α+k+β=n2
α,β>0
k>1

ϕ(e′1e
n1−1
0 e1e

α
0 (e′0)k−1eβ0 )

=
∑

k1+k2=n1+n2
k1,k2>1

bk1n1,n2
I(k1)⊗ I(k2),

where bkn,n′ is defined in (10). Therefore, by Proposition 3.8 we have

∆(I(n1, n2)) = I(n1, n2)⊗ 1

+
∑

k1+k2=n1+n2
k1,k2>1

(
δn1,k1 + bk1n1,n2

)
I(k1)⊗ I(k2) + 1⊗ I(n1, n2).(21)
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Proposition 3.12. For integers n1, . . . , nr > 2 and a word w1 · · · wr ∈
{x, y}∗, we set

Ntm = ntm + ntm+1 + · · ·+ ntm+1−1

for each m ∈ {1, 2, . . . , h}, where {t1, . . . , th}= ρ(w1 · · · wr) and th+1 =
r + 1. Then we have

ψn1,...,nr (w1 · · · wr) = (I(n1, . . . , nt1−1)⊗ 1)

×
∑

t16q16t2−1
t26q26t3−1

...
th6qh6r

∑
kt1+···+kt2−1=Nt1
kt2+···+kt3−1=Nt2

...
kth+···+kr=Nth

ki>1

{
(−1)

∑h
m=1(Ntm+nqm+kqm+1+kqm+2+···+kqm+1−1)

×
( r∏

j=t1
j 6=q1,...,qh

(
kj − 1

nj − 1

))( h∏
m=1

I(kqm−1, . . . , ktm︸ ︷︷ ︸
qm−tm

)I(kqm+1, . . . , ktm+1−1︸ ︷︷ ︸
tm+1−qm−1

)

)

⊗ I(kq1 , . . . , kqh)

}
,

where
∏r

j=t1
j 6=q1,...,qh

(kj−1
nj−1

)
= 1 when {t1, t1 + 1, . . . , r}= {q1, . . . , qh}.

Proof. This can be verified by applying the identities (16), (17) and (18)

to the formula in Proposition 3.9.

Example 3.13. For the future literature, we present an explicit formula

for ∆(I(n1, n2, n3)) obtained from Propositions 3.8 and 3.12:

∆(I(n1, n2, n3))

= I(n1, n2, n3)⊗ 1 + I(n1, n2)⊗ I(n3)

+ I(n1)⊗ I(n2, n3) + 1⊗ I(n1, n2, n3)

+
∑

k1+k2+k3=n1+n2+n3
k1,k2,k3>1

{
(δn3,k3b

k1
n1,n2

+ δn1,k2b
k1
n2,n3

)I(k1)⊗ I(k2, k3)

+

(
(−1)n1+k3

(
k2 − 1

n3 − 1

)
+ (−1)n1+n2

(
k2 − 1

n1 − 1

))
×
(
k1 − 1

n2 − 1

)
I(k1, k2)⊗ I(k3)
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+

(
(−1)n1+n3+k2

(
k1 − 1

n1 − 1

)(
k2 − 1

n3 − 1

)
+ δk1,n1 bk2n2,n3

)
I(k1)I(k2)⊗ I(k3)

}
.

3.5 Proof of Theorem 1.1

We now give a proof of Theorem 1.1. Recall the q-series gn1,...,nr(q) defined

in (7). Let

g : I1
• → C[[q]]

be the Q-linear map given by g(I(n1, . . . , nr)) = gn1,...,nr(q) and g(1) = 1.

Proof of Theorem 1.1. Taking zx ⊗ g for the explicit formula in Propo-

sition 3.12 and comparing this with Proposition 2.5, we have(
zx ⊗ g

)(
ψn1,...,nr(w1 · · · wr)

)
=Gn1,...,nr(w1 · · · wr).

Here the second sum (relating to ki) of the formula in Proposition 3.12

differs from that of the formula in Proposition 2.5, but apparently it is

the same because binomial coefficient terms allow us to take ki > ni for

t1 6 i6 r with i 6= q1, . . . , qh, and by Lemma 2.4 it turns out that the

coefficient of gkq1 ,...,kqh (q) becomes 0 if kqj = 1 for some 1 6 j 6 h. With

this, the statement follows from Propositions 2.2 and 3.8.

§4. The algebra of multiple Eisenstein series

4.1 The shuffle algebra consisting of certain q-series

In this subsection, we define the map gx : I1
• → C[[q]] described in the

introduction. We first introduce the power series H (n1,...,nr
x1,...,xr) satisfying the

harmonic product formulas. Then, by using Hoffman’s results, the power

series h(x1, . . . , xr) (see (22)) satisfying the shuffle relation (24), which is

a variant of the shuffle relation (I2) (reformulated in (26)), is constructed.

Finally, we introduce the power series gx(x1, . . . , xr) (see (25)) and prove

in Theorem 4.6 that their coefficients, which are q-series, satisfy the shuffle

relations given in (I2).

Consider the iterated multiple sum

H (n1,...,nr
x1,...,xr) :=

∑
0<d1<···<dr

ed1x1
(

qd1

1− qd1

)n1

· · · edrxr
(

qdr

1− qdr

)nr
,

where n1, . . . , nr are positive integers and x1, . . . , xr are commutative

variables, that is, these are elements in the power series ring K[[x1, . . . , xr]],
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where K = Q[[q]]. It is easily seen that the power series H (n1,...,nr
x1,...,xr) satisfies

the harmonic product: for example, one has

H
(

1
x1

)
H
(

1
x2

)
=

∑
0<d1,d2

ed1x1
qd1

1− qd1
ed2x2

qd2

1− qd2

=

( ∑
0<d1<d2

+
∑

0<d2<d1

+
∑

0<d1=d2

)
ed1x1

qd1

1− qd1
ed2x2

qd2

1− qd2

= H
(

1,1
x1,x2

)
+H

(
1,1
x2,x1

)
+H

(
2

x1+x2

)
.

The power series H (n1,...,nr
x1,...,xr) naturally appears in an expression of the

generating series of gn1,...,nr(q).

Lemma 4.1. For any r > 0, let

g(x1, . . . , xr) :=
∑

n1,...,nr>1

gn1,...,nr(q)

(−2π
√
−1)n1+···+nr

xn1−1
1 · · · xnr−1

r .

Then, we have

g(x1, . . . , xr) =H
(

1,...,1,1
xr−xr−1,...,x2−x1,x1

)
.

Proof. When r = 2 this was computed in the proof of [7, Theorem 7]

with the opposite convention. Our claim is its generalization, which can be

easily shown.

For r > 0, consider the power series

(22) h(x1, . . . , xr) :=

r∑
m=1

∑
(i1,i2,...,im)

1

i1!i2! · · · im!
H
(

i1,i2,...,im
x′i1

,x′i2
,...,x′im

)
,

where the second sum runs over all decompositions of the integer r as

a sum of m positive integers and the variables are given by x′i1 = x1 +

· · ·+ xi1 , x
′
i2

= xi1+1 + · · ·+ xi1+i2 , . . . , x
′
im

= xi1+···+im−1+1 + · · ·+ xr.

For example, we have

h(x) =H (1
x) , h(x1, x2) =H

(
1,1
x1,x2

)
+

1

2
H
(

2
x1+x2

)
.

We shall prove that the power series h(x1, . . . , xr) satisfies the shuffle

relation (24) below, which in the case of r = 2 is given by

h(x1)h(x2) = h(x1, x2) + h(x2, x1).
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To do this, we reformulate the result of Hoffman [9, Theorem 2.5] in

accordance with our situation.

Let U be the noncommutative polynomial algebra over Q generated by

noncommutative symbols (nz) indexed by n ∈ N and

z ∈X :=

{∑
i>0

aixi | ai ∈ Z>0 is zero for almost all i’s

}
.

The word consisting of the concatenation products of letters (n1
z1) , . . . , (nrzr ) is

denoted by (n1,...,nr
z1,...,zr )

(
= (n1

z1) · · · (nrzr )
)
, for short. The empty word is viewed

as 1 ∈Q. As usual, the harmonic product ∗ on U is inductively defined for

n, n′ ∈ N, z, z′ ∈X and words w, w′ in U by(
(nz) · w

)
∗
((
n′

z′

)
· w′
)

= (nz) ·
(
w ∗

((
n′

z′

)
· w′
))

+
(
n′

z′

)
·
((

(nz) · w
)
∗ w′

)
+
(
n+n′

z+z′

)
· (w ∗ w′),

with the initial condition w ∗ 1 = 1 ∗ w = w. The shuffle product on U is

defined in the same way as in x on H = Q〈e0, e1〉, replacing the underlying

vector space with U . Let us define the Q-linear map exp : U → U given for

each linear basis (n1,...,nr
z1,...,zr ) by

(23) exp ((n1,...,nr
z1,...,zr )) =

r∑
m=1

∑
(i1,i2,...,im)

1

i1!i2! · · · im!

(
n′i1

,n′i2
,...,n′im

z′i1
,z′i2

,...,z′im

)
,

where the second sum runs over all decompositions of the integer r as

a sum of m positive integers and the variables are given by z′i1 = z1 +

· · ·+ zi1 , z′i2 = zi1+1 + · · ·+ zi1+i2 , . . . , z
′
im

= zi1+···+im−1+1 + · · ·+ zr and

n′i1 = n1 + · · ·+ ni1 , n′i2 = ni1+1 + · · ·+ ni1+i2 , . . . , n
′
im

= ni1+···+im−1+1 +

· · ·+ nr. This map was first considered by Hoffman (see [9, p. 52]) and

called the exponential map. Then, by [9, Theorem 2.5], we have the following

proposition.

Proposition 4.2. The exponential map gives the isomorphism

exp : Ux −→U∗

as commutative Q-algebras, where Ux (resp. U∗) denotes the commutative

algebra U equipped with the product x (resp. ∗).
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We now prove the shuffle relation for h(x1, . . . , xr)’s. We denote by Sr

the symmetric group of order r. The group Sr acts on K[[x1, . . . , xr]] in the

obvious way by (f
∣∣σ)(x1, . . . , xr) = f(xσ−1(1), . . . , xσ−1(r)), which defines a

right action, that is, f
∣∣(στ) = (f

∣∣σ)
∣∣τ . This action extends to an action of

the group ring Z[Sr] by linearity.

Lemma 4.3. For any r, s> 1, we have

(24) h(x1, . . . , xr)h(xr+1, . . . , xr+s) = h(x1, . . . , xr+s)
∣∣sh(r+s)

r ,

where sh
(r+s)
r :=

∑
σ∈Σ(r,s) σ is in the group ring Z[Sr+s] and the set Σ(r, s)

is defined in the shuffle product formula (I2).

Proof. Define the Q-linear map

H : U −→ R := lim−→
r

K[[x1, . . . , xr]]

(n1,...,nr
z1,...,zr ) 7−→ H (n1,...,nr

z1,...,zr )

for each linear basis (n1,...,nr
z1,...,zr ) of U with H(1) = 1. By combining the

exponential map (23) with the map H, one easily finds that

h(x1, . . . , xr) =H ◦ exp
((

1,...,1
x1,...,xr

))
.

Since the power series H (n1,...,nr
z1,...,zr ) satisfies the harmonic product, the algebra

homomorphism H : U∗→R is obtained, and hence, by Proposition 4.2, the

composition map H ◦ exp : Ux→R is an algebra homomorphism. Then, we

have

h(x1, . . . , xr)h(xr+1, . . . , xr+s) = H ◦ exp
((

1,...,1
x1,...,xr

)
x
(

1,...,1
xr+1,...,xr+s

))
=

∑
σ∈Σ(r,s)

H ◦ exp
((

1,...,1
xσ−1(1),...,xσ−1(r+s)

))
= h(x1, . . . , xr+s)

∣∣sh(r+s)
r ,

which completes the proof.

For r > 0, consider the power series

(25) gx(x1, . . . , xr) := h(xr − xr−1, . . . , x2 − x1, x1).

We shall prove that the q-series obtained from the coefficient of

xn1−1
1 · · · xnr−1

r in the power series gx(x1, . . . , xr) satisfies the shuffle

product formulas (I2). For this, we use the generating series expression of

the shuffle product formulas (I2) (this expression is found in [10, Proof of

Proposition 7] with the opposite convention).
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Proposition 4.4. For any r > 0, let

I(x1, . . . , xr) :=
∑

n1,...,nr>0

I(n1, . . . , nr)x
n1−1
1 · · · xnr−1

r .

Then, the shuffle product formulas for I(n1, . . . , nr)’s obtained in (I2) is

equivalent to

(26) I](x1, . . . , xr)I
](xr+1, . . . , xr+s) = I](x1, . . . xr+s)

∣∣sh(r+s)
r ,

where the operator ] is the change of variables defined by

f ](x1, . . . , xr) = f(x1, x1 + x2, . . . , x1 + · · ·+ xr).

Proof. Computing the shuffle product formula (I2), one obtains

(27) I(n1)I(n2) =
∑

k1+k2=n1+n2
k1,k2>1

((
k2 − 1

n1 − 1

)
+

(
k2 − 1

n2 − 1

))
I(k1, k2),

and hence we have

I(x1)I(x2) = I(x2, x1 + x2) + I(x1, x1 + x2),

which coincides with the identity (26) for r = s= 1. The reminder (the case

r + s > 2) can be verified by induction.

We now define the map gx : I1
• → C[[q]] and prove that this is an algebra

homomorphism.

Definition 4.5. Let us denote by gxn1,...,nr(q) the coefficient of

xn1−1
1 · · · xnr−1

r in the power series

gx(−2π
√
−1x1, . . . ,−2π

√
−1xr) =

∑
n1,...,nr>0

gxn1,...,nr(q)x
n1−1
1 · · · xnr−1

r .

With this, we define the Q-linear map gx : I1
• → C[[q]] for each linear basis

I(n1, . . . , nr) of I1
• by

gx(I(n1, . . . , nr)) = gxn1,...,nr(q)

and gx(1) = 1.

Theorem 4.6. The q-series gxn1,...,nr(q) satisfies the shuffle product

formula (I2), namely, the map gx : I1
• → C[[q]] is an algebra homomorphism.

Proof. By Proposition 4.4, it is sufficient to show that for any integers

r, s> 1 the power series gx(x1, . . . , xr+s) satisfies the relation

g]x(x1, . . . , xr)g
]
x(xr+1, . . . , xr+s) = g]x(x1, . . . xr+s)

∣∣sh(r+s)
r .
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For integers r, s> 1, let

ρr,s =

(
1 2 · · · r r + 1 · · · r + s− 1 r + s
r r − 1 · · · 1 r + s · · · r + 2 r + 1

)
∈Sr+s.

Applying the operator ] to both sides of (25), we obtain g]x(x1, . . . , xr) =

h(xr, . . . , x1), and hence by Lemma 4.3 we can compute

g]x(x1, . . . , xr)g
]
x(xr+1, . . . , xr+s) = h(xr, . . . , x1)h(xr+s, . . . , xr+1)

= h(x1, . . . , xr)h(xr+1, . . . , xr+s)
∣∣ρr,s

= h(x1, . . . , xr+s)
∣∣sh(r+s)

r

∣∣ρr,s
= g]x(x1, . . . , xr+s)

∣∣τr+s∣∣sh(r+s)
r

∣∣ρr,s,
where we set τr+s =

(
1 2 · · · r + s

r + s r + s− 1 · · · 1

)
∈Sr+s. For any σ ∈

Σ(r, s), one easily finds that τr+sσρr,s ∈ Σ(r, s), and hence

g]x(x1, . . . , xr+s)
∣∣τr+s∣∣sh(r+s)

r

∣∣ρr,s = g]x(x1, . . . , xr+s)
∣∣sh(r+s)

r ,

which completes the proof.

Remark 4.7. From Theorem 4.6, we learn that the q-series gn1,...,nr(q)

does not satisfy the shuffle product formula (I2). For example, by

Theorem 4.6 one has gx(x1)gx(x2) = gx(x2, x1 + x2) + gx(x1, x1 + x2).

Since gx(x) = g(x) and gx(x1, x2) = h(x2 − x1, x1) = g(x1, x2) + 1
2H

(
2
x2

)
,

one gets

g(x1)g(x2) = g(x2, x1 + x2) + g(x1, x1 + x2) +H
(

2
x1+x2

)
,

which proves that the q-series gn1,n2(q) (n1, n2 > 1) do not satisfy the shuffle

product formulas (27), because H
(

2
x1+x2

)
6= 0.

4.2 Proof of Theorem 1.2

In this subsection, we introduce the regularized multiple Eisenstein series

Gx
n1,...,nr(q) for integers n1, . . . , nr > 1 as a q-series. By relating Gx’s with

G’s (Theorem 4.10), we show that the multiple Eisenstein series Gx’s

satisfy the harmonic product (Theorem 4.11). Using these results, we finally

prove the double shuffle relations for regularized multiple Eisenstein series

(Theorem 1.2).

The regularized multiple Eisenstein seriesGx
n1,...,nr(q) is defined as follows.
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Definition 4.8. For integers n1, . . . , nr > 1 we define the q-series

Gx
n1,...,nr(q) by

Gx
n1,...,nr(q) =

(
zx ⊗ gx

)
◦∆(I(n1, . . . , nr)).

Example 4.9. For an integer n> 1, we have

Gx
n (q) = ζx(n) + gxn (q) = ζx(n) + gn(q).

For integers n1, n2 > 1, by (21), one has

Gx
n1,n2

(q) = ζx(n1, n2) +
∑

k1+k2=n1+n2
k1,k2>1

(
δn1,k1 + bk1n1,n2

)
ζx(k1)gxk2(q)

+ gxn1,n2
(q),

where bk1n1,n2
is defined in (10). We remark that the above double Eisenstein

series coincides with Kaneko’s double Eisenstein series developed in [11].

We begin by showing a connection with the multiple Eisenstein series

Gn1,...,nr(τ), which can be regarded as an analogue of (13).

Theorem 4.10. For integers n1, . . . , nr > 2, with q = e2π
√
−1τ we have

Gx
n1,...,nr(q) =Gn1,...,nr(τ).

Proof. This equation follows once we obtain the following identity: for

integers n1, . . . , nr > 2

gxn1,...,nr(q) = gn1,...,nr(q).

Combining (25) with (22), we have

gx(x1, . . . , xr) =

r∑
m=1

∑
(i1,i2,...,im)

1

i1!i2! · · · , im!
H
(

i1,i2,...,im
x′′i1

,x′′i2
,...,x′′im

)
,

where the second sum runs over all decompositions of the integer

r as a sum of m positive integers and x′′i1 = xr − xr−i1 , x′′i2 = xr−i1 −
xr−i1−i2 , . . . , x

′′
im

= xr−i1−···−im−1 . For any n1, . . . , nr > 2, since we have

coefficient of xn1−1
1 · · · xnr−1

r in H
(

i1,i2,...,im
x′′i1

,x′′i2
,...,x′′im

)
= 0

whenever ij > 1 for some j ∈ {1, 2, . . . , m}, we obtain

coefficient of xn1−1
1 · · · xnr−1

r in gx(x1, . . . , xr)

= coefficient of xn1−1
1 · · · xnr−1

r in H
(

1,...,1,1
xr−xr−1,...,x2−x1,x1

)
,
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which by Lemma 4.1 is equal to gn1,...,nr(q)/(−2π
√
−1)n1+···+nr . This

completes the proof.

Let us prove the harmonic product for Gx’s. The harmonic product ∗ on

H1 is defined inductively by

yn1w ∗ yn2w
′ = yn1(w ∗ yn2w

′) + yn2(yn1w ∗ w′) + yn1+n2(w ∗ w′),

and w ∗ 1 = 1 ∗ w = w for letters yn1 , yn2 ∈ H1 and words w, w′ in H1,

together with Q-bilinearity. For each word w ∈ H1, the dual element of w is

denoted by cw ∈ (H1)∨ = Hom(H1,Q) such that cw(v) = δw,v for any word

v ∈ H1. If w is the empty word ∅, cw kills H1
>0 and cw(1) = 1. Then, the

harmonic product of the q-series Gx
n1,...,nr(q) with n1, . . . , nr > 2 is stated

as follows:

Theorem 4.11. For any words w1, w2 in {y2, y3, y4, . . .}∗, one has

Gx
w1

(q)Gx
w2

(q) =
∑

w∈{y2,y3,...}∗
cw(w1 ∗ w2)Gx

w (q),

where we write Gx
w (q) =Gx

n1,...,nr(q) for each word w = yn1 · · · ynr .

Proof. Consider the following holomorphic function on the upper half-

plane: for integers L, M > 0

G(L,M)
n1,...,nr(τ) =

∑
0≺λ1≺···≺λr
λi∈ZLτ+ZM

1

λn1
1 · · · λ

nr
r
.

By definition, it follows that these functions satisfy the harmonic product:

for any words w1, w2 ∈ H1, one has

(28) G(L,M)
w1

(τ)G(L,M)
w2

(τ) =
∑

w∈{y1,y2,y3,...}∗
cw(w1 ∗ w2)G(L,M)

w (τ).

Since the space H2 := Q〈y2, y3, y4, . . .〉 is closed under the harmonic prod-

uct ∗, taking limL→∞ limM→∞ for both sides of (28), one has for words w1,

w2 ∈ H2

Gw1(τ)Gw2(τ) =
∑

w∈{y2,y3,y4,...}∗
cw(w1 ∗ w2)Gw(τ).

Then the result follows from Theorem 4.10.

We finally prove Theorem 1.2.

Proof of Theorem 1.2. The precise statement of Theorem 1.2 is as

follows.
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Theorem 4.12. For any w1, w2 ∈ H2, we obtain∑
w∈{y1,y2,y3,...}∗

cw(w1 x w2)Gx
w (q) =

∑
w∈{y2,y3,...}∗

cw(w1 ∗ w2)Gx
w (q),

which is called the restricted finite double shuffle relation in this paper.

It follows from Propositions 3.4, 3.7 and Theorem 4.6 that Gx’s satisfies

the shuffle product formula (I2). With this, Theorem 4.12 follows from

Theorem 4.11.

Example 4.13. The first example of Q-linear relations among Gx’s

obtained in Theorem 4.12 is

Gx
4 (q)− 4Gx

1,3(q) = 0,

which comes from y2 ∗ y2 − y2 x y2.

Remark 4.14. Let us discuss the dimension of the space of Gx’s. For

our convenience, we take the normalization

G̃x
n1,...,nr(q) =

1

(−2π
√
−1)n1+···+nr

Gx
n1,...,nr(q).

As usual, we call n1 + · · ·+ nr the weight and γn1,...,nr admissible if nr > 2.

Let EN be the Q-vector space spanned by all admissible G̃x’s of weight N .

Set E0 = Q. Koji Tasaka performed numerical experiments of the dimension

of the above vector spaces up to N = 7 by using Mathematica. The list of

the conjectural dimension is given as follows.

N 2 3 4 5 6 7

dimQ EN 1 2 3 6 10 18
] of admissible indices 1 2 22 23 24 25

Using Theorem 4.12, one can reduce the dimension of the space EN . The

following is the table of the number of linearly independent relations

provided by Theorem 4.12:

N 0 1 2 3 4 5 6 7 8 9 10

] of relations 0 0 0 0 1 1 3 5 11 19 37

This table together with the dimension table shows that the relations

obtained in Theorem 4.12 are not enough to capture all relations among

G̃x’s for N > 5.
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Remark 4.15. The above table of dimQ EN up to N = 7 seemingly

coincide with the table of d′k appeared in [2, Table 5] which counts the

dimension of the space of the generating series [n1, . . . , nr] of multiple

divisor sums. They suggest that the sequence {d′k}k>2 is given by d′k =

2d′k−2 + 2d′k−3 for k > 5 with the initial values d′2 = 1, d′3 = 2, d′4 = 3. The

q-series G̃x looks intimately related to the q-series [n1, . . . , nr], although

we have no idea what the explicit relationships are.

Remark 4.16. It is also worth mentioning that the Q-algebra E contains

the ring of quasimodular forms for SL2(Z) over Q:

Q[G̃x
2 , G̃

x
4 , G̃

x
6 ]⊂ E ,

and that the ring of quasimodular forms is stable under the derivative d =

qd/dq (see [13]). It might be remarkable to consider whether the Q-algebra

E is stable under the derivative, because by expressing dG̃x as Q-linear

combinations of G̃x’s and taking the constant term as an element in C[[q]]

one obtains Q-linear relations among multiple zeta values. For instance,

Kaneko [11] proved the identity

dG̃x
N (q) = 2N

(
G̃x
N+2(q)−

N∑
i=1

G̃x
i,N+2−i(q)

)
,

which provides the well-known formula ζ(N + 2) =
∑N

i=1 ζ(i, N + 2− i).
We hope to discuss these problems in a future publication.
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