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COMPLETING THE BRAUER TREES
FOR THE SPORADIC SIMPLE LYONS GROUP

JURGEN MULLER, MAX NEUNHOFFER, FRANK ROHR anp ROBERT WILSON

Abstract

In this paper, the Brauer trees are completed for the sporadic simple
Lyons group Ly in characteristics 37 and 67. The results are obtained
using tools from computational representation theory—in particular,
a new condensation technique—and with the assistance of the com-
puter algebra systenieatAxe andGAP.

1. Introduction
1.1. Background

In this paper we complete the Brauer trees for the sporadic simple Lyons group L
in characteristics 37 and 67. The results are stated in Seztitrey will also be made
accessible in the character table library of the computer algebra sys@mand are
available electronically fron]]. While the shape of the Brauer trees, as well as the labelling
of nodes up to algebraic conjugacy of irreducible ordinary characters, has already be
described in§, Section 6.19.], here we complete the trees by determining the labelling c
the nodes on their real stems and their planar embedding; proofs are given in Section
Together with the results in [8, Section 6.19.] for the other primes dividing the group orde
this completes all the Brauer trees for the group Ly.

Our main computational workhorse is fixed-point condensation, which was originall
invented for permutation modules and described.B],[but has also been applied to other
types of modules as well. To our knowledge, the permutation module that we have conden:
is the largest one for which this has been accomplished so far. The theoretical backgrot
to the idea of condensation is described in Secdidbetails of the particular condensation
technigue used, and of some other computational tricks, are given in Sedtonthe heavy
part of our computations, we have built upon and modified the implementation describe
in [12]. In all areas of our work, we have made substantial use of the computer algeb
systemsaMeatAxe [17] andGAP [6]. Due to our standard setting (see SectioR), if we
wish to write down the set of Brauer characters in the gase 67, we have to know the
67-modular reduction of/37 € R*. The latter depends on the Conway polynondig 1s,
which was computed at our request, and is obtainable fidh As some tricks and heavy
computation are again involved in findidt7 15 We indicate in Sectio®.2what would be
known without havingCe7 18to hand.

We note that a method similar to the one described here has also been used to solve sim
although admittedly much smaller-sized, problems for the sporadic simple Thompson gro
Th [4], for the sporadic simple Rudvalis group Ru and its double covgu P18], as well as
for the sporadic simple O’Nan group ON and its triple covedI8 [15]. The latter results
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Brauer trees folLy

Table 1: The Brauer tree for = 37.

completed all the Brauer character tables fdDI8 and 2Ru, in all the characteristics
dividing each group order respectively.

1.2. The standard setting

We assume that the reader is familiar with block theory and the decomposition theo
of finite groups, as well as with the Brauer—Dade theory of blocks of cyclic defect; see, f
example, [5, Sections IV and VII].

Throughout, we use the standard choicgpahodular systemsL, R, F) as described
in [10, Introduction]. HereL is an algebraic number fiel&® is a discrete valuation ring
in L, with maximal idealn <t R and residue class fielfl := R/m of characteristip. Let
~ ¢ R — F denote the natural epimorphism. Assume that := exp(2zi/(p" — 1)) €
R C L c Cforsomen € N. Then the minimum polynomial af, , € F over[F, is the
nth Conway polynomia€C, ,, € F,[X], where we again assume that the reader is familiar
with the compatibility properties of,, ,, whenn varies.

2. Results

In this section, we state the Brauer trees for Ly for the cases37 andp = 67. In both
cases, the principai-block has defect 1, and is the only block of positive defect. The nodes
ofthe Brauer tree are labelled by2, . . ., where for each case we indicate the corresponding
irreducible ordinary characters of Ly according to the numbering give8,ip.[174]. The
labelling of the nodes of the Brauer trees and their planar embedding depend on the definit
of the conjugacy classes of Ly in terms of the chosen pair of standard generators for Ly; <
Section4.3. For the planar embedding, we use the convention given in [8, Section 1.2.].

2.1. Thecase =37

Tablel||1]2 3|4|5 6|7 [8] 9 |10
BI[1]2 347 8|11]12|24 25|33

Tablel |11 12 13 14 1516 17|18]19
[B]]39 40 41 42 4347 48[49|52

The exceptional node 9 has multiplicity 2. The sets of algebraically conjugate ordinar
characters arg2, 3} and{5, 6}, consisting of pairs of complex conjugate characters, and
{11, ...,15}and{16,17}, consisting of real characters. The Brauer tree is given in Table
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Table 2: The Brauer tree fgr = 67; for y see SectioR.2.

1922 20

14 8

23

17 16 18 21—y

2 5
2.2. The casep = 67
Table2 |12 3|4 5|6 |78 910 11| 12
[3] Hl 2 3\5 6\11\20\21 22\24 25\26 27 28

Table2 || 13 14[15 16|17 18 19 20 21 22|23
[3] |29 30[31 32[39 40 41 42 43 4450

The exceptional node 12 has multiplicity 3. The sets of algebraically conjugate ordinal
characters arg2, 3} and{4, 5}, consisting of pairs of complex conjugate characters, and
{8,9},{10, 11},{13,14},{15,16}and{17, ...,21}, consisting of real characters. We remark
that there is a mistake i8] p. 271] concerning the relative position of the charadi@r9}
and{13,14} on the Brauer tree. The Brauer tree is given in Tahlerhere only the value
of y € {10, 11} depends on the Conway polynomé@d; 15 see Sectiorl. As

X2 —37= (X — 38)(X — 29) € Fg7[X],

we havey/37 = 38 € Fg7 or /37 = 29 € Fg7 anyway. The former case leadsyte= 10,
while the latter leads t9 = 11. Using the Conway polynomial

Ce7.18= 2+ 13X + 59X + 6X° 4+ 51X* + 29X° 4 28X°
+55Xx" + 33X + 18X° + 52x 10 4 63X 4+ x12 4 x18

computed in11], we find thaty/'37 = 38 € Fg7; hencey = 10, for our standard choice of
67-modular system.

3. Condensation
3.1. The condensation functor

Let 6 be a principal ideal domain or a field, and kebe af-algebra, which is a finitely
generated-free 6-module. Letmody-A be the category of finitely generated afdree
right A-modules, where folV, W € mody-A the homomorphism set is the set of all
a € Homy (V, W) such that im(a)< W is af-pure submodule.

Lete € A be an idempotent; that is, & ¢ = 2. Then the additive exact functor
?®04 Ae = Homy(eA, ?) from mody-A to mody-eAe is called thecondensation functor
with respect te; see [7, Section 6.2]. The imad& € mody-eAe of someV € mody-A
under this functor is called theondensednodule of V. Note that under this functor an
A-homomorphism defined ovi is simply mapped to its restriction e.
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3.2. Simple modules

Leto be afield, and le§ € mody-A be simple; then eithefe = {0} or Se € mody-eAe
is also simple, since for & v, v’ € Se we havev -eae = v’ for somea € A. The following
lemma shows that we can distinguish non-isomorphic simple modutasda-A by their
condensed modules, if the latter are different frfh Note that we do not assume that
Se # {0} holds for allS € mody-A.

Lemma. Letd be a field, and lefs, S’ € mody-A be simple, such thafe # {0} # S'e.
ThenS = S’ in mody-A if and only if Se = S’¢ in mody-eAe.

Proof. We need only to show the ‘if’ part. Assume th& = S’¢ in modg-eAe, and
choose a decomposition efas a sum of pairwise orthogonal primitive idempotentdin
As Homy (eA, S) = Se # {0}, there is a summandg say, such thatgA is a projective
indecomposable module with A /rad(esA) = S. Applying the condensation functor with
respect to the idempotesy € eAe, we obtainSegs = S’es in mody-esAes. Hence we have
{0} # S’es = Homy(esA, S’), and thusS” = S in modg-A. O

3.3. Reduction modulg

Let® := R, whereR is as in Sectiorl.2. LetA; := A®r L andAr := A ®g F.

If e € A C AL is an idempotent, thea := ¢ € Af is too. The exact additive functors
Homy (eA, ?)®r L and Homy, (€A, Qg L) frommodg-A tomod, -¢ A é are equivalent,
as well as the exact additive functors Hp@A, ?)®@r F and Homy . (eAr, ?®g F) from
modg-A to modg-eAre.

This means that, giveﬁ?’ € mod;.-A; with R-form V € modg-A, the p-modular
reductionV ¢ of the condensed module ®f can be identified with the condensed module
Ve of the p-modular reduction o¥ . In this sense we speak tife condensed module in
modg-eAre of a representation ofl ;.

3.4. Fixed-point condensation

We are going to apply a particular condensation functor, the so-dadttpoint conden-
sation. Keeping the notation from Sectidr8, letA = R[G] be the group algebra of a finite
groupG, and lete = ek = ¢ € F[G],whereé = é¢ := |K|™1Y . k € R[K] C R[G],
where in turnk is a subgroup of; whose ordefK | is not divisible by the characteristjc
of F.

Let2 be afinite set acted on lay, and letF[2] be the corresponding[G]-permutation
module. Thenthe condensed modal&2]e can be described asfollows. i€1;; 1 < i < r}
be the set ofk -orbits on<, and letQ;" := > weo; @ € F[Q] be the orbit sums. Then
{Qj; 1 <i < r}isanF-basis of F[Q]e, and forg € G the action ofege € e F[Gle on
F[Q]e is given as

QFcege= Y aij(g) 1217t Q. wherea;;(g) = {w € Qi; wg €
1<j<r
and where we considef; (¢) and|2;| as elements of . Hence, to find the action efe,
we have to find theK-orbits {€2;}, their lengths|2;|, and thes;;(g) € Z. Note that this

does not depend on the particular choicéofand that an analogous description holds for
F replaced byR or L, and fore replaced byé.
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We shall apply a new variant of fixed-point condensation of permutation modules, the s
calleddirect condensatiotechnique, for which the basic idea was conceived by R. Parkel
and R. Wilson. The technique was subsequently modified, extending its range of apg
cability, in [12]. Here, we have built upon and modified the latter implementation; set
Sectionst.4and5.2.

3.5. The dimension formula

Let V € modg-F[G], and letgy be its Brauer character, viewed as Arvalued
class function on the'-classes ofG. Thengy can be extended to a class functign
on the whole ofG as follows. Forg € G, let g,,g, € G denote itsp-part and its
p’-part, respectively, and lgty (¢) = ¢v(g,). As F[K] is a semisimple algebra, we have
dimg(Ve) = ((pv)k, 1lx)k = (@v, 1%)G, where(-, -} denotes the usual scalar product
for class functions oid;.

Let W € mod,-L[G], and letyw be its ordinary character. In view of the remarks in
Section3.3, we have dim(We) = dim,(Wé) = ((xw)k, 1)k = (xw, 1%). Writing
@y as aZ-linear combination of ordinary characters restricted tojhelasses of7, the
dimension ding (Ve) can be computed in terms of ordinary characters. As the blocks unde
consideration here are described by Brauer trees, these linear combinations can be rea
directly from the trees.

3.6. The trace formula

To solve the algebraic conjugacy problems, we apply the following idea.VLet
modg-F[G], and letpy be its Brauer character. i, andty, are the usuaF-valued
trace functions, we have

tvelege) = [K|7H- > " tv(gh) =K7Y G (gh).
keK keK
If Veis explicitly given, the tracey.(ege) can be evaluated explicitly as well. On the other
hand,zy.(ege) can be computed ipy is known, and if it is known to which conjugacy
classes ot the elements of the cosgK belong.

4. Proofs
4.1. A permutation representation

Let G = Ly for short. We are looking for a permutation representatiorGofsuch
that its permutation character has sufficiently many constituents belonging to the princip
p-blocks, for both the casgs = 37 andp = 67. Let 5:L3(5) = H < G be a maximal
subgroup of index 1113229656 (s&k p. 174]), let2 be the set of right cosets @f in
G, and letyq be the character df[$2]. Note that neithep = 37 norp = 67 divides the
group ordelfH|, and henc&37[2] andFg7[ 2] are projectivéF37[G]- andFg7[ G]-modules,
respectively.

Let V be the absolutely irreducible 111-dimensional representatiah @ferFs. This
was constructed in [14], and is accessible electronically from [21], as representing matric
forapairg = {g1, g2} of standard generators, in the sens&6i[In [21] we also find words
in § yielding a subgroup conjugate t@. These were obtained by a random search among
the subgroups generated by an involution and an element of clgse8 [3, p. 174]. We
find the submodule structure of the restrictigg of V to H, using the algorithms inlf3],
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Table 3: Characters, multiplicities and condensed dimensions.

X |m d X |m d X | m d X | m d
11 1 15| . 24 28| 1 56 41| 1 120
2 16| . 16 29| 2 88 42| 1 120
3 17| . 25 30| 2 88 43| 1 120
411 4 18| 1 32 31| 1 82 44| . 116
5 1 19| . 48 32| 1 82 45| . 110
6 1 20| 1 47 33| 2 81 46| 1 126
7 21| 1 57 34| 1 87 47| 1 133
8 22| 1 57 3| . 78 48| 1 133
9/ 1 1 23| 1 52 36| 2 109 49| . 140
10 5 24| 1 56 37| . 102 50| . 148
11| 2 14 25| 1 56 38| 1 98 51| 1 151
12| 1 20 26| 1 56 39| 1 120 52| 1 172
13 9 27| 1 56 40| 1 120 53| 1 196
14| 2 18

implemented in theveatAxe. In particular, it turns out thaVy has a simple socl§ of
dimension 10. A#{ < G is a maximal subgroup ar@ acts irreducibly or, we conclude
that H is the stabilizer inG of S. Thus the action of on the setS® of subspaces of is
equivalent to its action of2, and we may identify2 with S°.

4.2. A condensation subgroup

As we are going to condense the permutation modijie] of dimension~10°, we
need a condensation subgroup of order at leasf® to obtain a condensed module of
a dimension small enough that its structure can be analysed usingethaxe. Here, a
subgroup 249 = K < G, having order 362 880, springs to mind. In particulAr,is
contained in a maximal subgoup41 = L < G, for which we also find a generating
set as words irg in [21]. Such words are found, for example, by using the method de-
scribed in [L] for finding involution centralizers. We then find standard generatorg. for
which are preimages of standard generatorgi of The latter areA;1-conjugate to the
pair{(1,2,3), (3,4,5,6,7,8,9,10, 11)}in the natural permutation representatioraf.
From that, generatof#s, k2} for K are found as words if.

Using the ordinary character tables@f K andG, accessible irGAP, and its library
functions dealing with conjugacy class fusions and scalar products between characters,
fusions of the conjugacy classesifandK into those ofG are determined, as well as the
multiplicities m of the irreducible ordinary charactegsof G in xq. Taking into account
the remarks in Sectio8.5, the dimensiong of the condensed modules of the irreducible
ordinary representations @f, with respect to the condensation subgrddpcan also be
computed as scalar products. The results are given in Balbteparticular, the condensed
module F[Q2]e, wheree = ek, has dimension 3207, independent of the particular choice
of F.
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Table 4: Definition of the conjugacy classes of Ly.

Pv ow ox V, overFg W, overF3 X, overFs
1A 111 651 | 2480
24 -1 11| -16
34 —24 651 | 104 1(g) =1
3B 3 651 -4 1(g) =3
4A 3 -5 0
5A 111 26| -20 1(g) =1 1(g) =2
5B 111 1 5 1) =1 g =1
6A 8 11 8 1(g)=3 r((g — 1)?) = 426
68 -1 1| -4 1(g) =4 r((g — 1)?) =430
6C -1 11 2 1(g) =4 r((g — 1)) =429
7A -1 0 2
84 -3 -1 0 1(g) =2
8B 1 -1 0 1(g)=1
94 0 651 -1
104 -1 6 4 Hg) =4 1(g)=0
10B -1 1 -1 tHg) =4 g)=1
114 1 2| bpy 1(g)=1
11B 1 2 *k 1(g) =3
124 0 -5 0 1(g) =0
12B -3 -5 0 1(g) =2
144 1 4| -2
154 —24 26 4 (g =1 t@g) =2
15B 3 26 1 1(g) =3 1(g) =2
15C —24 1| -1 1(g)=1 1(g)=1
184 2 1] -1
20A 3 0 0
214 * 0| -1 (g =1
218 —bx 0| -1 1(g)=0
224 -1 0| —bn Hg) =4
228 -1 o 1(g) =2
24A 0 -1 0| t(e)=0,1(g% =0
24B 1+rg -1 0| t(e)=0,1(g% =2
24C * -1 0| te)=21(g%=2
25A 111 1 0
284 3 2 0
304 8 6| -2 1(g) =3
308 -1 6 1 t(g) =4
31A | e31%4&8&16 0 0|1(e)=11(g% =4
318 *2 0 0| 1(e)=41(g%=3
31 *4 0 0| 1(e) =31 =2
31D *8 0 0|te)=21(g>H=2
31E %16 0 0|t =21(%=1
33A -2 2 b11 (g =1
33B -2 2 ok 1(g)=3
374 0| 4+b37 1 t(g) =0 (g =1
37B 0 * 1 t(g)=0 t(g) =0
40A -3 | 44+ r10 0 t(g) =2 t(g) =2
40B -3 * 0 t(g) =2 t(g) =0
42A —3—b21 4 1 t(g) =2
42B * 4 1 1(g) =3
67A —1-cg7 | 3—ce7 1 (g =1
67B %2 *2 1 1(g) =3
67C #4 x4 1 1(g) =4
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Table 5: The class distribution ggK

class| # class| # class| # class| #

14 |0 10A | 95 21B | 8663 31D | 11721
2A |0 10B | 7092 22A | 16387 31E | 11659
34 |0 11A | 5406 22B | 16657 334 | 10935
3B |0 11B | 5496 24A | 15173 33B | 11115
4A 16 12A | 1205 24B | 15054 37A | 9927
5A |0 12B | 5067 24C | 15194 37B | 9775
5B | 89 14A | 2106 25A | 14522 40A | 9183
6A |4 154 | 172 28A | 13023 40B | 9008
6B | 172 15B | 3976 304 | 3975 42A | 8707
6C | 1105 15C | 4891 30B | 4088 42B | 8589
7A | 2172 184 | 20394 31A | 11561 67A | 5413
8A | 765 20A | 9035 31B | 11660 67B | 5269
8B | 3776 21A | 8767 31C | 11731 67C | 5429
94 | 6661

4.3. A class distribution

Later on, we shall apply the formula given in Secti8r6 to the elementgs :=
(g1g2)3g2 € G, which has order 67. We have to find the distribution of the elements
in the cosegsK into the conjugacy classes 6f.

The conjugacy classes of cyclic subgroupsGoare defined by group-theoretic data—
that is, by element orders, centralizer orders, and normalizer orders, as can be checke
[3, p. 174]. Words irg giving representatives for the conjugacy classes of cyclic subgroup
are accessible from [21]. For our purposes, we have to distinguish algebraically conjugs
classes. To do this, we use traces and ranks of certain eleméent&pbn V, as well as
traces and ranks on the absolutely irreducible 651-dimensional representatioer F3,
which was constructed ir®] and is accessible fron2]], and on one of the algebraically
conjugate 2480-dimensional absolutely irreducible representatipkiooverFs, which are
5-modular reductions of ordinary representations. The latter have been constructed for
purposes of this paper, using thleatAxe, as constituents of the exterior squaré/ofthey
are also accessible from [21]. To distinguikhand X, we define the conjugacy class£22
of G to be the class containing the particular element of order 22 givedilings a word
in g. Using this,X is the 5-modular reduction of the representation affording the ordinary
characteryo.

The details are given in Table wherer andr denote the trace and the rank, respec-
tively, and where we also give the values of the corresponding extended Brauer charact
(see Sectior3.5) using the notation of3]. We find the numbers of elements belonging to
the different conjugacy classes as shown in Téhléor details of the computations, see
Section5.1.

4.4, Applying condensation

We condense the elemengds, g2 and g3, whereg = {g1, g2} is as in Sectiort.1,
and wheregs = (g1g2)3¢2> € G is as in Sectiont.3; for details of the computations, see
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Table 6: Partial information fop = 37; see SectioA.5.

"

Table 7: Brauer characters and condensed dimensions+$087.

Q| m d ¢ | m d ¢ | m d
1|2 1 7] 2 3 13[4 29
2 8| 2 117 14| 2 27
3| . 9| 2 55 15| 2 13
41 1 10| 2 65 16| 3 7
51 . 11| 2 68 17| 3 7
6| 2 120 12| 3 52 18| 1 113

Section5.2. Note that by Sectio8.4 this essentially amounts to finding thg (g) € Z;
hence we do not have to specify the fi¢glcbeforehand.

4.5. The case = 37

The partial information on the Brauer tree known froBn p. 268] is shown in Tablé,
where{x, x'} = {2,3}, and{a,d’,d"”,a"”,a""} = {11, ...,15}, and{b, b’} = {16,17}.
Hence there are 480 possible cases left. We also give labels to the edges of the Brauer t
for future reference. The dimensiafisf the condensed modules of the irreducible modular
representations @ can be computed from this information; for those in the principal block
they are given in Tabl&, where the numbering is as given in the Brauer tree in Talée
also give the multiplicities: of the corresponding Brauer characters in the principal block
component of the permutation character. The dimensions of the condensed modules of
the representations not in the principal block, and the multiplicities of the correspondin
ordinary irreducible characters, have already been given in Bable

We now specifyF := F37. Using theMeatAxe, the condensed modulE[2]e, acted
on by the F-algebraF[&] generated by := {egie, egoe, egze}, turns out to have the
following constituents, where we denote the constituents by their dimension and a trailir
letter, and their multiplicities by exponents:

142, 16, 3d?, 74%, 7b°, 1342, 1842, 2742, 294°, 324, 474",
5243, 52b1, 5542, 574, 57b', 6547, 684, 87a', 884%, 88K, 984,

1094, 1134, 1174, 1202, 1264, 1514t, 164at, 1684, 1964
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Here the constituents 164and 168asplit overF;» andF3s, respectively, while all the
others are absolutely irreducible.

If ¢ is an irreducible Brauer character occurringy, which is afforded by the simple
F[G]-module S, then eitherS,e is equal to{0}, or it is a simplee F[Gle-module; see
Section3.1. But as we havé'[Q2]e given as anF[&]-module only, where”[&] might be
strictly smaller thare F[G]e, we can only try to determine the constituents §ife)| r(e)
and their multiplicities. This is done by comparing the dimensions and multiplicities of the
constituents of'[Q2]e found by theMeatAxe, using the data given in Tabl@sand3. These
considerations show that for &l,e # {0}, the restriction(Sye)| rre] is simple as well, and
that this indeed gives a bijection from the set of irreducible Brauer charactarsurring
in xq, such thatS,e # {0}, and the constituents found by tMeatAxe. Furthermore, this
bijection is uniquely determined, up to the fact that it méps, @17} to {7a, 7b}.

Recall thatF[R2] is a projective F[G]-module. By decomposingg, into projective
indecomposable characters and using the multiplicities given in Tablge conclude
that in a given decomposition df[2] into projective indecomposable summands, both
the projective covergig of p16 and P17 of @17 occur with multiplicity 1. Furthermore,
none of the other projective indecomposable summandgfgEsr ¢17 as a constituent.
The MeatAxe, together with the peakword technique described in [13], shows that there |
an F[&]-submoduld/; < (P1s@® P17)e of dimension 34, having a simple head and a sim-
ple socle isomorphic to 7a&and containing the constituent With multiplicity 1, and an
F[&]-submoduld/, < (P16 ® P17)e of dimension 134 having a simple head and a simple
socle isomorphic to 7and containing the constituent With multiplicity 1. As P1ge and
P17e have dimensions 34 and 134, respectively, we Have U, = (P1g ® P17)e. By the
Krull-Schmidt theorem, we conclude thii = (Pise)|rje) andUz = (P17¢)|rre)- Thus
the above bijection mapgie to 7a andgy7 to 7b.

We find the following traces,.(egse) € F of the action ofegse:

|1 2 345 67 89 10 11 12 13 14 15 16 17 18
fs,e |1 . . . . 10 1 3 5 9 14 19 13 20 36 25 29 6

This gives the left-hand side of the trace formula in Sec8difor the condensed modules
corresponding to the;. Using the class distribution found in Sectidt3, we compute
the right-hand side of the formula for the remaining 480 cases. It turns out that there &
precisely two cases that are consistent with the actual traces found Mgéinexe; these

are the Brauer tree printed in Sectidri, for which we have = 2, and the tree obtained
by reflecting the first case at its real stem, for which we have 3. Hence it remains to
determine the planar embedding of the Brauer tree.

4.6. The planar embedding

We still let F := F37. As both the pairg; » andgs 4 condense to the zero module, the
condensation subgroug is not suitable for us to use to determine the planar embedding
of the Brauer tree. Instead, we use another condensation subgréEp.(Ag x As).2
of order 86 400, which is also contained in the maximal subgrodp2= L < G, and
we repeat the steps described in Sectib2s4.3and4.4. The condensed modulg2]e,
wheree = e, has dimension 13 257. Note that (due to this large dimension) it would no
have been feasible to analyg¢Q]e, instead ofF[Q2]e, as completely as was necessary to
find the labelling of the nodes of the Brauer tree in Sectidn

In particular, we find thatS, e, Sy,,¢ and S, ¢ have dimensions 16, 20 and 477,
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Table 8: Partial information fop = 67, see SectioA.7.

/

5—x 2+x

respectively, and thaf;=z¢ and Syze both have dimension 1, whefg andxg denote the
37-modular reductions of the ordinary characterand xs; see Sectiol.3. Furthermore,
egaze acts by multiplication with 21e F and 26 € F on Syze and Syge, respectively.

In a given decomposition af[2] into projective indecomposable summangs; occurs
with multiplicity 1, and none of the other projective indecomposable summandgzhas
or xg as a constituent. Hence the constituesitse and Syze of F[Q]e occur with multi-
plicity 1, and are constituents of tle&" [ G]e-submoduleP17¢ < F[2]e. By the submod-
ule structure of projective indecomposable modules in blocks of cyclic defect, there is
unique minimal submodul®& < Pj7e having bothS;ze and Syge as constituents. Fur-
thermore,U has dimension 499, and is uniserial with the ascending composition serie
S‘ﬁ17é' S‘ﬂSE’ Sf/’lSE’ Sf/’4é'

We considerF[Q2]e as a module for theF—aIgebraF[é] being generated by? =
{egie, egze}, and we letN := Kkerpiqjs(egse — 21¢). The MeatAxe finds thatN has di-
mension 1, that th&[&]-moduleN := N - F[€] < F[$2]é has dimension 499, and that
it is uniserial with the ascending composition serieg, 2y, 477a, 1b, whereegze acts
by multiplication with 26 € F and 21 € F on la and 14 respectively. Furthermore,
the MeatAxe finds that kef,; 5 (¢g3é — 21¢) = (0}, and henceigse — 212 € F[€]
is a peakword orF'[Q2]e for the constituent 1hsee [13]. From that we conclude thisit
is contained inU, and henceV = U is anéF[G]é-submodule ofPi7¢. Thus we have
(S50 pig) = 1b = (S4,)| gy and hencer = 2.

4.7. The case = 67

The partial information on the Brauer tree known froBn jp. 271] is shown in Tabl8,
where
{x, x"} = {2,3);

{b,b'} = (8,9};
{y,y"} =1{10,11};
{c,c'} ={13,14};
{d,d'} = {15,16};
la,a’,a",a",a"}y ={17,...,21}.
Hence there are 3840 possible cases left. We find the Brauer tree by an@ljSifrgwhere

we now specify thaf” = Fg7, using similar techniques to those described in Sectiohs
and4.6; again, we omit the details here.
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Table 9: Modified orbit algorithm.

T .=[1];
for gin T do
for k in KX do
h:=g- k
if h notin T then
Append i to T;
i:=1
whilei <t do
W =h ki
if A’ notin T then
Append h' to T

h:=hn;

i:=1
else

=i+ 1

5. Comments on the computations

In this section we give some details of how the computations were done. We conce
trate on the calculations for the condensation subg®upee Sectiong.3and4.4. The
condensation subgroup (see Sectiod.6) was treated similarly.

5.1. Finding the class distribution

As described in Sectiof.3, we have to determine how the elements of the casit
distribute into the conjugacy classes@f To do this, we have to compute representing
matrices for theK | = 362 880 elements in the cosgtk on the module¥’, W andX, and
then to compute some traces or ranks. However, to kEgmany(2480x 2480-matrices
overFs in memory would require-7.5 x 10 bytes; hence we want to obtain a reasonable
number of matrices, which have to be stored simultaneously.

Let X = {k1, ..., k/} be a fixed generating set fé& . In a precomputation, we use an
orbit algorithm to enumerate the elementsagfstarting with 1€ K. This yields a Schreier
tree forK with respect toX, whose shape depends on the particular strategy employed i
the orbit algorithm. Given a Schreier tree, we define a valuatmmits vertices as follows. If
the vertexg is aleaf, we leb(g) = 1. Otherwise, ifg1, . . ., g; are the immediate successors
of g inthe Schreier tree, we le{g) = max{v(g;); 1 < i < s} if this maximum is assumed
exactly once, and(g) = 1+ max{v(g;); 1 < i < s} if it is assumed more than once. In
the recursive run through the Schreier tree, used to find the class distribution, we are n
able at each vertex to work through the most expensive subtree last. Hence, for each ma
representation being considered, we have to store no more thamatrices at the same
time, in addition to the representing matrices §6r Our aim is thus to find a Schreier tree
such that (1) is reasonably small.

To find a suitable Schreier tree, we enumerate a regalarbit in V, as its elements
are in bijection with the elements & . The algorithm that we use is a modification of
the PubCrawl algorithm presented irflp, Section 5]; see Tabl Note thatT is a list that
collects the orbit during the algorithm. New vectors are append@&dadhin the loop that
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runs throughr". Of course, the loop must also run through these new vectors. The idea is
use a standard breadth-first orbit algorithm as an outer loop to run through the whole ort
but each time we find a new element of the orbit (that is, a new vertex of the Schreier tre
before going on with the standard algorithm we try to attach a ‘thread’ (that is, a length
path without branching points) to the corresponding vertex in the Schreier tree.

We choose the generating s&t as follows. We fix a 2-Sylow subgroup of K as a
helper subgroup (hen¢& | = 27), and we letk be the union of the generating $&t, k»}
of K (see Sectior.2) and a set of generators Gf Thus we end up with a Schreier tree
such thaw (1) = 3.

As |U| is coprime to the characteristics Bf W andX, we choose bases exhibiting the
semisimplicity ofV|;, W|; andX|;. As the constituents of these modules have dimension
at most 8, this considerably reduces the amount of time needed for a matrix multiplicatic
with one of the generators 6f. Furthermore, using theeatAxe and the algorithms ini[3],

X |k turns out to be a direct sum of 14 indecomposable modules, the largest of which h
dimension 560. We therefore adapt the basiX psuch that it also exhibits a direct sum
decomposition of | g .

Building the Schreier tree, running through the elementgs&f, and computing the
representing matrices, traces and ranks is easily done using the new fast finite field arithm
of GAP, which is based on the ideas of the arithmetic ofNfeatAxe. Using a Pentium 111
800 processor, this neede®0 hours of CPU time.

5.2. Applying condensation

As described in Sectiof.4, we want to compute the action of the eleméagse, egoe,
egze} onthe condensed modulg 2]e, where the permutation modutg 2] is given by the
action of{g1, g2} on the sef2 = S¢ of subspaces of of dimension 10; see Sectighl.

As Q is not yet known, it has to be enumerated first, and we subsequently have to compt
the integersy;; (¢)—see3.4—for allw € Q andg € {g1, g2, g3}. But to store a subspace
of V of dimension 10 we need 370 bytes, and thus to store the wholeSrbitlength

[G : H] we would need-4 x 10! bytes. Hence we can only afford to steré /400, say,

of the elements of2, which would fit into~10° bytes. We use a modification of the ideas
expounded in [12].

We choose a helper subgrotp< K < G, such that its elements can be enumerated,
and objects representing their action@mcan be kept in memory. The basic idea is now to
modify the standard breadth-first orbit algorithm rsuch thaf2 is enumerated piecewise,
namelyK -orbit by K -orbit, where these are in turn enumeraltedrbit by U -orbit, keeping
track of how theU-orbits fall into K -orbits. Hence, fow € 2, we are reduced to finding
out whether we have already encountered its asBitand, if this is the case, finding which
it is of the orbits that have already been encountered.

To do this, we choose a helpgrset®, such that there isa homomorphisgm |y, — ©
of U-sets. Furthermore, we assume that the elemer@saz#n be enumerated completely.
Let {®;; 1 < i < s} be theU-orbits on®. For each 1< i < s, we choose aninimal
elementy; € ©; (for example, by using an injective function éninto a totally ordered
set, which is quickly evaluated on the element®dfAn elementy € Qis calledg-minimal
if g(w) is minimal. It is exactly theg-minimal elements that are stored in a table during the
enumeration of the whole &2; to recover elements quickly, we of course use a hashing
technique. If we are able to find a homomorphigrauch that most of thé®;} as above
are regulaiy-orbits, then~1/|U| of the elements of2 will be ¢g-minimal. We shall thus
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be content in this case with a subgrauipf order|U| ~400.

Furthermore, lek : ® — £ (U), wheref (U) denotes the power set 6f, be defined
as follows. Fory € ©;, we letk () = {u € U; ¥ - u = 9;}, which is therefore a left
coset of Stab(¢9;) in U. Since we assume that the elementé/odnd those of9 can be
enumerated, we are able to compute all the géf9 explicitly. If we want to check, for
somew € 2, whether the orbitwV has been encountered before, we try to lookuup:,
for an arbitraryu € «(g(w)), in the table. If it is there, we have encountetg’d before; if
it is not, we store all of the elements - u; u € k(q(w))} in the table.

Having fixed the subgrou@/, we try to find a suitabld/-set ®. We look for U-
modulesX; andX 5, each of dimension 11, such that there are epimorphisismabdules
gi : Vu — X;, and ketqy) N ker(gz) < V is of codimension 22. Le®; be the set of all
subspaces ok; of codimension 1, and le®’, be the set of all proper subspacesof
of codimension at least 2. AQ consists of subspaces &f of dimension 10, there is a
homomorphism of/-setsg : Q@ — ® := ®1 U O3 U O, defined byg(w) = g1(w) if
q1(w) € ®1, andg(w) = g2(w) otherwise.

A simple calculation shows the reason for this choice XA®ias dimension 11 ovéis,
there arg5™ —1)/(5— 1) ~1.2x 10’ and(5™ — 1) (511 — 5)/((5* — 1) (5> — 5)) ~5 x 10*2
subspaces of; of codimension 1 and 2, respectively, and even more of higher codimensiot
Thus it is possible to enumerate only the subspace§ aff codimension 1, and hence the
above-mentioned preprocessing is done onlyd@tJ ©». By going over to the dual space
X¥ = Homp,(X;, Fs5), we need 4 bytes to store one of these subspac#s, afhich still
requires~9.8 x 10’ bytes for the whole 0f1 U ©,. This means that all the subspaces
of V mapped by into ®; U ©, are dealt with as explained above, but those mapped intc
®), simply have to be stored, and so for these we save no memory at all. The memc
requirements are estimated as follows.

There are[[>_o(5™! — 5')/(51° — 5') subspaces of of dimension 10, but of these,
only []5_q(5Ht — 5100+ /(510 _ 5i) intersect trivially with ker(g). Hence~ 1/20 of
these subspaces are not mapped @toby ¢1. If we assume2 to consist of a uni-
formly distributed random sample of subspaces/obf dimension 10, this amounts to
~1/20-[G : H] ~5.5 x 10’ subspaces. To store this many subspaces, at the cost of 37
bytes each, we would need2 x 10'° bytes. This shows the need for a second map
Then only~1/400 of the elements & are expected to be mapped dpynto @, which
requires~2.7 x 10° elements o~ 10° bytes, which still means that we need as much
memory for these elements @fas for itsg-minimal elements. We remark that the memory
requirements in the actual computations did indeed fit well into this picture.

Despite these serious constraints, we were lucky to find a suitable maximal subgro
32244 = U < Ag = K/Z(K) of order 216. It is uniquely defined up to conjugacy in
Ag; see [3, p. 37]. We leEZ(K) x U = U < K be the preimage df with respect to the
natural epimorphisnk — Ag; hencelU| = 432. Again, we chose a basis fdrexhibiting
the semisimplicity ofV|y. As the constituents oV |;; have dimension at most 16, this
considerably reduces the amount of time needed for a matrix multiplication with one c
the elements ol/. Using theMeatAxe, together with the algorithms in.B], we found
epimorphic imagex(; and X, of Vi, whereX; =1~ @ 2@ 8 andX2 = 3@ 8. Here
Z(K) acts non-trivially on the constituents land 87, and trivially on the others. Hendé
acts faithfully on bothX; and X2, andZ(K) acts non-trivially on subspaces &f andX»
of codimension 1. The average orbit lengthlobn subspaces of codimension 1 turned out
to be~405 for X1, and~415 for X .
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With these preparations, we accordingly adjusted the implementation descrided, in [
which allows for massive parallelization. We are grateful to the University of St. Andrew:
for allowing us to use their PC cluster to run these computations. Using 50 Pentium Il 45
processors, the computations needd@® hours of elapsed time, and hene@50 hours of
CPU time.
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