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Abstract
There are various matrices to represent parallel mechanisms. It is essential to design a kind of approach to not
only denote the parallel structures but also disclose the joint directions. In this paper, a novel methodology called
the kinematic joint matrix (KJM) is proposed. It possesses the mapping relations with parallel manipulators with
three kinds of kinematic joints. The size of such matrix is smaller when compared with that of topology matrix. A
series of two to six degrees-of-freedom parallel architectures is denoted by the KJM. A convenient approach using
a special block diagram is introduced to distinguish various kinds of kinematic joint matrices. In addition, detailed
comparisons between KJM and topology matrix are investigated. Three regulations are proposed for the latter to be
applicable to parallel mechanisms.

1. Introduction
The conventional parallel mechanism is composed of at least two kinematic limbs between the fixed
platform and the moving plate. The generalized parallel manipulator utilizes a special linkage mech-
anism instead of a rigid linkage for the mobile platform, or is equipped with extra subchains between
kinematic limbs [1–3]. Generally, the parallel mechanism has smaller reachable workspace compared
with its counterpart (the serial manipulator/robot). However, since there are multiple supporting chains
and actuations are attached to the fixed platform, the parallel robot can achieve high speed and accelera-
tion, high stiffness and high accuracy [4]. These characteristics gain its applications in parallel kinematic
machine [5], picking-and-placing robot arm [6, 7], flight simulator [8], rehabilitation robot [9], etc.

Employing matrix to present and identify the linkage mechanism has attracted a lot of research. The
first widely used matrix is topology matrix, which was proposed by Yan [10] to represent the topological
structure of linkage mechanism. This matrix was constituted of linkages, joint types and connection
points. It was also a practical approach to represent the mechanisms with variable topologies [11]. Yan
and Kuo [12] designed a directionality topology matrices to describe linkage mechanisms. The joint
types, connection points and joint sequence incident for any two rods were included in this method. To
represent the joint types and sequences with a unified method, they further developed the hexadecimal
topology matrix to be conveniently utilized in coding. In a similar manner, the authors in ref. [13]
introduced the three-dimensional adjacency matrix in which a 16-bit coding string could include the
displacement subsets data and relative joints relationships.

The adjacency matrix is another popular research. Slaboch and Voglewede [14] designed the adja-
cency matrix to denote the topology structures of planar linkage mechanisms. Only two elements 1 and 0
are employed in this matrix to indicate the connection status. This adjacent matrix was also utilized in
ref. [15] to identify two distinct configurations of a polygonal linkage mechanism. Moreover, Li and
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Dai [16] developed the augmented adjacency matrix that contained the joint axis relations. Pucheta and
Cardona [17] introduced the type adjacency matrix, where the rigid rod and flexible rod were indicated
separately. Different elements 0–4 were used for various joint types.

There are also some other kinds of matrices, e.g. the authors in ref. [18] utilized two classes of matri-
ces for linkage mechanisms with multiple loops. The first class was the circuit matrix that containing
the joints information based on the loop directions. The other was the sequence matrix where the joint
sequences were provided in each closed loop.

It is still a challenging topic to put forward a kind of matrix with small size to indicate the parallel
manipulator. This paper proposes the kinematic joint matrix (KJM) to map with the parallel mechanism.
This approach is further developed based on the matrix in ref. [19]. The rest of this paper is organized as
follows: Section 2 introduces the KJM and provides samples for two to six degrees-of-freedom (DOFs)
mechanisms. The detailed characteristics of the KJM are described in Section 3, followed by Section 4
that studies the methodology to distinguish different kinematic joint matrices. The comprehensive com-
parisons between this matrix and the widely used topology matrix are conducted in Section 5. The
conclusions are provided in Section 6.

2. Design approach
In this section, the KJM that can represent linkage mechanism is introduced in detail. The basic module
of the KJM can be represented as

⎡
⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎥⎦ (1)

where mij (i, j = 1,2,3) in the ith row and jth column element of this square matrix denotes the kinematic
joint type within the parallel mechanism.

This matrix can be divided into three categories. The diagonal elements mii of Eq. (1) can display
one kind of kinematic joint. Three elements above or below the main diagonal can indicate additional
two kinds of kinematic pairs, respectively. In such a way, this matrix has the ability to imply linkage
mechanisms under some conditions. The parallel mechanism with three kinds of joints can be expressed
by the KJM, as demonstrated below

1 2 2 1 2 2 1 2 2

3 1 2 3 1 2 3 1 2

3 3 1 3 3 1 3 3 1

...

j j j j j j j j j
j j j j j j j j j
j j j j j j j j j

(2)

where j1, j2 and j3 indicate three sorts of kinematic joints, respectively. The vertical dash line is employed
to distinguish adjacent square matrices.

In the KJM, the written sequence is from left to right. In each group of kinematic pair, the corre-
sponding joint position will be filled once this position in the left square matrix is already filled, to
achieve a compact format.

The widely used prismatic (P) joint, revolute (R) joint and parallelogram (Pa) joint are taken as exam-
ples. The global coordinate system attached to the fixed platform is utilized as a reference. These joints
are further constrained in this case. Each prismatic joint axis can be parallel to X, Y or Z direction,
denoted as PX , PY and PZ , respectively. The rotational joint axis can parallel to X, Y or Z direction sepa-
rately, represented, respectively, as RX , RY and RZ . Every Pa joint can be placed in planes that are parallel
to XOY , XOZ or YOZ plane, and, respectively, shown as PXY , PXZ and PYZ . Thereafter, each category of
kinematic joint is further divided into three cases, which reveals that each component position is unique.
According to definition of Eq. (1), PX , PY , PZ , RX , RY , RZ , PXY , PXZ , PYZ can be placed in the positions of
m11, m22, m33, m32, m31, m21, m12, m13 and m23, respectively. Each kinematic joint has its own position in
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Figure 1. 2-DOF parallel mechanism.

matrix, which helps to distinguish two kinematic joint matrices. The KJM under this circumstance can
be formulated as ⎡

⎢⎣
PX PXY PXZ

RZ PY PYZ

RY RX PZ

⎤
⎥⎦ (3)

In this kind of parallel architectures, each kinematic chain has the identical joint type and number.
Take the consideration of the coupling movement of the parallelogram pair, only one Pa joint is per-
mitted in one kinematic limb. The analysis is further limited to the fully parallel mechanism, where
the number of chains is same as the DOF of the whole manipulator. In addition, the number of joints
of each chain is equal to the DOF of the parallel mechanism, and only the joint connected to the fixed
platform is equipped with an actuator. For a m (2 ≤ m ≤ 6) DOFs parallel mechanism that qualifies the
abovementioned requirements, the maximum size of the corresponding matrix is 3-by-3m.

Some feasible parallel structure examples denoted by the proposed matrices are introduced accord-
ingly. The original matrix for a 2-DOF parallel mechanism is given as

P P P PX XY X XY

(4)

Since Eq. (4) has many null elements and no revolute joint, it can be further simplified as a 2-by-4
matrix after deleting the third-row and third-column of each 3-by-3 matrix module. The simplification
format is shown below,

P P P PX XY X XY (5)

Both Eqs. (4) and (5) can represent the 2-PPa parallel mechanism, as illustrated in Fig. 1. This sym-
metrical mechanism belongs to planar translational parallel architecture. The active prismatic joints of
two branches are in the same direction, and the parallelogram joints of both branches move in the same
plane.

The matrix for a 3-DOF parallel structure is constructed as
P P P P

P P P

P P

X XY XZ X

Y YZ Y

Z Z

(6)
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Figure 2. 3-DOF parallel mechanism.

Figure 3. 4-DOF parallel mechanism.

Eq. (6) can describe a spatial 3-PPaP parallel manipulator with three identical chains, as depicted in
Fig. 2. In every chain, two prismatic joints are perpendicular to each other, and the active sliding joint
is in the plane containing of the Pa kinematic pair.

The matrix for a 4-DOF parallel mechanism is seen in

P P P P P P P P

P P P P

R R R R

X XZ X XZ X XZ X XZ

YYYY

XXXX

(7)

Eq. (7) can define a 4-PPaPR parallel manipulator as demonstrated in Fig. 3. This mechanism has
four chains, which can be divided into two sets with same joints axes configurations, limb one and limb
two, limb three and limb four. The two prismatic joints of each chain are perpendicular to each other. In
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Figure 4. 5-DOF parallel mechanism.

the limb one or limb two, the parallelogram joint plane is perpendicular to the axis of the passive sliding
joint, while in the limb three or limb four, the parallelogram module plane is perpendicular to the axis
of the active prismatic joint. All these revolute joints axes are in the same direction.

The matrix for a 5-DOF parallel structure is generated as

P P P P P P P P P

P P P P P

R R P R R R R R R R R

X XZ X XZ X XZ X XZ X

YYYZYY

Y X Z Y X Y X Y X Y X

(8)

One possible parallel mechanism corresponding to the Eq. (8) is seen in Fig. 4. It is a 5-PPaPRR
parallel manipulator. In each kinematic chain, the axes of two sliding joints are perpendicular and the
axes of two revolute joints are orthogonal. In each branch, the driving prismatic joint axis moves in
the plane containing of the parallelogram unit. Except the kinematic limb five, all the other limbs are
identical.

The matrix for a kind of 6-DOF parallel mechanism is listed below

P P P P P P P P

R P P R P P R P R P R P R

R R P R R P R R P R R R R R R

X XZ X XZ X XZ X XZ

Z Y YZ Z Y YZ Z Y Z Y Z Y Z

Y X Z Y X Z Y X Z Y X Y X Y X

(9)

Eq. (9) may indicate a 6-PPaPRRR parallel manipulator, as illustrated in Fig. 5. Each limb contains of
two orthogonal sliding joints, three orthogonal revolute joints and one parallelogram module. The active
sliding direction of each kinematic chains is different. The axes of the driving joints in limb one/four,
limb two/five/six and limb three are parallel to X, Z and Y directions, respectively.

To better illustrate the function of the KJM, several parallel structures with the corresponding
kinematic joint matrices are provided in Appendix.
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Figure 5. 6-DOF parallel mechanism.

3. Features of kinematic joint matrix
The size of the KJM is small. For the m degree-of-freedom fully parallel mechanism cases mentioned in
Section 2, the largest original matrix size is 3-by-3m, although the number of all linkages is m2+m + 2.
The 2T mechanism matrix has a simplified version due to no rotational joints. The size is 2-by-4.

The KJM can reveal the joints categories, directions and numbers utilized in the proposed parallel
architecture. Since many parallel mechanisms are composed of several identical limbs and there are no
connection rods among different limbs, the possible parallel structure(s) can be obtained according to
the corresponding KJM. The relation from the KJM to the parallel mechanisms is one-to-many mapping,
i.e. the KJM shown in the following form

P P P

P
X XY XY

Y (10)

Eq. (10) can denote both PXPXY /PY PXY structure (seen in Fig. 6(a)) and PXY PXY /PXPY structure (seen
in Fig. 6(b)).

Furthermore, the first branch of Fig. 6(a) can be PXPXY or PXY PX . This scenario also demonstrates that
the specific joint sequence in each kinematic chain is not obtained.

The abovementioned case can be avoided if the parallel mechanism chains are properly predefined,
e.g. only one Pa joint is permitted in one kinematic chain and the prismatic joint is connected to
the fixed platform. However, the one-to-many mapping relationship might happen when the matrix is
complicated. The matrix form shown in the following expression:

P P P P P P

P P P

R P R P R P R

X XY XZ X XY X

Y YZ Y

X Z X Z X Z X

(11)

Eq. (11) can represent a 2PXPXY PZRX /PY PYZPXRX /PZPXZPY RX mechanism (shown in Fig. 7(a)) or
PXPXY PZRX /PY PXY PZRX /PZPYZPXRX /PXPXZPY RX mechanism (shown in Fig. 7(b)).

https://doi.org/10.1017/S0263574722001187 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001187


Robotica 945

Figure 6. Schematic diagrams of 2-DOF parallel mechanisms. (a) PXPXY/PYPXY type and (b)
PXYPXY/PXPY type.

Figure 7. Prototypes of 4-DOF parallel structures. (a) The first type and (b) the second type.

4. Discrimination of kinematic joint matrix
There are two reasons indicating the KJM is insufficient to directly distinguish any two parallel struc-
tures. The first factor is the one-to-many mapping relations with parallel mechanisms. The second factor
is that various kinematic joint matrices can be obtained if the parallel manipulator is placed in differ-
ent coordinate systems (e.g. the PX joint in one coordinate system might be PY or PZ joint in another
reference system).

However, it is meaningful to propose an approach for discriminating different kinds of matrices, since
any two parallel manipulators expressed by different categories of kinematic joint matrices are distinct. It
also means the second factor can be resolved. It is evident that two kinematic joint matrices are different
if the total numbers for prismatic joints or revolute joints or Pa joints are not the same. This question is
further constrained to distinguish the matrices with identical numbers for prismatic joints, rotary joints
and Pa joints, respectively. For a given KJM representing parallel mechanisms, the total numbers of PX ,
PY , PZ , RX , RY , RZ , PXY , PXZ and PYZ joints are expressed separately as N11, N22, N33, N32, N31, N21, N12,
N13 and N23. The i, j, k are integers ranging from 1 to 3. The following numbers are predefined

https://doi.org/10.1017/S0263574722001187 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001187


946 Qi Zou et al.

Figure 8. Block patterns for kinematic joint matrix. (a) Block pattern and (b) block pattern of a sample.
The red block is filled with the sum for one kind of joint. The double arrow line implies two blocks are
pertinent.

⎧⎪⎨
⎪⎩

a1 = min(i, j) a2 = max(i, j)

a3 = min(i, k) a4 = max(i, k)

a5 = min(j, k) a6 = max(j, k)

(12)

A unique block pattern is introduced, as shown in Fig. 8(a). In this block pattern, the first column is
for Nii. The second column is filled by N32, N31 and N21. The last column is for N12, N13 and N23. An
example is illustrated in Fig. 8(b). Take the N11, N32, N12 and N13 as examples, the physical relevance
(inner feature) among them is the common subscript X in PX , RX , PXY and PXZ . The external feature is
based on the subscripts of these filled elements Nij in this pattern. If the first column is selected, each
element of the second column can be decided by the elements of the first column and the other rows. For
example, the subscripts a5 and a6 of Na6a5 are, respectively, the minimal and maximum values between
j and k (subscripts of Njj , Nkk). Each element of the third column can be concluded by the directly
connected two columns (the two elements of the first column), i.e. Na1a2 is directly connected by Na6a5

and Na4a3. Then the subscripts a1 and a2 are solved, respectively, as the minimal and maximum elements
of the subscripts of Nii, Njj .

Before filling elements into the block pattern, comparing Nii, Njj , Nkk (i, j, k = 1,2,3.) and the
following expression can be obtained

Nii ≥ Njj ≥ Nkk (13)

The following scenarios can be found

(I) Nii > Njj > Nkk

(II) Nii > Njj = Nkk & Na1a2 > Na3a4

(III) Nii > Njj = Nkk & Na1a2 = Na3a4

(IV) Nii > Njj = Nkk & Na1a2 < Na3a4 (14)

(V) Nii = Njj > Nkk & Na3a4 > Na5a6

(VI) Nii = Njj > Nkk & Na3a4 = Na5a6

(VII) Nii = Njj > Nkk & Na3a4 < Na5a6

In cases (I), (II), (V), the first column of the block pattern is Nii, Njj and Nkk . The final pattern is the
same as in Fig. 8(a). For case (III), the first column of the pattern can be Nii, Njj and Nkk or Nii, Nkk and
Njj . The whole patterns are the same. In case (IV), the first column of the pattern is listed as Nii, Nkk and
Njj . In case (VI), the first column of the block pattern can be Nii, Njj and Nkk or Njj , Nii and Nkk . The
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contents are identical in any selection. In case (VII), the first column of the block pattern is listed as Njj ,
Nii and Nkk .

The other situations happen when N11 = N22 = N33. Before classifying the remaining cases,
comparing Na1a2, Na3a4 and Na5a6 yields

Nb1b2 ≥ Nb3b4 ≥ Nb5b6 (15)

where Nb1b2 and Nb5b6 are, respectively, the largest and smallest among Na1a2, Na3a4 and Na5a6. Nb3b4 is
the rest of them.

The remaining scenarios are concluded as

(VIII) Nii = Njj = Nkk & Nb1b2 > Nb3b4 > Nb5b6

(IX) Nii = Njj = Nkk & Nb1b2 > Nb3b4 = Nb5b6

(X) Nii = Njj = Nkk & Nb1b2 = Nb3b4 > Nb5b6 (16)

(XI) Nii = Njj = Nkk & Nb1b2 = Nb3b4 = Nb5b6

In case (VIII), the first column of the block pattern is Nii, Njj and Nkk . In case (IX), the first column
of the pattern can be either Nii, Njj and Nkk or Njj , Nii and Nkk . In case (X), the first column of the pattern
can be either Nii, Njj and Nkk or Nii, Nkk and Njj . In case (XI), the first column of the pattern can be listed
in any sequence to finally derive a unique pattern.

All the feasible situations for the block pattern are summarized in Eqs. (14) and (16). As long as
two kinematic joint matrices can create identical block patterns, these two matrices belong to the same
kind of matrix and can express the same parallel mechanism(s). One sample is provided below. Two
kinematic joint matrices are listed as

P P P P P P P P

R P P R P P R P P R P P R R

R R P R R P R R R R R R R R

XXXXZXXZXX

Z Y YZ Z Y YZ Z Y YZ Z Y YZ Z Z

Y X Z Y X Z Y X Y X Y X Y X

(17)

P P P P P P P P

R P P R P P R P R P R P R P

R R P R R P R R R R R R R R

X XZ X XZ X XZ X XZ

YZYZ YZY YZ Z

ZXY ZX X

Y

X

Y

X

Y

XY Y

Z

Y

Z

Y

Z

Y

(18)
The parameters for these two aforementioned matrices are computed separately as

N11 = 6, N12 = 0, N13 = 2, N21 = 6, N22 = 4, N23 = 4, N31 = 6, N32 = 6, N33 = 2 (19)

N11 = 4, N12 = 0, N13 = 4, N21 = 6, N22 = 6, N23 = 2, N31 = 6, N32 = 6, N33 = 2 (20)

Following the above method, these two scenarios can be classified into the case (I). Their final block
patterns can both be written as seen in Fig. 9, which indicates they belong to the same kind of KJM. One
feasible 6-DOF parallel structure is illustrated in Fig. 10. According to Fig. 10, Eq. (17) is based on the
X1-Y1-Z1 coordinate system, while Eq. (18) is generated in accordance with the X2-Y2-Z2 coordinate
system. These two coordinate systems can be transformed by rotation operations.

Therefore, this block pattern is helpful for the enumerations of every possible KJM with predefined
conditions.
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Figure 9. The block pattern for two similar matrices.

Figure 10. Prototype of a 6-DOF parallel structure.

5. Comparisons between KJM and topology matrix
5.1. Illustration of examples
The characteristics of the KJM can be further revealed when compared with the well-known topology
matrix proposed by Yan and Kuo [29, 30]. The topology matrix MT of a mechanism is a N -by-N square
matrix (N denotes the total number of linkages). The ith diagonal elements show the types of the ith
linkage. If the ith rod and jth rod (i<j) are connected by a kinematic joint, the ith row and jth column
element will be filled by the type of the kinematic pair, and jth row and ith column element will be
provided the letter that illustrates this adjacent point. Zero will be assigned to the remaining elements.

Generally, different kinds of topology matrices denote the corresponding mechanisms own different
topological structures, which is convenient to distinguish linkage mechanisms. The KJM could not dis-
criminate straightly two distinct linkage mechanisms, as mentioned in Section 4. To further compare
the characteristics of the KJM and topology matrix on parallel structures, two similar mechanisms are
provided in this section. Figs. 11(a) and (b) illustrate the architectures with detailed numbers of the
first and second parallel structures. The linkages 1, 2, 8 and 11 are separately denoted as KF , KP1, KP2,
and KP3. The ith (i = 3−7) linkage is represented as KL(i-2). The jth (j = 9−11) linkage is represented
as KL(j-3). The nth (n = 12−14) linkage is represented as KL(n-4). Aij , Bij and Cij stand for the kinematic
pairs between adjacent rods. A16, B16 and C17 are the virtual midpoints of A12A14, B12B14 and C12C14,

respectively.
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Figure 11. 3D models of two 2-DOF parallel manipulators. (a) First structure and (b) second structure.

The KJM of Fig. 11(a) is provided as

P P P P P P

R R R
X XY X XY X XY

Z Z Z (21)

The corresponding KJM of the mechanism in Fig. 11(b) is expressed as

P P P P P

P
X XY X XY XY

Z Y Z ZR R R (22)

The topology matrices of the Figs. 11(a) and (b) mechanisms are the same and are generated as

MT1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KF JP 0 0 0 0 0 JP 0 0 JP 0 0 0

A15 KP1 JR 0 0 0 0 0 0 0 0 JR 0 0

0 A11 KL1 JR 0 0 0 0 0 0 0 0 0 0

0 0 A12 KL2 JR 0 0 0 0 0 0 JR 0 0

0 0 0 A17 KL3 JR 0 0 JR 0 0 0 0 0

0 0 0 0 C17 KL4 JR 0 0 0 0 0 JR 0

0 0 0 0 0 C12 KL5 JR 0 0 0 0 0 0

C15 0 0 0 0 0 C11 KP2 0 0 0 0 JR 0

0 0 0 0 B17 0 0 0 KL6 JR 0 0 0 JR

0 0 0 0 0 0 0 0 B12 KL7 JR 0 0 0

B15 0 0 0 0 0 0 0 0 B11 KP3 0 0 JR

0 A13 0 A14 0 0 0 0 0 0 0 KL8 0 0

0 0 0 0 0 C14 0 C13 0 0 0 0 KL9 0

0 0 0 0 0 0 0 0 B14 0 B13 0 0 KL10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)
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Figure 12. The diagrams for two block patterns. (a) The first pattern and (b) the second pattern.

where KF , KPi and KLi denote the fixed platform, ith sliding linkage and ith kinematic link, respectively.
JP and JR mean the prismatic joint and rotational joint separately.

The distinction methodology in Section 4 is employed. The corresponding parameters for Eqs. (21)
and (22) are separately described as

N11 = N12 = N21 = 3, N13 = N22 = N23 = N31 = N32 = N33 = 0 (24)

N11 = 2, N12 = N21 = 3, N22 = 1, N13 = N23 = N31 = N32 = N33 = 0 (25)

In accordance with Eqs. (14), (24) and (25), Eq. (21) belongs to case (II) while Eq. (22) is classified
into case (I). The relevant block patterns are depicted in Fig. 12. The patterns in Figs. 12(a) and (b) are not
the same. Thereby, Eqs. (21) and (22) belong to distinct kinematic joint matrices, and the mechanisms
in Figs. 11(a) and (b) are different.

However, the topology matrix shown in Eq. (23) is capable to demonstrate the connection status
between any two linkages, but it cannot distinguish these two parallel mechanisms. There are too many
zero elements since the connection feature of parallel mechanisms is simple. The joint directions that
are important in parallel structures cannot be revealed by the topology matrix. The matrix is more com-
plicated, and the matrix size is larger. For this class of parallel mechanisms, the size of the topology
matrix size is N-by-N (N= m2+ m + 2). The topology matrix is insufficient to denote some parallel
structures with special linkage dimensions or joint configurations (such as the axes of revolute joints
are parallel, or perpendicular or intersecting lines), i.e. parallelogram joint, Sarrus mechanism, Bennett
mechanism, Myard mechanism, Goldberg mechanism, Bricard mechanism, spherical 5R mechanism,
Agile eye wrist-spherical 3-RRR parallel robot.

5.2. Improvements for topology matrix
Inspired by the KJM, some supplementary regulations are suggested for the topology matrix to be
employed for parallel mechanisms.

First rule: The commonly used mechanisms (e.g. (R-R)2, (U-U)2, (U-U)3, (S-S)2, (S-S)3) in parallel
structures can be treated as one module to generate the corresponding topology matrix. Fig. 11(a) is
taken as an example. The parallelogram unit of each kinematic chain is regarded as one generalized
linkage (linkages 2, 4, 5 in Fig. 13). The modified parallel mechanism is shown in Fig. 13, and the
corresponding topology matrix is expressed as

MT2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

KF JP 0 JP JP

A15 KP1 JR 0 0

0 A17 KL1 JR JR

C15 0 C17 KP2 0

B15 0 B17 0 KP3

⎤
⎥⎥⎥⎥⎥⎥⎦

(26)
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Figure 13. The parallel mechanism with generalized linkages.

Compared to Fig. 11(a) and Eq. (23), this mechanism is simplified, and the matrix size is greatly
reduced. Furthermore, since the parallelogram module is predefined, the feature of the whole mechanism
is evidently expressed and simple to be understood.

Second rule: The kinematic joint with special configurations may be represented in topology matrix with
detailed information. Various types of kinematic prismatic and rotational joints with parallel, orthogo-
nal or intersecting axes [31–35] have been defined and classified to name different parallel architectures,
but these concepts have not yet been employed into the topology matrix to demonstrate more detailed
construction information. Take the rotational joint as an example, the classification concept in the cited
references [31–35] will be utilized with a more specific definition, and the axes directions will be indi-
cated in some cases. Four kinds of revolute joints will be defined as JRX , JRY , JRZ and JRO1, to denote
the axes are parallel to X axis, Y axis, Z axis or intersect at the same point O1. Two similar parallel
mechanisms equipped with only revolute joints are illustrated in Figs. 14(a) and (b). The corresponding
topology matrices for Figs. 14(a) and (b) are separately expressed as

MT3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KF JRZ 0 0 0 JRZ 0 JRZ

A21 KL1 JRZ 0 0 0 0 0

0 A22 KL2 JRZ 0 0 0 0

0 0 A23 KL3 JRZ 0 JRZ 0

0 0 0 C23 KL4 JRZ 0 0

C21 0 0 0 C22 KL5 0 0

0 0 0 B23 0 0 KL6 JRZ

B21 0 0 0 0 0 B22 KL7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)
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Figure 14. 3-RRR parallel structures. (a) Planar parallel mechanism and (b) spherical parallel
mechanism.

MT4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KF JRO1 0 0 0 JRO1 0 JRO1

A31 KL1 JRO1 0 0 0 0 0

0 A32 KL2 JRO1 0 0 0 0

0 0 A33 KL3 JRO1 0 JRO1 0

0 0 0 C33 KL4 JRO1 0 0

C31 0 0 0 C32 KL5 0 0

0 0 0 B33 0 0 KL6 JRO1

B31 0 0 0 0 0 B32 KL7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

With the above definitions of revolute joints, the planar and spherical 3-RRR parallel architectures
can be indicated and distinguished by different topology matrices. Their particular features will be
demonstrated too.

Third rule: A unified naming sequence is essential for topology matrix to state and distinguish parallel
mechanisms. A general naming convention is proposed as below.

Step one: Define the fixed platform as the first rod.
Step two: Identify the shortest loop (minimum number of linkages) containing the mobile platform

and the fixed platform. The starting linkage connected to the fixed platform will be chosen
from the shortest chain. Then naming the following linkages until the last rod of this closed
loop. The first rule will be employed to simplify the procedure.

Step three: In the remaining kinematic limbs containing of the moving platform, beginning with the
shortest kinematic branch and naming from linkage attached to the moving platform.

Step four: Repeat step three until at least one linkage of each kinematic chain has been counted.
Step five: Naming the remaining subchains to deal with the coupling chains in parallel mechanisms.

Starting from the chain that has the smallest number in its corresponding loop. The initial
linkage of this chain will be the rod that is connected to the linkage with the previously
defined smallest number.

The priority for these steps is to begin with any chain if there are multiple identical chains. If there
are many shortest loops/chains, starting from the loop/chain with the least DOF. One planar parallel
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Figure 15. Schematic diagram of a planar mechanism.

structure using this naming sequence is employed as an example, as seen in Fig. 15. Its corresponding
topology matrix is listed as

MT5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KF JRZ 0 0 0 0 JRZ 0 0

A41 KL1 JRZ 0 0 0 0 0 0

0 A41 KL2 JRZ 0 0 0 JRZ 0

0 0 A43 KL3 JRZ 0 0 0 0

0 0 0 B44 KL4 JRZ 0 0 0

0 0 0 0 B43 KL5 JRZ 0 0

B41 0 0 0 0 B42 KL6 0 JRZ

0 0 A43 0 0 0 0 KL7 JRZ

0 0 0 0 0 0 B42 C41 KL8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

In analyzing the topology matrices of parallel mechanisms, it is okay to use other kinds of naming
conventions as long as the same sequence is utilized to maintain consistency. These concepts can also be
modified and expanded to be employed in other motion transmission systems (e.g. linkage mechanism
and gear transmission system).

6. Conclusions
The KJM is proposed in this research. This novel matrix can indicate parallel manipulators with three
kinds of kinematic pairs. The corresponding kinematic joint matrices and the virtual prototypes for
a group of two to six DOF parallel manipulators are demonstrated. The KJM has small size and can
indicate the joint directions. It is inadequate to represent a concrete parallel mechanism due to various
coordinate systems and the one-to-many mapping relations with the parallel structures. Therefore, a
special block pattern is proposed to distinguish different kinds of kinematic joint matrices. This kind
of block pattern is also beneficial to identify the same kind of matrices, eliminate repeated kinematic
joint matrices and has the potential to automatically generate all reliable kinematic joint matrices via
program under given conditions.

A detailed comparison between the KJM and the topological matrix is implemented. Considering
the features of the KJM, three improvements are recommended for the topological matrix to be suitable
for parallel manipulators, for instance using generalized sub-mechanism modules, denoting kinematic
pairs with directions and proposing a unified naming convention.

The future work will concentrate on developing the KJM into a systematic approach, to represent two
to six DOFs parallel manipulators without constraining the sum of joints categories.
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Appendix A

Some parallel mechanisms are expressed via kinematic joint matrices.

R R R R RZ Z Z Z Z (A1)

Figure A1. Planar five-bar linkage [20].
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R R R R R

R R R R

Z Z Z Z Z

Z Z Z Z

(A2)

Eq. (A2) is in the two-layer matrix format. In this format, the written sequence for each 3-by-3 matrix
is from left to right and from top to bottom.

Figure A2. Planar 3-RRR mechanism [21].

P P

R P R R R R R
X X

Z Y Z Z Z Z Z (A3)
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Figure A3. Planar 3-PRR mechanism [21].

R R R R R R

R R R R R R

Z Z Z Z Z Z

Z Z Z Z Z Z

(A4)

Figure A4. DualV robot [22].
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P

R P R R

R R P R R R R

X

Z Y Z Z

Y X Z Y X Y X

(A5)

Figure A5. Tripteron robot [23].

P P

P P

R R R R R R R R R R R R

X X

Y Y

Y X Y X Y X Y X Y X Y X

(A6)

Figure A6. 4-RRRP parallel mechanism [24].
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P P

R P R
X XY

Z Y Z (A7)

Figure A7. Planar translational parallel robot [25].

P P

R R R R R

P P

R R R R

X

Z Z Z Z

Z Z Z Z

Z

X

X X (A8)

Figure A8. Planar redundant parallel manipualtor [26].
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P P

R P R P

P P
YZZ

X

YZZ

Z Z

X

(A9)

Figure A9. 2-PPPaR parallel mechanism [27].

P P P P P P P P

R P R P
X XZ X XZ X XZ X XZ

Z YZ Z YZ (A10)

Figure A10. 2-(P-Pa)2PaR parallel robot [27].
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P P

R P R R

R R R R R R

ZXZX

ZZZYZ

Y X Y X Y X

(A11)

Figure A11. 3-PaRRR parallel manipulator [28].
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