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Abstract

We consider a distributed optimization problem over a multi-agent network, in which
the sum of several local convex objective functions is minimized subject to global
convex inequality constraints. We first transform the constrained optimization problem
to an unconstrained one, using the exact penalty function method. Our transformed
problem has a smaller number of variables and a simpler structure than the existing
distributed primal–dual subgradient methods for constrained distributed optimization
problems. Using the special structure of this problem, we then propose a distributed
proximal-gradient algorithm over a time-changing connectivity network, and establish
a convergence rate depending on the number of iterations, the network topology and
the number of agents. Although the transformed problem is nonsmooth by nature,
our method can still achieve a convergence rate, O(1/k), after k iterations, which
is faster than the rate, O(1/

√
k), of existing distributed subgradient-based methods.

Simulation experiments on a distributed state estimation problem illustrate the excellent
performance of our proposed method.
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1. Introduction

In the modern age, our world has become more and more connected through
infrastructures such as wireless networks and the Internet. A common feature of these
systems is that they are composed of many subsystems that are interconnected through
certain protocols. This class of system is referred to as a network system, and their
subsystems are referred to as agents. Many real problems arising from these networks
are too large for classical decision making to be helpful. There may be a multitude of
agents who are decision makers, yet none of these possess all relevant knowledge. In
addition, there may be limitations on the amount of communications allowed between
distinct agents, so that it is impractical to exchange all available information and
convert the problem to a centralized one (see for example the technical report by
Tsitsiklis [24]). In fact, even if the communications are perfect between different
agents, the centralized approach is still difficult to apply, because no agent may have
the capability of tackling the overall problem by itself. Motivated by these reasons,
there is a trend to study distributed optimization in recent years (see for example the
book and articles [5, 11, 28] and references therein).

Optimizing the sum of several local objective functions is ubiquitous in many
application fields. For example, problems arise in resource allocation and network
utility maximization [23], state estimation and optimal control for systems [9, 12, 15,
26]. In the literature, several useful techniques are proposed to solve these related
problems in a distributed manner. In terms of update strategies, they are classified as
the incremental-based approach and the consensus-based approach. In the incremental
approach, a cyclic path is defined over the nodes, and data are processed in a cyclic
manner through the network until optimization is achieved [16]. The drawback of this
method is that it has a slow asymptotic convergence rate. To improve its convergence,
the proximal point method is incorporated in the incremental method [4]. On the
other hand, in the consensus-based approach, the nodes achieve the minimizer globally
through sharing the information locally (that is, the node only shares information
with its neighbours). Nedic and Ozdaglar [17] showed that every node generates
and maintains estimates of the optimal solution of the global optimization problem
through the subgradient-based methods. These estimates were communicated to other
nodes synchronously and over a time-varying connectivity structure. They established
the explicit error bounds between the objective function values of the estimates at
each node and the optimal value of the global optimization problem. However, only
unconstrained optimization was discussed in that paper. Duchi et al. [8] proposed a
distributed optimization based on dual subgradient averaging, and established that the
number of iterations required by their algorithm scales inversely in the spectral gap of
the network.

In practical applications, however, a wide variety of problems ranging from
urban traffic networks [7] to interconnected chemical processes [25], subject to
certain physical constraints, are modelled as distributed optimization problems with
equality and/or inequality constraints. There are a few methods available for
solving constrained distributed optimization problems. Nedic et al. [19] developed
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a distributed projection subgradient method under closed convex constraint sets, and
established the convergence with a diminishing step-size rule. But there was no
estimate on the convergence rate. In the paper by Zhu and Martinez [31], a distributed
primal–dual subgradient method was proposed to solve a distributed optimization
problem with equality and inequality constraints by using Lagrangian duality. A
drawback of this method was the increase in the number of variables due to the
Lagrange multiplier.

In this paper, we propose a new distributed algorithm for the distributed
optimization problem with inequality constraints. Instead of Lagrangian duality, we
add the inequality constraints to the objective function through the exact penalty
method (see for example the articles [2, 13, 14, 30]). Using Slater’s condition [3], we
establish the equivalence between the original problem and the transformed problem.
Since the exact penalty term is nondifferentiable, a proximal-gradient method is
introduced together with a multi-step consensus scheme to accelerate the convergence
rate. In this case, we establish that the convergence rate of our proposed method
is of order O(1/k), in terms of the iteration counter k, which is faster than that of
the standard distributed subgradient method of order O(1/

√
k). Furthermore, our

established convergence rate is not only dependent on the number of iterations, but
it is also dependent on the network topology and number of agents. Compared to
the existing primal–dual subgradient methods used by Zhu and Martinez [31], our
proposed method can achieve a faster convergence rate with a simpler communication
scheme in the sense that no Lagrange multiplier is involved.

The rest of this paper is organized as follows. In Section 2, we introduce some
concepts and results on which our subsequent analysis relies. In Section 3, we first
formulate the problem to be solved, and transform it to an equivalent unconstrained
problem by using the exact penalty method. Based on the particular structure of the
penalizing problem, we then propose a novel distributed proximal-gradient algorithm
with multi-consensus to solve it. In Section 4, we prove the convergence of the
algorithm. An explicit convergence rate is given in terms of the number of iterations,
the network size and its topology. To demonstrate the performance of the proposed
algorithm, numerical simulations on a distributed state estimation problem are reported
in Section 5. Finally, some concluding remarks are given in Section 6.

2. Preliminaries

2.1. Notation and definitions The standard inner product of two vectors x, y ∈ Rd

is denoted by 〈x, y〉 = xT y. For x ∈ Rd, its Euclidean norm is ||x|| =
√
〈x, x〉, and the l∞

norm is ||x||∞ = maxl |x(l)|, where x(l) is its lth entry. Let Rd
+ represent the nonnegative

orthant on Rd.
For a matrix W, we denote its entry at the ith row and jth column as Wi j. Sometimes,

we also write [Wi j] to represent a matrix W. A matrix W is said to be stochastic if the
entries in each row sum up to 1, and it is doubly stochastic if W and its transpose WT

are both stochastic.
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We write a(k) = O(b(k)) if and only if there exist a positive real number M and a
real number k0 > 0 such that |a(k)| ≤ M|b(k)| for all k ≥ k0. A vector S h(x) ∈ Rd is
called a subgradient of a convex function h : Rd → R ∪ {+∞} at x ∈ dom(h) if, for all
y ∈ dom(h),

h(y) ≥ h(x) + 〈S h(x), y − x〉,

where dom(h) = {x ∈ Rd | h(x) <∞}. For any x ∈ dom(h), the set of all subgradients of
h at x is denoted by ∂h(x).

2.2. Inexact proximal-gradient method Now we discuss some properties of the
proximal operator, and then summarize results of convergence rate for an inexact
centralized proximal-gradient method.

For a closed proper convex function h : Rd → R ∪ {+∞} and a scalar α > 0, we
define the proximal operator with respect to h as

Proxαh {x} = arg min
z∈Rd

{
h(z) +

α

2
||z − x||2

}
.

The proximal operator has the following useful properties.

Proposition 2.1 [1]. Let h : Rd → R ∪ {+∞} be a closed proper convex function. For a
scalar α > 0 and x ∈ Rd, let y = Proxαh {x}; we have:

(i) α(x − y) ∈ ∂h(y), and y can be represented as y = x − z/α, z ∈ ∂h(y);
(ii) ||Proxαh {u} − Proxαh {v}|| ≤ ||u − v|| for all u, v ∈ Rd.

Our distributed proximal-gradient algorithm is to cast it as an inexact centralized
proximal-gradient method, in which the errors are controlled by multi-step consensus
at each iteration. This enables us to utilize recent results [21] on the convergence rate
of an inexact centralized proximal-gradient method to establish the convergence rate of
our distributed algorithm. An advantage of this method is that its convergence rate is of
order O(1/k) for nonsmooth optimization problems, while classical subgradient-based
methods only achieve a rate of order O(1/

√
k) after k iterations (see for example the

articles [1, 20]).

Proposition 2.2 [21]. Let g : Rd → R be a convex function which has a Lipschitz
continuous gradient with Lipschitz constant L, and let h : Rd → R ∪ {+∞} be a lower
semi-continuous proper convex function. Suppose that the function f = g + h attains
its minimum at a point x∗ ∈ Rd. Given two sequences {e(k)}∞k=1 and {ε(k)}∞k=1, where
e(k) ∈ Rd and ε(k) ∈ R, consider the inexact proximal-gradient method, which iterates
as follows:

z(k) = x(k−1) −
1
L

[∇g(x(k−1)) + e(k)],

x(k) ∈ ProxL
h,ε(k){z(k)},

where

ProxL
h,ε{z} =

{
x ∈ Rd | h(x) +

L
2
||x − z||2 ≤ min

y∈Rd

(
h(y) +

L
2
||y − z||2

)
+ ε

}
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is the set of all ε-optimal solutions for the proximal operator. Then, for all k ≥ 1,

f (x(k)) − f (x∗) ≤
L
2

(||x(0) − x∗|| + A(k) + B(k))2 1
k
, (2.1)

where A(k) = (2/L)
∑k

i=1(||e(i)|| +
√

2Lε(i)), B(k) = {(2/L)
∑k

i=1 ε
(i)}1/2.

Remark 2.3. Proposition 2.2 implies that the inexact centralized proximal-gradient
method achieves the convergence rate of O(1/k) when the sequences {A(k)} and {B(k)}

are both bounded. Schmidt et al. [21] have shown that the estimate (2.1) also holds for
the average of x(i), that is,

f
(1

k

k∑
i=1

x(i)
)
− f (x∗) ≤

L
2

(||x(0) − x∗|| + A(k) + B(k))2 1
k
.

3. Problem and algorithm

In this section, we formulate the problem to be solved, and describe the proposed
algorithm.

3.1. Problem Consider a multi-agent optimization problem over a network. Let
G = (V, E) be an undirected graph over the vertex set V = {1, . . . , N} with edge set
E ⊂ V × V . Each vertex of the graph is referred to as an agent. The network objective
is to minimize the sum of several objective functions which are distributed among
the multiple agents in the network, subject to global inequality constraints. More
specifically, it can be expressed as

min
x∈Rd

F(x) =

N∑
i=1

fi(x)

such that gs(x) ≤ 0, s = 1, 2, . . . , p, (3.1)

where x ∈ Rd is a global decision vector; fi : Rd → R is the objective function of
agent i, only known by agent i; gs : Rd → R, s = 1, 2, . . . , p are the global inequality
constraints known by all the agents in the network.

We adopt the following assumptions on functions fi(x) and gs(x). These
assumptions are standard in the analysis of first-order methods (see the articles
[1, 20, 21]).

Assumption 3.1.

(a) For every i, fi : Rd → R is convex, continuously differentiable and its gradient
∇ fi is L-Lipschitz with respect to the norm || · ||. And, there exists a scalar M f > 0
such that for every i ∈ V and for every x ∈ Rd, ||∇ fi(x)|| ≤ M f .

(b) For every s (s = 1, 2, . . . , p), gs : Rd → R is convex, and there exists a scalar
Mg > 0 such that for every x ∈ Rd, ||Sgs (x)|| ≤ Mg for all Sgs (x) ∈ ∂gs(x).
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(c) Slater’s condition holds, that is, there exists a vector x̄ ∈ Rd such that gs(x̄) < 0,
s = 1, 2, . . . , p.

(d) The problem (3.1) attains its minimum at a point x∗ ∈ Rd, and its optimal value
F(x∗) is finite.

3.2. Exact penalty function approach To handle the inequality constraints, we
impose the inequality constraints on the objective function through the exact penalty
method. Then the problem (3.1) becomes

min
x∈Rd

Fc(x) =

N∑
i=1

fi(x) + cP(x), (3.2)

where c is a penalty parameter and

P(x) = max{0, g1(x), g2(x), . . . , gp(x)}.

Obviously, P(x) is convex but not differentiable on Rd, and ||S P(x)|| ≤ Mg for all
S P(x) ∈ ∂P(x).

Under certain conditions [2], the solutions of the penalized problem (3.2) are
also the solutions of the constrained problem (3.1). For a detailed explanation of
problem (3.1), we introduce the Lagrangian function

L(x, λ) =

N∑
i=1

fi(x) + λT g(x) =

N∑
i=1

Li(x, λ), (3.3)

where λ = (λ1, λ2, . . . , λp)T ∈ R
p
+ is the vector of dual variables, g(x) = (g1(x),

g2(x), . . . , gp(x))T and Li(x, λ) = fi(x) + λT g(x)/N. The dual problem of problem (3.1)
is

max
λ∈R

p
+

d(λ) with d(λ) = inf
x∈Rd
L(x, λ). (3.4)

It can be verified that there is no duality gap between the primal problem (3.1)
and its dual (3.4) if Slater’s condition is satisfied (see the article by Bertsekas
[3, Proposition 5.3.1]). Furthermore, the set of dual optimal solutions is nonempty
and bounded. Thus, according to [2, Proposition 1], there exists a penalty parameter
that satisfies c >

∑p
s=1 λs such that the solutions of the penalized problem (3.2) coincide

with the solutions of the constrained problem (3.1).
Letting gc(x) = cP(x)/N, problem (3.2) is equivalent to

min
x∈Rd

Fc(x) =

N∑
i=1

[ fi(x) + gc(x)]. (3.5)

Now the transformed unconstrained optimization problem (3.5) is ready for distributed
computations among the agents over a network, since the function fi(x) + gc(x) can be
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interpreted as a private objective function associated with agent i. Furthermore, the
local objectives fi(x) + gc(x) have distinct differentiable components fi(x), but they
share a common nondifferentiable component gc(x), which has a favourable structure
suitable for effective computation of the proximal operator.

3.3. How to choose penalty parameter Based on the above analysis, the choice
of penalty parameter is very important. If the penalty parameter is greater than
a threshold, the equivalence of solutions of problem (3.1) and its exact penalized
problem (3.2) holds. If we choose the parameter c >

∑p
s=1 λs, we have to solve the

dual problem (3.4). The dual problem itself is impractical, since it is hard to solve.
Here we offer an alternative way to find the upper bound on the norm of dual optimal
solutions for the dual problem (3.4), since the set of dual optimal solutions is nonempty
and bounded. The following proposition shows that Slater’s condition guarantees the
boundedness of the dual optimal set. We denote the dual optimal value of the dual
problem (3.4) by d∗ and its dual optimal set by D∗ = {λ ∈ R

p
+ | d(λ) ≥ d∗}.

Proposition 3.2 [18]. Let Slater’s condition of problem (3.1) hold. Then, for any dual
optimal solution λ∗ ∈ D∗,

||λ∗|| ≤
F(x̄) − d∗

δ
,

where δ = min1≤s≤p{−gs(x̄)} and x̄ is a Slater vector.

In practice, the dual optimal value d∗ is not readily available. However, using
Proposition 3.2, we can still provide an upper bound on the norm of any dual optimal
solution. In particular, due to d∗ ≥ d(λ̄), for all λ̄ ∈ Rp

+ and || · ||∞ ≤ || · ||,

||λ∗||∞ ≤
F(x̄) − d(λ̄)

δ

from Proposition 3.2. Such upper bounds play a key role in finding the penalty
parameter. Since

||λ∗||∞ ≤
F(x̄) − d(λ̄)

δ
<

1
δ

[ N∑
i=1

fi(x̄) − inf
x∈Rd

{ N∑
i=1

Li(x, λ̄)
}]

+ τ

≤
1
δ

N∑
i=1

[
fi(x̄) − inf

x∈Rd
{Li(x, λ̄)}

]
+ τ,

where τ is a small positive constant, we set

Λ =
1
δ

N∑
i=1

[
fi(x̄) − inf

x∈Rd
{Li(x, λ̄)}

]
+ τ. (3.6)
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Note that the vectors x̄ ∈ Rd, λ̄ ∈ R
p
+ and τ > 0 are predetermined, and δ =

min1≤s≤p{−gs(x̄)} can be calculated easily. For given x̄ and λ̄, (3.6) is an unconstrained
convex problem with the sum of several local convex functions. It is interesting that
Λ can be calculated effectively in a distributed way by adopting the average consensus
algorithm [27]. In terms of the results from Sections 3.2 and 3.3, now we can choose
the penalty parameter c ≥ Λ.

3.4. Distributed proximal-gradient algorithm Next we focus on solving the
penalized problem (3.5). We first present the existing information exchange model
[17, 24], and then propose our distributed proximal-gradient algorithm under this
model.

Assumption 3.3. For a time-varying weight matrix W(t) = [wi j(t)], t = 1, 2, . . . on the
communication graph G = (V, E), we assume the following properties.

(a) (Weights rule) There exists a scalar η ∈ (0, 1) such that, for all i ∈ V, wii(t) ≥ η
and, for j , i, either wi j(t) ≥ η, in which case j is said to be a neighbour of i,
and j receives the estimate of i, at time t; or wi j(t) = 0, in which case j is not a
neighbour of i at time t.

(b) (Double stochasticity) For every t, W(t) is doubly stochastic.
(c) (Connectivity and bounded intercommunication intervals) The graph (V, E∞)

is connected and there exists an integer B ≥ 1 such that ( j, i) ∈ Et ∪ Et+1

∪ · · · ∪ Et+B−1 for all ( j, i) ∈ E∞ and t ≥ 0, where Et = {( j, i)|wi j(t) > 0}, E∞ =

{( j, i)|( j, i) ∈ Et for infinitely many t}.

Assumption 3.3(a) ensures that each agent gives significant weight to its current
estimate and the estimates received from its neighbours. Assumption 3.3(b) guarantees
that each agent’s estimate imposes an equal influence on the estimates of others in the
network. Assumption 3.3(c) shows that the overall communication network is capable
of exchanging information between any pair of agents in finite time. This implies that
Et ∪ Et+1 ∪ · · · ∪ Et+B0−1 = E∞ with B0 = (N − 1)B.

Next we present a result on the convergence property of the matrix Φ(t, s), which is
important in establishing the convergence of our algorithm in Section 4.

Proposition 3.4 [17]. Let Assumption 3.3 hold and, for t ≥ s, let Φ(t, s) = W(t)W(t −
1) · · ·W(s + 1)W(s). Then, for all i, j ∈ V and all t, s with t ≥ s, |[Φ(t, s)]i j − N−1| ≤

Γγt−s, where Γ = 2(1 + η−B0 )/(1 − ηB0 ) and γ = (1 − ηB0 )1/B0 .

To utilize the distributed method, we assume that the penalty parameter is chosen
such as c ≥ Λ. Thus, the solutions of the penalized problem (3.5) are the same as the
solutions of the constrained problem (3.1). Since the local objective function fi can
be accessed only by the agent i itself, the traditional centralized optimization methods
do not work for problem (3.5). To overcome this difficulty, we propose a distributed
proximal-gradient algorithm with multi-step consensus (DPGMC).

https://doi.org/10.1017/S1446181114000273 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000273


168 J. Li et al. [9]

Algorithm 1: Algorithm DPGMC for solving problem (3.5)

Initialization: Given x(0)
i ∈ R

d, the Lipschitz constant L and the penalty
parameter c.

Iteration : For each agent i ∈ V and k ≥ 1, do
1 Local state update

z(k)
i = x(k−1)

i −
1
L
∇ fi(x(k−1)

i ), (3.7)

2 Multi-step consensus update

ẑ(k)
i =

N∑
j=1

χ(k)
i j z(k)

j , (3.8)

3 Proximal step update
x(k)

i = ProxL
gc
{ẑ(k)

i }, (3.9)

where the weights χ(k)
i j , i, j ∈ V, are given by χ(k)

i j = [Φ(K (k) + k,K (k))]i j with
K (k) as the total number of consensus steps before iteration k.

At each iteration k, the algorithm maintains N pairs of vectors (zk
i , ẑ

k
i , xk

i ) with the
ith pair associated with agent i. Each agent i ∈ V first makes a local gradient update
(see (3.7)), then receives information about {zk

j | j ∈ Nk
i } associated with agents j in

its neighborhood Nk
i := { j ∈ V | ( j, i) ∈ E and j , i} and makes a convex combination

among them to obtain ẑk
i (see (3.8)). Finally, the current estimated solution xk

i for
agent i is given by a local proximal step update related to the function gc (see (3.9)).
Based on the computational mechanism of this algorithm, it can be implemented in
distributed fashion.

Note that the idea of multi-step consensus was derived from the work of Johansson
et al. [10] and, later, it was developed by Chen and Ozdaglar [6] and Li et al. [11].
Here we introduce it to ensure the convergence of the algorithm with a constant step
size. We replace the Lipschitz constant L appearing in (3.7) and (3.9) with a constant,
α, such that α ≥ L. For the computation of the proximity operator in (3.9), we refer
the reader to the articles [1, 22, 29].

4. Main results

We analyse the convergence rates of Algorithm 1 by considering the evolution of
the global averages at iteration k:

x̄(k) =
1
N

N∑
i=1

x(k)
i and z̄(k) =

1
N

N∑
i=1

z(k)
i .

We first present some useful recursive estimates.
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Proposition 4.1. Let {x(k)
i }
∞
k=1, {ẑ

(k)
i }
∞
k=1 and {z(k)

i }
∞
k=1 be the sequences generated by

Algorithm 1. For all k ≥ 2, we have:

(i) ||ẑ(k)
i − z̄(k)|| ≤ Γγk ∑N

j=1 ||z
(k)
j ||;

(ii)
∑N

j=1 ||z
(k)
j || ≤

∑N
j=1 ||z

(k−1)
j || + (1/L)(NM f + cMg).

Proof. (i) From step (3.8) and Proposition 3.4,

‖ẑ(k)
i − z̄(k)‖ =

∥∥∥∥∥ N∑
j=1

χ(k)
i j z(k)

j −
1
N

N∑
j=1

z(k)
j

∥∥∥∥∥
≤

N∑
j=1

∣∣∣∣∣χ(k)
i j −

1
N

∣∣∣∣∣‖z(k)
j ‖ ≤ Γγk

N∑
j=1

‖z(k)
j ‖.

(ii) Using Proposition 2.1(i), (3.9) can be written as

x(k)
i = ẑ(k)

i −
1
L

v(k)
i , v(k)

i ∈ ∂gc(x(k)
i ).

Since the subgradient of gc is bounded,

||x(k)
i || ≤ ||ẑ

(k)
i || +

cMg

NL
.

Taking the sum over i for the above inequality, double stochasticity of W(t) yields
N∑

i=1

||x(k)
i || ≤

N∑
i=1

||ẑ(k)
i || +

cMg

L
≤

N∑
i=1

||z(k)
i || +

cMg

L
.

Integrating (3.7), the above inequality gives rise to
N∑

i=1

||z(k)
i || =

N∑
i=1

∥∥∥∥∥x(k−1)
i −

1
L
∇ fi(x(k−1)

i )
∥∥∥∥∥

≤

N∑
i=1

||x(k−1)
i || +

NM f

L
≤

N∑
i=1

||z(k−1)
i || +

1
L

(NM f + cMg),

and the proof is complete. �

Proposition 4.2. Let {x(k)
i }
∞
k=1, {ẑ

(k)
i }
∞
k=1 and {z(k)

i }
∞
k=1 be the sequences generated by

Algorithm 1; then the algorithm can be expressed asz̄(k) = x̄(k−1) −
1
L

[∇ f (x̄(k−1)) + e(k)],

x̄(k) ∈ ProxL
gc,ε(k){z̄(k)},

where ∇ f (x̄(k−1)) = N−1 ∑N
i=1 ∇ fi(x̄(k−1)) and error sequences {e(k)}∞k=1 and {ε(k)}∞k=1

satisfy

||e(k)|| ≤ 2LΓγk−1
N∑

j=1

||z(k−1)
j || (4.1)
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and

ε(k) ≤
2cMg

N
Γγk

N∑
j=1

||z(k)
j || +

L
2

[
Γγk

N∑
j=1

||z(k)
j ||

]2
. (4.2)

Proof. From step (3.7),

z̄(k) = x̄(k−1) −
1
L

[∇ f (x̄(k−1)) + e(k)],

where ∇ f (x̄(k−1)) = N−1 ∑N
i=1 ∇ fi(x̄(k−1)) and e(k) = N−1 ∑N

i=1[∇ fi(x(k−1)
i ) − ∇ fi(x̄(k−1))].

Since the gradient of fi is L-Lipschitz continuous,

‖e(k)‖ ≤
L
N

N∑
i=1

‖x(k−1)
i − x̄(k−1)‖ ≤

L
N

N∑
i=1

∥∥∥∥∥x(k−1)
i −

1
N

N∑
j=1

x(k−1)
j

∥∥∥∥∥
≤

L
N

N∑
i=1

[ 1
N

N∑
j=1

||x(k−1)
i − x(k−1)

j ‖

]
,

where the last inequality follows from the convexity of the norm ‖ · ‖. The combination
of (3.9) and Proposition 2.1(ii) yields

‖x(k−1)
i − x(k−1)

j ‖ = ‖ProxL
gc
{ẑ(k−1)

i } − ProxL
gc
{ẑ(k−1)

j }‖

≤ ‖ẑ(k−1)
i − ẑ(k−1)

j ‖ ≤ ‖ẑ(k−1)
i − z̄(k−1)‖ + ‖ẑ(k−1)

j − z̄(k−1)‖

≤ 2Γγk−1
N∑

j=1

‖z(k−1)
j ‖.

Combined with the above inequalities, it gives rise to inequality (4.1).
Let u(k) = ProxL

gc
{z̄(k)} = arg minx∈Rd {gc(x) + ‖x − z̄(k)‖2L/2}; then x̄(k) = N−1 ∑N

i=1 x(k)
i

= N−1 ∑N
i=1 ProxL

gc
{ẑ(k)

i } can be regarded as an approximation of u(k). Next we link
u(k) with x̄(k) by formulating the latter as an inexact proximal step with the error ε(k).
Considering the convexity of gc(x) and the boundedness of ∂gc(x),

gc(x̄(k)) +
L
2
||x̄(k) − z̄(k)||2 ≤ gc(u(k)) +

cMg

N
||x̄(k) − u(k)|| +

L
2

[||x̄(k) − u(k)||2

+ 2〈x̄(k) − u(k), u(k) − z̄(k)〉 + ||u(k) − z̄(k)||2]

≤ min
x∈Rd

{
gc(x) +

L
2
||x − z̄(k)||2

}
+ ||x̄(k) − u(k)||

(cMg

N
+ L||u(k) − z̄(k)||

)
+

L
2
||x̄(k) − u(k)||2,

where the last inequality above follows from the fact that u(k) is the unique minimizer
of gc(x) + ||x − z̄(k)||2L/2. Now we can write x̄(k) ∈ ProxL

gc,ε(k){z̄(k)}, where ε(k) = ‖x̄(k) −

u(k)‖(cMg/N + L ‖u(k) − z̄(k)‖) + ‖x̄(k) − u(k)‖2L/2. In light of Proposition 2.1(i), u(k) =

ProxL
gc
{z̄(k)} implies L(z̄(k) − u(k)) ∈ ∂gc(z̄(k)). Thus, by the boundedness of ∂gc(x),

ε(k) ≤
2cMg

N
||x̄(k) − u(k)|| +

L
2
||x̄(k) − u(k)||2.
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By the nonexpansiveness of the proximal operator and Proposition 4.1(i),

||x̄(k) − u(k)|| =

∥∥∥∥∥ 1
N

N∑
i=1

ProxL
gc
{ẑ(k)

i } − ProxL
gc
{z̄(k)}

∥∥∥∥∥
≤

1
N

N∑
i=1

||ProxL
gc
{ẑ(k)

i } − ProxL
gc
{z̄(k)}||

≤
1
N

N∑
i=1

||ẑ(k)
i − z̄(k)|| ≤ Γγk

N∑
j=1

||z(k)
j ||.

Therefore, the desired relation (4.2) can be obtained. �

Proposition 4.2 indicates that Algorithm 1 can be viewed as an inexact centralized
proximal-gradient method. Moreover, error sequences {||e(k)||} and {ε(k)} can be upper
bounded by the term

∑N
j=1 ||z

(k)
j ||, which are in turn controlled by the multi-step

consensus. According to Proposition 2.2, if {A(k)} and {B(k)} are both finite, then the
inexact centralized proximal-gradient method achieves the convergence rate of O(1/k)
after iteration k. Next we shall see that in our proposed Algorithm 1 this is indeed the
case.

By using Proposition 4.1, we find a first-order polynomial in k as an upper boundary
for

∑N
i=1 ||z

(k)
i ||.

Lemma 4.3. Let {x(k)
i }
∞
k=1, {ẑ

(k)
i }
∞
k=1 and {z(k)

i }
∞
k=1 be the sequences generated by

Algorithm 1. Then there exist scalars c0 =
∑N

j=1 ||x
(0)
j || and c1 = (NM f + cMg)/L such

that for all k ≥ 1,
N∑

j=1

||z(k)
j || ≤ c0 + c1k. (4.3)

Proof. From Proposition 4.1(ii),

N∑
j=1

||z(k)
j || ≤

N∑
j=1

||z(k−1)
j || +

1
L

(NM f + cMg)

≤

N∑
j=1

||z(k−2)
j || +

2
L

(NM f + cMg) ≤ · · ·

≤

N∑
j=1

||z(1)
j || +

k − 1
L

(NM f + cMg)

≤

N∑
j=1

||x(0)
j || +

k
L

(NM f + cMg).

This completes the proof. �
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We next prove that both sequences {A(k)} and {B(k)} are bounded.

Lemma 4.4. Let

A(k) =
2
L

k∑
i=1

(||e(i)|| +
√

2Lε(i)) and B(k) =

( 2
L

k∑
i=1

ε(i)
)1/2

,

where the estimates for ||e(i)|| and ε(i) are given in (4.1) and (4.2), respectively. Then,
for all k ≥ 1,

A(k) < 4

√
cMgΓ

NL

√
c0 +
√

c1

(1 −
√
γ)2 + 6Γ

c0 + c1

(1 −
√
γ)2 (4.4)

and

B(k) < 2

√
cMgΓ

NL

√
c0 +
√

c1

(1 −
√
γ)2 + 2Γ

c0 + c1

(1 −
√
γ)2 . (4.5)

Proof. Since γ ∈ (0, 1), as in Proposition 3.4,

∞∑
i=0

γi =
1

1 − γ
,

∞∑
i=0

iγi =
γ

(1 − γ)2 ,

∞∑
i=0

γ2γi =
γ + γ2

(1 − γ)2 . (4.6)

Thus, from (4.1), Lemma 4.3 and (4.6),

k∑
i=1

||e(i)|| ≤

k∑
i=1

2LΓγi−1[c0 + c1(i − 1)] < 2LΓ

[ c0

1 − γ
+

c1γ

(1 − γ)2

]
< 2LΓ

c0 + c1

(1 − γ)2 < 2LΓ
c0 + c1

(1 −
√
γ)2 . (4.7)

Similarly, (4.2), Lemma 4.3 and (4.6) yield

k∑
i=1

ε(i) ≤

k∑
i=1

2cMg

N
Γγi(c0 + c1i) +

L
2

[Γγi(c0 + c1i)]2

<
2cMg

N
Γ

c0 + c1

(1 − γ)2 +
L
2

Γ2[γi(c2
0 + 2c0c1i + c2

1i2)]

<
2cMg

N
Γ

c0 + c1

(1 − γ)2 + LΓ2 (c0 + c1)2

(1 − γ)2 . (4.8)

Since
√

a + b ≤
√

a +
√

b for any a, b ∈ R+, from inequality (4.8) it follows that

B(k) =

( 2
L

k∑
i=1

ε(i)
)1/2

< 2

√
cMgΓ

NL

√
c0 +
√

c1

1 − γ
+ 2Γ

c0 + c1

1 − γ

< 2

√
cMgΓ

NL

√
c0 +
√

c1

(1 −
√
γ)2 + 2Γ

c0 + c1

(1 −
√
γ)2 ,
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which proves the inequality in (4.5). Also, since
√

k ≤ k for all k ≥ 1 and
ε(k) ≤ N−12cMgΓγk(c0 + c1k) + [Γγk(c0 + c1k)]2L/2,

√
ε(k) ≤

√
2cMgΓ

N
√
γk(
√

c0 +
√

c1k) +

√
L
2

Γγk(c0 + c1k),

which yields
k∑

i=1

√
ε(i) <

√
2cMgΓ

N

√
c0 +
√

c1

(1 −
√
γ)2 +

√
L
2

Γ
c0 + c1

(1 −
√
γ)2 . (4.9)

The inequality in (4.4) now follows from (4.7) and (4.9). �

Using Lemmas 4.3 and 4.4, we establish the convergence rate of our proposed
Algorithm 1 for solving problem (3.5).

Theorem 4.5. Suppose that Assumptions 3.1 and 3.3 hold. Let {x(k)
i }
∞
k=1, {ẑ

(k)
i }
∞
k=1 and

{z(k)
i }
∞
k=1 be the sequences generated by Algorithm DPGMC. Let x∗c be the optimal

solution of problem (3.5) for a given penalty parameter c > 0. Then, for all k ≥ 1,
there exists a scalar C(N, c, L, Γ, M f , Mg) = [||x̄(0) − x∗c ||L/2 + 8(

√
cMgΓ/(NL)(

√
c0 +

√
c1) + Γ(c0 + c1))]2 such that

Fc(x̄(k)) − Fc(x∗c) ≤ C(N, c, L,Γ,M f ,Mg)
1

(1 −
√
γ)4

1
k
.

Furthermore, for all K ≥ 1,

Fc(x̄(K)) − Fc(x∗c) ≤ C(N, c, L,Γ,M f ,Mg)
1

(1 −
√
γ)4

1
√
K
,

where K is the total number of consensus steps taken.

Proof. According to Proposition 4.2, Algorithm 1 can be formulated as an inexact
centralized proximal-gradient method in the framework of Proposition 2.2. Thus, the
conclusion of Proposition 2.2 holds. Next, from Lemma 4.4, we get an estimation for
(L/2)(||x̄(0) − x∗c || + A(k) + B(k))2 as follows:

L
2

(||x̄(0) − x∗c || + A(k) + B(k))2

<
L
2

||x̄(0) − x∗c || +

6
√

cMgΓ

NL
(
√

c0 +
√

c1) + 8Γ(c0 + c1)

 1
(1 −
√
γ)2

2

≤
L
2

||x̄(0) − x∗c || + 8


√

cMgΓ

NL
(
√

c0 +
√

c1) + Γ(c0 + c1)

2
1

(1 −
√
γ)4 .

Thus, we establish the first assertion of this theorem by using the constant
C(N, c, L,Γ,M f ,Mg).

The second assertion follows from the multi-step consensus of Algorithm DPGMC,
since it takes k consensus steps to complete the kth iteration. �
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Remark 4.6. Since c1 = (NM f + cMg)/L, we have c1 = O(N) by neglecting the other
constants. Then C(N, c, L,Γ,M f ,Mg) = O(N2) and

Fc(x̄(k)) − Fc(x∗c) = O

( N2

(1 −
√
γ)4

1
k

)
. (4.10)

Thus, the optimality gap obtained above depends on the number of iterations, k, the
number of agents, N, and the parameter of network topology, γ. If the communication
matrix, W(t) ≡ W for t = 1, 2, . . .; then γ = σ2(W), where σ2(W) is the second largest
singular value of W and characterizes the connectivity of the network considered.

Remark 4.7. Theorem 4.5 together with (4.10) implies that at most

K(ε, γ,N) = O

(1
ε

N2

(1 −
√
γ)4

)
(4.11)

iterations are required to achieve an ε-accurate solution if the communication matrix
W(t) satisfies Assumption 3.3. It is clear that K(ε, γ, N) in (4.11) is a increasing
function of γ. This shows that the more well connected the underlying network is,
the fewer the number of iterations that we need to run in Algorithm 1. In addition,
K(ε, γ, N) is also increasing in terms of the number of agents, N. Thus, the more
agents in the network, the more iterations are required to achieve the given accuracy.

The next theorem now follows from Theorem 4.5 and Proposition 3.2.

Theorem 4.8. Assume that the conditions of Theorem 4.5 hold. Let {x(k)
i }
∞
k=1, {ẑ(k)

i }
∞
k=1

and {z(k)
i }
∞
k=1 be the sequences generated by Algorithm 1. Let x∗ be the optimal solution

of problem (3.1). If the parameter c >
∑p

s=1 λs (for example, taking c = Λ), then, for
all k ≥ 1, x̄(k) is the solution to problem (3.1) and

F(x̄(k)) − F(x∗) ≤ C(N, c, L,Γ,M f ,Mg)
1

(1 −
√
γ)4

1
k
.

5. Numerical simulation

To demonstrate the effectiveness of the proposed Algorithm 1, we consider
a distributed state estimation problem (see the article by Necoara et al. [15,
Example 2.1]). Mathematically, it is formulated as an optimization problem with a
common decision variable x subject to linear inequality constraints:

min
x∈Rd

F(x) =

N∑
i=1

xT Hix + qT
i x

such that Ax ≤ b,

where A ∈ Rm×d, b ∈ Rm, qi ∈ R
d and matrices Hi ∈ R

d×d are positive definite. Note
that Fi = xT Hix + qT

i x is a private function, only known by agent i. The local function
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Fi is convex and differentiable. Its gradient ∇Fi is Li-Lipschitz continuous by setting
Li = ||HT

i Hi||. Let L = maxi{Li}. The corresponding penalized problem is given by

min
x∈Rd

Fc(x) =

N∑
i=1

[
xT Hix + qT

i x +
c
N

max{0, Ax − b}
]
,

where c is the penalty parameter. In general, there are two ways to choose c such that
it satisfies equation (3.6). One way is by heuristic, and the other one is by solving
the unconstrained optimization problem defined in this equation. If c is determined in
this way, we first require to find a feasible solution x̄ satisfying Ax̄ < b; then, for any
given λ̄ ≥ 0, the average consensus algorithm of Zhu and Martinez [31] is applied to
solve equation (3.6). To simulate the time-varying weight matrix, we generate a pool
of 20 weight matrices from connected random graphs and each weight matrix satisfies
Assumption 3.3. Then the matrix [χ(k)

i j ] in step (3.8) is the product of k weight matrices
randomly drawn from the above pool.

In order to carry out the comparison, we introduce the following distributed
Lagrangian primal–dual subgradient (DLPDS) algorithm [31] for solving the saddle
points of the corresponding Lagrangian function in equation (3.3) for i ∈ V and k ≥ 1:

z(k)
i =

N∑
j=1

W (k−1)
i j x(k−1)

j ,

µ(k)
i =

N∑
j=1

W (k−1)
i j λ(k−1)

j ,

x(k)
i = z(k)

i − α
(k)[∇ fi(z

(k)
i ) + µ(k)T Sg(z(k)

i )],

λ(k)
i = [µ(k)

i + α(k)g(z(k)
i )]+,

where g(x) = Ax − b, α(k) = 1/k satisfies the step-size rule of Zhu and Martinez [31],
[·]+ is a projection operator on Rp

+ and [W (k−1)
i j ] is the randomly chosen weight matrix

satisfying Assumption 3.3.
For simplicity, we assume that Hi is a diagonal matrix with elements generated

randomly in the interval [1, 2], qi is a vector with elements generated randomly in
[−1, 1], A is reduced to a vector in Rd with elements generated randomly in [−1, 1],
b ≥ 0 and the initial points x(0)

i are generated randomly. In this numerical experiment,
we take the penalty parameter c = 5 heuristically.

We report preliminary experimental results on the convergence behaviour of
Algorithms DPGMC, proposed in this paper, and DLPDS, developed by Zhu and
Martinez [31]. Figure 1 depicts the value of maximum error, maxi∈V [F(x(k)

i ) − F(x∗)],
versus number of iterations with different nodes and dimensions for the first 500
iterations.

For all the four tested cases, Figure 1 shows that our proposed Algorithm 1
achieves faster convergence than DLPDS [31]. More specifically, from Figure 1(a),
we can see that after 500 iterations, our proposed Algorithm 1 reaches an accuracy of
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Figure 1. Maximum error versus number of iterations with different nodes and dimensions.

approximately 10−5, while DLPDS only reaches an accuracy of approximately 10−2.
Furthermore, we observe that the value of maximum error obtained by DLPDS at 300
iterations is obtained by DPGMC at iteration 18. Similar results are also observed in
the other three figures (b)–(d) in Figure 1. Thus, the performance of our proposed
DPGMC is better than that of DLPDS. This is mainly caused by the slow convergence
of subgradient-based methods. Comparing (a) with (d) in Figure 1, we can observe
that the more the number of nodes and dimensions, the smaller is the accuracy for
both algorithms.

6. Conclusion

In this paper, we have developed a distributed proximal-gradient algorithm with
multi-step consensus for minimizing the sum of local convex functions, subject to
global inequality constraints over a network. We have proved the convergence of the
proposed algorithm with an explicit convergence rate, given in terms of the number of
iterations, the network size and its topology. Compared to existing distributed primal–
dual subgradient methods for solving distributed convex optimization under inequality
constraints, our method is faster and simpler since no dual variable is involved. Also,
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simulation experiments show that our method performs better than the primal–dual
subgradient methods.
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