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Abstract. Bishop [2] has given a proof of Birkhoff s ergodic theorem by establishing
upcrossing inequalities similar to those of Doob. Such inequalities can be considered
as quantitative improvements of convergence theorems: while convergence a.e.
means that the number of upcrossings of any interval is a.e. finite, they assert
integrability and prove bounds for the integrals. The main point of this paper is to
prove upcrossing inequalities for the class of subadditive superstationary processes
introduced by Abid [1] as a common generalization of Kingman's [5] subadditive
stationary processes and KrengeFs [6] superstationary processes. We make use of
ideas of Smeltzer [7] who handled the subadditive stationary discrete parameter
case in his unpublished thesis. In the continuous parameter case our upcrossing
inequality requires more restrictive conditions than the corresponding convergence
theorem, due to Hachem [3]. We actually show by example that the number of
upcrossings need not be integrable under the assumptions of Hachem even for
additive stationary processes.

Let Jf = {(s,t):O<s<t,s,teZ} and consider the space Uz\ If TTSI, denotes the
projection on the (s, f)-coordinate then Uz is partially ordered by:

x<y <» Tr,,,(x)<irs,,(y) forall(s, t).

For two probability measures P', P" on the Borel cr-algebra of R22 we say that
P' is stochastically smaller than or equal to P"(P'<P") if

' < l <pdp-

holds for every measurable increasing function <p: Mz -* U integrable with respect
to P' and P". We define the measurable transformation T on the subspace E = U*
by

7rJ>(°r=7rJ+lif+1 for all (s, t)eJf.

A family X = {Xs,: (s, t) e V̂} of real valued random variables on a probability space
(O, si, P) is called a subadditive superstationary process if

(I) Xs>,< Xs,r + XM for all (5, r), (r,t)e J^;
(II) P X > P T X ;

where Px, P r x denote the probabilities on E induced by X, respectively T ° X.
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Before starting our investigations let us first have a look at the following

PROPOSITION 1. Let {xsl: (s, t)eJf} be a subadditive family of real numbers (i.e.
xs, s xsr + xTtfor all (s, r), (r, t)e Jf). For a<beU, N e N, let n be a positive integer
such that there exist integers

0 < w, < u, < • • • < un < vn < N

satisfying

t>,b - w,a <*„.„. i<n,

xVl,u,+, ^ui+la-Vib i < n - l .

Call a finite or possibly empty set R = {st, t u . . . smR, tm/t} of integers admissible if

0 < s, < f, < 52< f2< • • • < smR < tmR < N.

For each admissible R consider

SR= L x,bl.-bti + asj mR>0

SR = 0 mR = 0.

Under these assumptions there exists an admissible Q with

SQ > SR and mQ > n.

Proof. For mR > n the assertion is trivial. Therefore it suffices to show that for mR<n
we can find an admissible Q with SQ a SR and mQ = mR + l.

Let 5mR+, = N. Now mR + 1 < n holds, thus vmR+x is well defined and we have
vmR+, < N = smR+i. Let i be the smallest integer satisfying vt =s st. If i = 1, choose

<? = {U!, U,, •$,, /i, . - . , SmR,tmJ.

Q is admissible and mQ = mR + 1.

S o = SR+ (*„„„,-61;, +aw,) > S R

by assumption. We can now assume i > 1:
By definition of i, s,_, <u(_i <ut< u,<Sj. If w,> f,_,, choose

Q = {*!, ' i , • • • , -s.-i, f,--i, ",, t̂ i, Sj, f,,..., smR, rm R}.

(Of course Q ends with u, if i = mR + 1). Q is admissible and wip = mR + 1. Again

SO = SR + (xUl^ - bvt + aut) > SR

by assumption. It remains to consider the case i > 1, «,< /,-_,: Choose

< ? = { s , , / , , . . . , S j _ 2 , t i _ 2 , 5 , - i , t ; , - , , w , , ( j _ , , s t , th..., s m R , t m R } .

Q is admissible and mQ = mR + l.

= SR + (x,,,,,^,, + *„„,,_, - X J H , , 1 M ) - fet),_, + aw,
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> SR + (xS|_,,K,_, + *„„,,_, - [x,.,,,,,.., + *„,_,,„, + *„„,,_,])

— fcUj-i + aMj

= 5R + (aUi - fcUi-, - x,,.,,,,,) > SR

by assumption.

THEOREM 1 (Upcrossing inequality for discrete time). Let X = {Xs,} be a subadditive
superstationaryprocess. For NeN, a<beU andxe Edefine the 'numberofupcross-
ings till AT by

WN(x) = max {m: 30< Ui<vx<- • -<u m < um< N such that

Tut.v,(x)^ bVi - aut i < m, and

TTv^+W^aUi+i-bVi i < m - l } .

If Xo,i is integrable with respect to P then

WN°XdP<(b-a)~l (X0J-a)+dP.

Proof. As only finitely many functions are involved, WN and WN ° X are measurable.
We want to use proposition 1. Therefore we define, for each admissible sequence
R = {su tu..., smK, tmR} and each x e E,

mR

SR(X) = I 7rJfc,.(x) - bt{ + as,.
i = l

Let M be the maximum of the SR taken over all admissible R. mR = 0 implies SR = 0.
Hence M is a positive function and there exists a constant C(a, b)<oo so that

XQ,I is integrable with respect to P, hence TT-QJ is integrable with respect to Px. As
all projections are increasing, we see that all SR are increasing. By subadditivity
and superstationarity we conclude that all ir^, are integrable. Thus, M is an
increasing function and integrable with respect to both Px and P w . We want to
show that

(Tro,l(x)-a)+-(b-a)WN(x)>M(x)-M°T(x) (1.1)

holds with probability one (both for Px and PTx)- Let R = { 0 < s , < f ,< • • s
*mH < 'mR} be admissible. Assume s{ > 0 . Then

5 R ( x ) = X («•„. , ,(«)-6/, +a s , )
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R' = {0< s, - 1< f, - 1 s= • • • < smR - 1< tmR - 1 < AT} is admissible. Hence

SR(x) = SR(x) - mR(b -a)

The case s] = 0 will be split into two subcases. We have

SR(x)= I (w,l>fl(x)-fct, + «w,)
i=1

mR

= 7ro,,,(x) - btx - mR(b - a ) + I [«•„_,.,,_,(Tx) - fc(/, - 1) + a(s, - 1).

First assume /, > 1. Let s\ = 1. Because of assumption (I) we can find a set Ac E
with Px(A) = PTX(A)=l such that irs,,(x)< irJ>r(x) + wr,,(x) holds for all x e A and
all (s, r), (r,t)e Jf. Let x e A, then

/?' = {0< s', - 1 < t, - 1 < • • - s s m i ! - l < ( m B - l < N } is admissible. Hence

SR(X) S (7ro,,(x) - a) - m,,(i - a) + SR.(75c)

It remains to consider the case tx = l. Then

;=2

' = {0 < 52 - 1 < t2 -1 < • • • < 5mR - 1 < rmR - 1 < N} is admissible. Hence

SR(x) = (7r0J{x)-a)-mR(b-a)-SR.(Tx)

Thus, we have

for each admissible R and x e A. Using proposition 1 we can find an admissible Q
satisfying SQ(x)>SR(x) and m o s WN(x). Therefore

Since this holds for each admissible R we obtain

M(X)£(TTOJ(X)- a)+ - WN(x)(b- a) + M o T(x)
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which yields (1.1). Now we can conclude

(b-a)j WN°XdP = (b-a) j WN(x)dPx(x)

M(x) dPx(x)

< J M°T(x)

= J M o T(JC) dPx(x)- j

= j M(x) dPTX(x)- j M(x) dPx{x) + j ~a)+ dP

because M is an increasing measurable function and integrable with respect to both
Px and PTX. Rearranging this inequality will complete our proof. •

Let us now turn to the case of continuous time. Our new parameter set is

If X = {Xsy. {s, t) eJfc} is a sequence of real valued random variables on (ft, M, P)
and (s,, f j ) , . . . , (sm tn)eJfa then {XSuh,..., XSm,n)P denotes the probability on W
induced by the random vector (XSlA,..., XSm,J. X is called a continuous parameter
subadditive superstationary process if

cp(I) Xv * XSJ + Xr,,, for all (s, r), (r,t)eJfc; and
cp(II) (XStA),.-.,XSmJP>(XSl+u,li+u,...,XSn+u,tn+u)P, for all ( s , , r , ) , . . . ,

(sm tn)6^Vc and all w>0.
(Additional integrability conditions used by Hachem will not be part of our defi-
nition.)

For fixed £> 0 and a < b e R define the 'number of upcrossings till f as

Wc((o) = max {TO: 3 0 < i , < t, < • • -<s m < tm <£ such that

Xs. ,.(o)> ttb-s,a, i < m

and XthS.+l(<o)<si+la-t,b, i < m - l }

Convergence of the averages t~iXOtl was proved by Hachem under two assumptions:
separability and integrability of the maximum oscillation, (i.e. H(supOss<(<i X~^,) <
+oo).

We will now give an example which shows that these assumptions are not sufficient
for a process to have an integrable number of upcrossings.

Example. Let vo,vu... be i.i.d. random variables such that vk attaches mass
(n(n +!))"' to M22TT, let 77 be uniformly distributed on [0, 1] and independent of
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the vk. Define

X,=Jvn(2ir) ' sin {vn{t - n)) f o rO<n<f<n+ l

and

X, = A,+T).

(X,) is a stationary process with continuous sample functions and E(X,)<<x> holds.
Furthermore, for O s n < ( < « + 1:

which yields

£( sup
re[O,1]

Let 0<« bean integer and 0 < d < 1. Consider the interval (n,n + d). Choose an
integer m such that Vm > n + 1. For w € Am = {vn = m22ir}r\ {vn+x > m22n} it is easily
seen that if t moves from n to n + d, the process (X,) has about dm2 upcrossings
of the interval (-(n + 1), +(n + l)). (Note that t<n + l.) For <oeAm+1 =
{vn = (m + l)227r}n{»'n+1>:(m + l)227r} there are about d(m +I)2 upcrossings. Now
all Ak for k > m are disjoint. By independence we conclude that

= P{vn = fc22ir)P(i'I1+, & 2

Hence we have at least about dk2 upcrossings on a set of probability greater than
fc~2(fc+l)~'. But H^=m dk2k~2(k+ 1)"' = oo and thus the number of upcrossings is
not integrable. Because of stationarity the same holds for an arbitrary interval
contained in U+. Finally define Xsi( = X, - Xs. This process is clearly subadditive
superstationary and has at least as many upcrossings as the process (X,). As shown
above new assumptions will be necessary in order to prove an upcrossings inequality.

Let / : V̂c -» R. We say / is continuous from above at (s0, t0) e Jfc if for a sequence
(sm tn) satisfying (sm tn)>{s0, t0) for all n and (sm tn)^(s0, t0) we have

f(smtn)->f(s0,t0).

f is called continuous from above if it is continuous from above at each (s, ^eJf^
Here is our upcrossing inequality:

THEOREM 2 (Upcrossing inequality for continuous time). Let X = {X,,: (5, /) € Jfc}
be a continuous parameter subadditive superstationary process and for £>0, a
let W£ be defined as above. If

(2.1) sup f1 EXo,, < 00 holds, and

(2.2) X has sample functions that are continuous from above, then
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Proof. It is easily seen that for an integer k the sequence

Xk = {Xk
m,n = 2kXm2-*,n2-*:0^m<neN}

forms a subadditive superstationary process. Let N(k) be the largest integer smaller
than or equal to 2k£ and denote by W%(fc) the number of upcrossings till N(k) - 1
of the process Xk. Applying theorem 1 we obtain

-a) j Wk
N(k)dP^^(Xk

A-a)+dP

= \ (2kXoa-*-a)+dP

(b

o,, + \a\.

We want to show that W%(k) increases pointwise to Wc as k tends to oo. Of course
W%(k) < W^k+i) s Wc holds for all it Consider a sequence 0 s 5, < / , < • • • < sn <
tn < £ such that for fixed weil,

tjb - s,a < XSh,.((o), 1 < / < n,

*«„«,+,(*») < *.+!<* - 'A 1 < 1 < « - 1 .

Choose, in L C i N2~fc, sequences s?->sh (s?>Si), C^<» (C^h), satisfying 0<
sj" < tJ" < • • • < .C < C < ^ for all m e N. Because of continuity from above we can
find an integer m0 such that for all m > m0

Let fco = min {k e N: 2kt?°eN, 2ksToe^ for all 1 < i< M}. Then, of course,

Hence W^(fc) increases to Wf. By the monotone convergence theorem we obtain

WcdP<(fe-a)"1 (sup r'EXt. + la]). D

Remarks. If (X,),a0 is a continuous parameter superstationary process (i.e.
{Xh,..., XJP>(X,I+U,..., X,n+u)P for all 0< f, < • • • < tn and u > 0) with sample
functions that are Riemann-integrable on each interval [0, a] <= R then some argu-
ments in [4] can be used to show that the sequence XSJ - \\ Xv dv forms a continuous
time subadditive superstationary process. Furthermore, if Xo is integrable then
EXQ =sup t~]EXoj and both assumptions in theorem 2 are satisfied.

The author wishes to thank Prof. Dr. U. Krengel for his support and encouragement.
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