
J. Fluid Mech. (2022), vol. 946, A43, doi:10.1017/jfm.2022.571

Dynamics of an inertially collapsing gas bubble
between two parallel, rigid walls

Mauro Rodriguez Jr1,†, Shahaboddin A. Beig2, Charlotte N. Barbier3 and
Eric Johnsen2

1School of Engineering, Brown University, Providence, RI 02912, USA
2Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
3Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

(Received 19 December 2021; revised 5 May 2022; accepted 22 June 2022)

The collapse of cavitation bubbles in channel flows can give rise to structural damage
along neighbouring walls. Although the collapse of a bubble near a single wall has
been studied extensively, less is known about bubble collapse between two walls, e.g.
as in a channel. We conduct highly resolved, direct simulations of the Navier–Stokes
equations to investigate the bubble dynamics and pressures produced by the collapse of
a bubble between two parallel rigid walls. We examine the dependence of the dynamics
and pressures on the initial bubble location, confinement and driving pressure. For a fixed
initial stand-off distance, as the channel width increases the bubble volume, migration
distance and re-entrant jet speed approach their single-wall counterparts. We obtain an
expression for the minimum channel width at which the confinement does not affect
the bubble dynamics depending on the driving pressure difference and initial stand-off
distance. For a fixed channel width, varying stand-off distance reduced the maximum
wall pressures in the channel relative to the single wall; the trend was consistent for three
different driving pressures. Two different jetting behaviours are seen when the bubble is
centred in the channel, depending on the channel width. Under significant confinement,
wall-parallel re-entrant jets impinge upon each other and further intensify the collapse of
the vortex ring.

Key words: bubble dynamics, cavitation, computational methods

1. Introduction

Cavitation-bubble collapse and subsequent damage occur in confined geometries (e.g.
in channels, pipes and other enclosed systems) in various hydraulic and engineering
applications, including in therapeutic ultrasound procedures such as shock-wave
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lithotripsy, fuel injectors, thermal-hydraulic systems and the spallation neutron source
(SNS). With regard to the latter, cavitation erosion is the lifetime-limiting factor for
the target used in the SNS at the Oak Ridge National Laboratory (Haines et al. 2014;
Riemer et al. 2014) and in similar proton beam facilities (Futakawa et al. 2014; Naoe
et al. 2016, 2018). Moreover, the channel geometry mitigates cavitation in a mercury
target for neutron production (McClintock et al. 2012). Negative transient pressures
vaporise the working liquid and small vapour bubbles grow rapidly and collapse near solid
surfaces. During collapse, a cavitation bubble concentrates energy into the release of an
outward-propagating shock wave capable of damaging surrounding solids (Rayleigh 1917;
Hickling & Plesset 1964; Benjamin & Ellis 1966). The collapse dynamics, pressures and
temperatures experienced by neighbouring surfaces are of key interest to characterise the
damage mechanisms and predict mass loss (Franc et al. 2012; Kim et al. 2014).

Nearby surfaces break the spherical symmetry of a collapsing bubble. The non-spherical
dynamics have been extensively examined (Kornfeld & Suvorov 1944; Lauterborn &
Bolle 1975; Blake & Gibson 1987; Vogel, Lauterborn & Timm 1989). Compared with
a spherical collapse, pressures produced on the nearby surface are attributed to the
water-hammer shock wave emitted from the jet impinging upon the opposite side of
the bubble, sometimes directly onto the solid surface (Naudé & Ellis 1961; Plesset &
Chapman 1971; Tomita & Shima 1986). Scaling relationships for the re-entrant jet speeds
and water-hammer shock pressures have been developed as functions of driving pressure
and initial bubble stand-off distance from the neighbouring wall (Supponen et al. 2016,
2017).

Numerical simulation approaches, including the boundary element and boundary
integral methods (Blake, Taib & Doherty 1986; Zhang, Duncan & Chahine 1993; Wang
2014; Aganin et al. 2016; Brujan, Takahira & Ogasawara 2019), finite-volume approaches
(Sagar & el Moctar 2020) and potential flow calculations (Plesset & Chapman 1971;
Molefe & Peters 2019), predict the behaviour of a single bubble collapsing near a
wall, re-entrant jet speeds, as well as material pitting (Hsiao et al. 2014). However,
these approaches assume an incompressible or weakly compressible liquid, such that
they cannot capture shock–wall interactions pertinent to cavitation damage. Johnsen &
Colonius (2006), Beig & Johnsen (2015), Coralic & Colonius (2013), Schmidmayer,
Bryngelson & Colonius (2020), Trummler et al. (2020) and Trummler, Schmidt &
Adams (2021) conducted simulations of this problem with high-order accurate, shock-
and interface-capturing approaches. The numerical simulations of Beig (2018) showed the
differences between spherical bubble collapse and collapse near a wall. In the spherical
case, the collapse concentrates the available potential energy into the bubble internal
energy at minimum volume. The energy is released as a shock whose pressure amplitude
decays as 1/r1.13 (Cole 1948), where r is a given radial distance from the collapse origin.
In the case of collapse near a single wall, the pressure produced a given distance away
is different from the spherical case, due to (i) a collapse at a different location from
the bubble original location (attracted to wall by image bubble), (ii) energy release due
to the water-hammer process, (iii) a resulting shock whose strength is greater in the
direction of the shock (and weak in other directions along the front). Moreover, results
from Beig (2018) showed agreement with experimental re-entrant jet speeds (Brujan et al.
2002; Supponen et al. 2016), collapse morphology (Philipp & Lauterborn 1998) and the
maximum wall pressure scaling.

Bubble dynamics in a confined environment have been investigated in a variety of
settings. Past studies examined nonlinear oscillations in spherically confining compliant
materials (Vincent et al. 2014; Vincent & Marmottant 2017) or in a tube (Og̃uz &
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Prosperetti 1998; Farhangmehr et al. 2014), which may lead to non-spherical behaviour.
Dabir-Moghaddam & Wu (2016), using a finite-volume approach, simulated the inertial
collapse of a single bubble in a cylinder and observed increased shock pressures from the
bubble collapse on the cylindrical wall relative to a single flat wall configuration. Using
laser-induced experiments and the boundary-element method, the single bubble collapse
between two parallel plates with a vertical plate at the end (Brujan et al. 2019; Li et al.
2019) or near corner (Brujan et al. 2018), has been studied to determine the re-entrant jet
angle dependence on the stand-off distances from the plate.

The problem of interest here involves a gas bubble collapsing between two parallel,
rigid plates (walls). Gonzalez-Avila et al. (2011) studied the cavitation bubble growth and
collapse dynamics of a bubble nucleated at one of the channel walls via experiments and a
boundary-element method. In the study, the non-dimensional channel width, ηo = W/Ro,
where Ro is the maximum bubble radius and W the channel height or width, was varied
from 0.3 to 7.3. Here, we use the same definition for the non-dimensional channel
width. For ηo < 2, the bubble is attached to at least one of the channel walls. The study
showed ηo affecting the dynamics, revealing three different collapse scenarios: collapse
at the channel centre (neutral collapse); collapse onto the lower wall; and collapse onto
upper wall. For large widths ηo > 7, the far-plate no longer affects the collapse. Using
the same configuration, Gonzalez-Avila et al. (2019) studied the shear stress fields at
the proximal plate and observed enhanced bubble centre migration. Similarly, Zeng,
Gonzalez-Avila & Ohl (2020) observed the same aforementioned three different jetting
scenarios that strongly depend on ηo and the stand-off distance from the proximal wall,
γo. Our interests here are on detached bubble configurations, i.e. ηo > 2, to determine the
effect of the far channel wall by comparing with the single-wall configuration. The first
studies of this configuration are those of Chahine (1982) and Kuvshinov et al. (1982). In
particular, Chahine & Morine (1980) observed re-entrant jets forming in the wall-parallel
direction through the channel centre for ηo ≈ 20/9. Ishida et al. (2001) and Hsiao et al.
(2013) qualitatively studied this collapse morphology for ηo > 2 configurations using a
boundary-element method. Similarly, Farhangmehr et al. (2014) observed the re-entrant jet
direction change for ηo ≈ 3 for a bubble collapsing in a cylinder. Using boundary-element
and potential flow methods, Kucera & Blake (1990) also observed the wall-parallel jets in
a channel and cylinder; however, they noted that these methods may not yield realistic
bubble shapes under high confinement. Thus, to accurately capture both the bubble
collapse and shock pressures, high-order accurate numerical approaches representing the
full compressible dynamics are required.

The objective of this work is to determine the role of confinement on the dynamics
and wall impact loads of a single bubble inertially collapsing in a channel via numerical
simulation. In addition to the driving pressure and initial stand-off distance in the case
of a bubble collapsing near a single wall, we show that the relative size of the bubble
to the channel width affects the bubble dynamics (volume and location at collapse, jet
speed), and therefore the wall pressure, in the case of collapse between two parallel walls.
Though the wall pressures are lower than in the corresponding collapse near a single wall,
significant pressures can be produced along the far wall. The paper outline is as follows.
The problem set-up, governing equations for binary water-gas compressible, multiphase
flows, and numerical solver of Beig, Aboulhasanzadeh & Johnsen (2018) are presented in
§ 2. In § 3, the bubble dynamics and maximum wall pressures are compared between the
channel and single-wall configurations for baseline parameters. We find the approximate
channel width and driving pressure where the dynamics approach single-wall values. We
then investigate the bubble dynamics and maximum wall pressures dependence on the
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Figure 1. Problem set-up of an inertially collapsing, spherical gas bubble initially at maximum volume
between flat, rigid parallel walls (channel). The y-axis points into the page.

channel width, initial bubble stand-off distance and driving pressure. Additionally, we
discuss the special case of a channel-centred bubble at various confinement and driving
pressures. We summarise our findings in § 4.

2. Problem set-up and governing equations

As illustrated in figure 1, our geometry consists of two flat, rigid, infinitely long parallel
plates (distal and proximal), a width W from each other. An initially spherical bubble
of radius Ro is placed a distance xo from the proximal plate. As a reference, we take
Ro = 500 µm. Liquid water of pressure p∞ and temperature T∞ surrounds the bubble.
Water vapour in the bubble is modelled as a non-condensable ideal gas with initial
pressure po = 3550 Pa and temperature To = 300 K; the collapse is initiated due to the
resulting pressure difference across the bubble interface. Due to the symmetry in the
xz- and xy-plane (i.e. front and bottom planes in figure 1, respectively), a quarter of the
domain is simulated with symmetric boundary conditions. The top and back planes have
non-reflecting boundary conditions (Thompson 1990). Distal and proximal channel walls
are rigid, perfectly reflecting, no-slip boundary conditions; simulations of collapse near a
single wall are conducted by prescribing non-reflecting conditions in the place of the distal
wall. The computational domain has dimensions W × 4Ro × 4Ro. A resolution of 192
computational cells per initial bubble radius and grid spacing is fixed for each simulation
(i.e. the number of computational points changes with channel width). The dimensions
and resolution were determined such that the boundary reflections do not affect the bubble
dynamics based on results of Beig et al. (2018).

Three non-dimensional parameters are considered in this problem: (i) the channel width
ηo; (ii) the initial, bubble centroid stand-off distance with respect to the proximal wall
γo = xo/Ro; and (iii) the driving pressure ratio p∞/patm (where patm is the atmospheric
pressure). At collapse (i.e. at minimum volume), the bubble centroid x-location, xc and
the non-dimensional bubble collapse location is γc = xc/Ro. We consider the case ηo = 4,
γo = 5/4 and p∞ = 5 MPa, as a baseline case. To understand the role of confinement, we
conduct a sequence of simulations varying one of the baseline parameters per sequence.
Table 1 tabulates the initial conditions for the simulations. We consider three different
driving pressures (p∞ = 2, 5 and 10 MPa), motivated by the cavitation studies of Franc
et al. (2011) identifying these pressures relevant for cavitation erosion applications.
Additionally, we consider seven channel-centred (i.e. ηo = 2γo) bubble simulations for
each of the driving pressure ratios. For the single-wall simulations, we consider 24
total initial stand-off distances. Time is non-dimensionalised using the Rayleigh collapse
time for a bubble in a free field, tc = 0.915Ro

√
ρ�/�p, where ρ� is the liquid density
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Dynamics of a gas bubble between two parallel, rigid walls

Study Simulation # ηo γo p∞ (MPa)

Baseline 1 4 5/4 5

ηo 2–8 3, 7
2 , 9

2 , 5, 6, 7, 8 5/4 5

γo 9–17 4 17
16 , 9

8 , 19
16 , 11

8 , 3
2 , 13

8 , 7
4 , 15

8 , 2 2∣∣∣ 18–26
∣∣∣ ∣∣∣ 5∣∣∣ 27–35
∣∣∣ ∣∣∣ 10

ηo = 2γo 36–41 2γo
17
16 , 9

8 , 19
16 , 5

4 , 3
2 , 7

4 2∣∣∣ 42–47
∣∣∣ ∣∣∣ 5∣∣∣ 48–53
∣∣∣ ∣∣∣ 10

Single wall 54–59 ∞ 17
16 , 9

8 , 5
4 , 3

2 , 2, 3 2∣∣∣ 60–70
∣∣∣ 17

16 , 9
8 , 19

16 , 5
4 , 3

2 , 2, 5
2 , 3, 7

2 , 4, 5 5∣∣∣ 71–77
∣∣∣ 17

16 , 9
8 , 19

16 , 5
4 , 3

2 , 2, 7
2 10

Table 1. Initial condition parameters for computations. Parameters are the non-dimensional channel width
(ηo), non-dimensional stand-off distance (γo) and initial liquid pressure (p∞). A baseline case for the
channel simulations is considered and compared with the single-wall configuration. Four studies are then
considered: (i) dependence on channel width; (ii) initial stand-off distance dependence; (iii) driving pressure
ratio dependence; (iv) symmetric domain configuration. Simulations with a single-wall configuration are also
computed for comparison.

and �p = p∞ − po. Velocities and pressures (including ambient and vapour pressures)
are non-dimensionalised using the characteristic re-entrant jet speed,

√
�p/ρ�, and

water-hammer pressure, ρ�a�

√
�p/ρ�, respectively (Plesset & Chapman 1971), where a�

is the liquid speed of sound.
The governing equations are mass conservation, momentum and energy balance,

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0, (2.1a)

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj + pδij) = ∂τij

∂xj
, (2.1b)

∂E
∂t

+ ∂

∂xj
((E + p)uj) = ∂

∂xk
(uiτik − Qk), (2.1c)

∂

∂t
(ρ(k)α(k)) + ∂

∂xj
(ρ(k)α(k)uj) = 0, k = 1, . . . , K − 1, (2.1d)

where ρ is the total (mixture) density, ui the velocity vector, τij the shear stress tensor, Qk
the heat flux, α(k) is the volume fraction of material k, K is the total number of materials
(here, K = 2) and indices i, j = 1, 2 and 3, where repeated indices denote summation. The
total energy (per unit volume) E comprises of internal and kinetic contributions, E = ρe +
1
2ρu2

k . Material k has volume fraction α(k) and density ρ(k) the following relations, with∑
k ρ(k)α(k) = ρ and

∑
k α(k) = 1. Thus, K − 1 mass balance equations, corresponding

to the K materials, must be evolved. The internal energy per unit volume is related to the
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Phase n B (MPa) b (m3 kg−1) q (MJ kg−1) c (J (kg K)−1)

Vapour 1.47 0 0 2.1 3610
Liquid 1.19 702.8 6.61 × 10−4 −1.2 955

Table 2. Constants in the Noble–Abel stiffened-gas equation of state for water.

relevant thermodynamic quantities through the Noble–Abel Stiffened gas equation of state
of Le Métayer & Saurel (2016),

ρe = p(1 − ρb)

n − 1
+ nB(1 − ρb)

n − 1
+ ρq (2.2a)

= ρcT + B(1 − ρb) + ρq, (2.2b)

where T is the temperature and q, n, B, b and c are material properties prescribed to
produce the correct propagation speeds in liquids and solids (Harlow & Amsden 1971; Le
Métayer, Massoni & Saurel 2005; Le Métayer & Saurel 2016). The speed of sound for a
substance described by this equation of state is defined as

a� =
√

n( p + B)

ρ�(1 − ρ�b)
. (2.3)

Table 2 lists the phenomenological constants for the water phases used in this work. For
multiple materials, the calculation of ρe is performed to prevent spurious interfacial errors
(Beig & Johnsen 2015).

We include heat diffusion and viscous effects. Fourier conduction describes the heat
diffusion process with Qk = −κ∂T/∂xk, where κ is the thermal conductivity. Fluids
behave in a Newtonian fashion, such that the viscous stress is given by τij = μbε̇kkδij +
μsε̇

(d)
ij , where μb is the bulk viscosity, μs the shear viscosity. ε̇ij = 1

2(∂ui/∂xj + ∂uj/∂xi),

ε̇
(d)
ij = ε̇ij − 1

3 ε̇kkδij, is the strain-rate tensor and its deviatoric part, respectively. Since
our emphasis is on inertial collapse, surface tension and mass transfer are neglected
(Beig 2018). Theoretical simulations using Rayleigh–Plesset-type models, Storey & Szeri
(2000) and Preston (2004) suggest that the phase change does not significantly change
the inertial collapse dynamics and is also omitted in this study. For water vapour, κ =
0.02 W (m K)−1 and μb = μs = 10−5 Pa s; for liquid water, κ = W (m K)−1 and
μb = μs = 9 × 10−4 Pa s. The viscosity and thermal conductivity of the materials are
temperature independent in these simulations. The mixture material properties φ (e.g.
viscosities, thermal conductivities) are weighted by the volume fraction, φ = ∑

k α(k)φ(k).
The five-equations multiphase model is used to represent gas/liquid flows (Kapila et al.

2001; Allaire, Clerc & Kokh 2002; Murrone & Guillard 2005; Beig & Johnsen 2015). An
additional species conservation equation is solved in non-conservative form to maintain
interfacial equilibrium conditions for velocity, pressure and temperature (Beig & Johnsen
2015), i.e.

∂α(k)

∂t
+ uj

∂α(k)

∂xj
=
(

α(k)ρ(k′)(a(k′))2

α(k)ρ(k′)(a(k′))2 + α(k′)ρ(k)(a(k))2

)
∂uj

∂xj
, (2.4)

where α(k′) = 1 − α(k) and k′ and k represent the distinct phases and a the speed of sound,
a2 = n( p + B)/ρ(1 − ρb). For mixture relation for the sound speed, the Wood speed of
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Dynamics of a gas bubble between two parallel, rigid walls

sound (Wood & Lindsay 1956) is used to calculate the proximal side term in (2.4) and
approximate the Riemann solver wave speeds.

The numerical approach of Beig & Johnsen (2015) is used to solve the governing
equations. The third-order accurate total variation diminishing Runge–Kutta scheme of
Gottlieb & Shu (1998) is used for time marching with an adaptive time step calculated
based on the appropriate advective and diffusion numerical constraints. The convective
fluxes are computed in divergence form using a conservative, solution-adaptive approach
based on the discontinuity sensor/criterion of Henry de Frahan, Varadan & Johnsen
(2015) to discriminate between smooth regions and discontinuities. For smooth regions,
standard fourth-order explicit central differences are applied. At discontinuities, the HLL
(Harten–Lax–van Leer) Riemann solver (Harten, Lax & van Leer 1983) is used, with
proper correction for equations in non-conservative form, detailed by Saurel & Abgrall
(1999), in conjunction with the high-order accurate primitive variable WENO (weighted
essentially non-oscillatory) reconstruction scheme of Johnsen & Colonius (2006). The
first and second derivatives of the diffusion and source terms are computed using
explicit fourth-order central differences. The non-zero derivatives of materials properties
(i.e. viscosity, thermal conductivity) in mixture regions are calculated using explicit
fourth-order accurate central differences.

3. Results and discussion

3.1. Single-wall and channel comparison
We compare the qualitative behaviour of bubble collapse in a channel in relation with
collapse near a single wall, figure 2 shows contours of pressure (top) and numerical
schlieren (bottom) along the centre xz-plane for a bubble collapsing near a single wall
(distal) and in a channel of width ηo = 4 (proximal), with γo = 5/4 (baseline). Given the
initial conditions, a rarefaction propagates radially outward (figure 2a1 and figure 2b1).
The rarefaction waves from the initial uniform pressure field can affect the bubble
collapse dynamics but such effect was not observed, and the surrounding liquid pressure
dominates the collapse. The bubble starts to collapse, as shown by the convergence of the
flow (figure 2b2). The collapse progression for the channel is similar to the single-wall
configuration. However, it takes place at a slower rate due to the rarefaction reflecting
off the other channel wall back to the bubble; as a result, the local pressure driving the
collapse is reduced by the flow induced by the image bubble. During the collapse and
due to the proximity to the proximal wall, a re-entrant jet forms along the distal side
of the bubble, directed towards the proximal wall (figure 2a2 and figure 2b3). The jet
further penetrates the bubble during collapse and eventually impinges upon the proximal
side. Aside from slower collapse rate, the bubble shapes during impingement between the
two configurations are qualitatively similar. Upon impingement, an outward-propagating
water-hammer shock is emitted and propagates towards the proximal side (figure 2a3 and
figure 2b4). Four shock fronts are observed. From left to right, the first shock is the merger
of two shocks: re-entrant jet impingement and minimum bubble volume implosion (Beig
2018). These shocks merge into one shock that impinges upon the neighbouring wall. The
second is due to the first shock collapsing the vortex ring remnant (frame not shown).
The third and fourth shocks are reflections of the first and second from the proximal wall.
Comparing the pressure contours between figure 2(a3) and figure 2(b4), the bubble in the
channel configuration produces a weaker shock into the surroundings. After these collapse
events, the bubble forms into vortex ring convecting towards the proximal wall, as seen by
Benjamin & Ellis (1966), Tomita & Shima (1986) and Beig et al. (2018) (see figure 2a4).
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t/tc = 0.03

t/tc = 0.92

t/tc = 1.15

t/tc = 1.30

0p/ρ1a1(�p/ρ1)1/2: 0.28 0.57 0.85

(a) (b)

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 2. Pressure (top of each panel) and numerical schlieren (bottom of each panel) contours of a bubble
along the centre xz-plane with ηo = 4, γo = 5/4 and p∞ = 5 MPa for a single wall (a1–a4) and channel
(b1–b4). Columns are synchronised in time. Locations are: initial location (- - -); interface location (——). Movie
animations of the simulations are available in the supplementary material available at https://doi.org/10.1017/
jfm.2022.571.

To better quantify the energy release upon collapse, figure 3 shows the time history of the
bubble volume, migration distance �x/Ro = γo − γc, and re-entrant jet speed. The three
quantities reveal the primary effects of the far channel wall as it slows down the bubble
collapse rate in the channel compared with the single-wall configuration. The dynamics
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(a) (b) (c)

Figure 3. Bubble volume (a), migration distance (b) and re-entrant jet speed (c) versus time, ηo = 4,
γo = 5/4 and p∞ = 5 MPa: channel (——); single wall (– - – -, green).

Configuration min(V/Vo) × 10−3 �x/Ro

Channel 1.24 0.50
Single wall 1.04 0.55

Table 3. Values of the minimum volume (at collapse) and migration distance at collapse for the channel and
single-wall configuration.

are identical until t/tc = 0.17, when the reflected rarefaction impinges upon the bubble
in the channel; on this scale, the discrepancy between the channel and single-wall results,
due to the impingement of the rarefaction reflected off the second wall, is visible only from
t/tc ≈ 0.4. Table 3 shows the minimum bubble volume and migration distance at collapse
for the channel and single-wall configurations. The larger minimum bubble volume in
the channel (compared with the single-wall configuration) yields a weaker water-hammer
shock in the liquid. Similarly, the lower migration distance means a larger travel distance
for the shock to reach the proximal channel wall and, therefore, weaker (lower) maximum
wall pressure relative to the single-wall configuration. The maximum re-entrant jet speeds
are max(ujet)/

√
(�p/ρ�) = 14.1 for both configurations.

Figure 4 shows the time history of the non-dimensional pressure at the centreline x =
xo − W (location of the distal wall for the channel or left-hand boundary for single-wall
configuration) and +xo (proximal wall) versus time. As the initial rarefaction reflects off
the proximal wall and bubble, the pressure along the proximal wall decreases to reach a
minimum O(10−5); a similar value is achieved as the initial rarefaction reflects off the
far wall of the channel. The pressure then slowly increases until the collapse, at which
point the shock thereby produced caused an instantaneous pressure increase, first along the
proximal wall since it is closer, then along the far wall (or equivalent location for collapse
near a single wall). Additional pressure peaks correspond to the vortex ring collapse shock
and reflections. As suggested by the dynamics in figure 3, the shock emission is delayed in
the channel compared with the single-wall configuration, again due to the second reflected
rarefaction. Given the closer collapse location to the proximal wall (relative to the channel
configuration, see table 3) and comparable jet speed, the maximum pressure peaks has
a larger magnitude when the collapse takes place near a single wall. Along the far wall
(or equivalent location in the case of collapse near a single wall) pressure peaks can be
distinguished, though at a smaller magnitude due to the smaller pressure amplitude in
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Figure 4. Pressure plw at x = xo − W (distal wall in channel, left-hand boundary in single-wall configuration)
and prw at x = xo (proximal wall) along the centreline versus time, ηo = 4, γo = 5/4 and p∞ = 5 MPa: channel
(——); single wall (– - – -, green).

the direction opposite to the jet and longer distance travelled (Beig 2018). It may seem
counter-intuitive that the pressure is higher for the channel far-wall than the single-wall
configuration equivalent location. However, there is pressure doubling from the shock
impinging on and reflecting from the channel far-wall. In the single-wall configuration, the
pressure jump peaks are due to the bubble water-hammer and collapse shock. Considering
half the channel wall far-wall maximum pressure (i.e. the maximum pressure in the liquid
prior to the shock-wall impingement), the pressure is approximately 12 % less than the
maximum wall pressure in the single-wall configuration. This difference is expected due
to the larger minimum volume (less intense) at collapse in the channel compared with the
single-wall configuration.

3.2. Dependence on the channel width
We compare results from simulations with different channel widths ηo to determine the
influence of the confinement on the bubble collapse. The driving pressure and initial
bubble stand-off distance are fixed to p∞ = 5 MPa and γo = 5/4, respectively. To
quantitatively describe the dependence of the collapse on confinement, figure 5 shows
the minimum bubble volume at collapse, bubble distance from the wall at collapse and
maximum re-entrant jet speed, and figure 6 shows the maximum pressure along the
proximal wall for different channel widths. At the larger channel widths (i.e. widths for
which the second reflected rarefaction impinges upon the bubble after collapse), these
quantities tend to those corresponding to collapse near a single wall at the same initial
stand-off distance. For shortest channel width (ηo = 3), the jet speed is almost twice
as high as that corresponding to collapse near a single wall. However, given the r−1.13

decay, the larger distance at collapse (γc ≈ 0.8 versus 0.7), along with the slightly larger
minimum volume, still yields a lower maximum wall pressures compared with collapse
near a single wall.

We can readily determine the smallest channel width for which the collapse properties
are affected by confinement. The total time for the wave to reach the distal wall, reflect
and return to the bubble interface is tr = (2d + �x(tr, �p, γo))/a�, where d = W − (xo +
Ro) and is the wave travel distance. To simplify the calculation, we assume the wave is
travelling at a constant speed and the speed of sound. The wave travel time (tr) must be
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Figure 5. Minimum bubble volume at collapse (a), migration distance (b) and maximum re-entrant jet
speed (c) at collapse versus ηo for p∞ = 5 MPa and γo = 5/4: dashed line (- - -) is the single-wall value.

3 4 5 6 7 8
0

1

2

3

4

5

p m
x 

/ρ
l a

l (
�

p/
ρ

l)
1
/2

ηo

Figure 6. Maximum proximal wall pressures versus ηo for p∞ = 5MPa and γo = 5/4: dashed line (- - -) is
the single-wall value.

less than the single-wall bubble collapse time (tsc), i.e. tr/tsc < 1; otherwise, the wave does
not return in time to affect the collapse dynamics. The single-wall bubble collapse time is
greater than the Rayleigh collapse time such that tsc = ftc with factor f > 1. Rearranging
the expression for the tr/tsc ratio, we obtain the inequality for the channel width at which
it no longer affects a bubble collapse,

ηo > γo + 1 + 1
2

[
0.915f

√
n( patm + B)

�p
− �x

Ro

]
. (3.1)

For p∞ = 5 MPa and γo = 5/4, f = 1.24 (see figure 3), tc = 6.7 µs and �x ≈ 0.5Ro (see
figure 3 and table 3). Thus, for the baseline case of parameters, the channel width must be
ηo � 9.4 (or W � 9.4Ro) to no longer affect the bubble collapse. For an attached bubble
(e.g. γo = −1), (3.1) yields the ηo > 7 observation of Gonzalez-Avila et al. (2011).

3.3. Initial stand-off distance dependence
To better understand the role of the second wall, we examine simulations with different
initial stand-off distances γo while holding the channel width fixed at ηo = 4. To quantify
the intensity of the collapse, figure 7 shows the minimum bubble volume, maximum
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Figure 7. Minimum bubble volume at collapse (a), maximum re-entrant jet speed (b), migration distance (c)
and collapse location (d) versus γo for p∞ = 5 MPa and ηo = 4: channel (�, green); single wall (�, green);
dashed black line (- - -) slope 1.

re-entrant jet speed, migration distance and collapse location for different initial bubble
stand-off locations. The smallest minimum volume is achieved under symmetric collapse,
i.e. γo = γc = 2. This is attributed to the increased inertia from the two impinging jets
(discussed in § 3.1) compressing the bubble into a smaller volume compared with the
single jet cases. Moreover, the collapse volume for the channel is comparable to the
single-wall γo = 5 case for which the collapse is near spherical. For γo < 3/2 the collapse
is affected early enough by the rarefactions reflected by both walls, which reduce the
driving pressure and thus the intensity of the collapse.

Over the course of its collapse, the bubble is attracted to various degrees by the
image sinks representing the walls, and therefore migrate. For this channel width, bubbles
initially close to the wall migrate significantly towards the wall, by an amount similar
to their single-wall counterparts. For γo � 3/2, the influence of the far wall is greater,
resulting in less migration towards the wall than in collapse near a wall. A consequence is
that bubbles at the largest initial stand-off distances have collapse locations farther from
the wall than the corresponding collapse near a single wall. In other words, the shock is
emitted at a farther distance from the proximal wall in the presence of a second wall. With
smaller volumes, higher local velocities (including jet speeds) are achieved for γo � 3/2
(see figure 7). Thus, a stronger water-hammer shock is emitted into the liquid in these
cases.

946 A43-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.571


Dynamics of a gas bubble between two parallel, rigid walls

101

100

10–1

10–1 100 101

p m
x 

/ρ
l a

l (
�

p/
ρ

l)
1
/2

γc

Figure 8. Maximum proximal wall pressures versus γc for p∞ = 5MPa and ηo = 4: channel (�, green); single
wall (�, green); solid black line (——) is slope −1.13 observed for underwater explosion shocks (Cole 1948).

Figure 8 shows the maximum pressure, pmx, along the proximal channel wall from
the water-hammer shock versus the location of the bubble collapse since this location –
rather than the initial stand-off distance – is representative of the spatial origin of the
emitted shock. We note that the same γo for the single-wall and channel cases were
considered. However, due to the different dynamics produced by different levels of
confinement, the bubble collapse locations γc are different between the two configurations.
The maximum wall pressure is highest for those bubbles collapsing nearest to the wall,
and decreases as the collapse distance from the wall (and thus initial stand-off distance,
see figure 7c,d) is increased, following an r−1.13 scaling consistent with underwater
explosions (Cole 1948) and bubble collapse near a single wall (Beig 2018). Consistent
with the observations about the minimum volume and jet speed, the increased effect of
the second wall, i.e. its proximity, gives rise to a lower maximum wall pressure along
the proximal wall compared with a bubble collapsing near a single wall: as γo → 1, the
bubble collapses close to the proximal wall and the jet speeds are comparable to their
single-wall counterparts; however, emitted shocks are weaker, and thus the maximum
wall pressures are lower, due to the larger minimum bubble volume at collapse. At larger
stand-off distances, though the jet speed (and thus the strength of the emitted shock) is
higher and minimum volume smaller, the collapse occurs at a distance farther from the
proximal wall in bubble collapse in a channel; the r−1.13 decay of the shock amplitude thus
gives rise to a lower wall pressure. We also note that the bubbles closer to channel centre
produce higher pressures along the far (distal) wall due to being closer to the wall upon
collapse.

3.4. Driving pressure ratio dependence
We examine how the driving pressure ratio affects the bubble dynamics. The channel
width is fixed to ηo = 4 and the initial bubble stand-off distance is varied. Figure 9
shows the bubble collapse volume, maximum re-entrant jet speed, migration distance and
collapse location for different initial bubble stand-off distances, three driving pressures
and channel and single-wall configurations. The minimum volume and migration distance
data for each respective configuration (single-wall versus channel) follow a similar
behaviour as discussed in § 3.3. For the collapse in a channel, the higher driving
pressures give rise to smaller minimum volume for bubbles initially near the middle
of the channel, and larger minimum volumes for bubbles closer to the proximal wall.
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Figure 9. Minimum bubble volume at collapse (a), maximum re-entrant jet speed (b), migration distance (c)
and collapse location (d) versus γo with ηo = 4 for p∞: 2 (channel, � red; single wall, � red); 5 (channel, �
green; single wall, � green); and 10 MPa (channel, � filled blue; single wall, � blue). The dashed black line
(- - -) is slope 1.

For γo � 3/2, the migration is small because the bubble location is closer to the middle
of the channel, such that the effect of the far wall becomes comparable to that of the
proximal wall, thus leading to a more symmetric (about the centreplane parallel to the
walls) collapse. The re-entrant jets follow inverse trends and still obey the water-hammer
scaling.

The maximum wall pressure along the distal and proximal wall versus collapse location
for the three driving pressures is shown in figure 10. Trends similar to the p∞ = 5 MPa
case in § 3.3 are observed. Both distal and proximal maximum wall pressures follow the
black solid curve for underwater explosion shock decay (Cole 1948). The maximum wall
pressures along the proximal wall are lower in the channel configuration than in collapse
near a single wall for the same initial stand-off distance. For a sufficiently large initial
stand-off distance, this maximum pressure is appropriately scaled by the water-hammer
speed/pressure (see distal wall maximum pressures). In summary, increasing the driving
pressure while keeping the other parameters fixed both speeds up the collapse and
produces a more intense collapse as evidenced by the higher jet speed and smaller
minimum volume, thus leading to higher proximal wall pressures. Additionally, there is
a larger range of stand-off distances for which bubbles are not affected by the second wall
since the collapse time is faster.
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Dynamics of a gas bubble between two parallel, rigid walls
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Figure 10. Maximum far (a) and proximal (b) wall pressures versus collapse location with ηo = 4 for p∞: 2
(channel, � red; single wall, � red); 5 (channel, � green; single wall, � green); and 10 MPa (channel, � filled
blue; single wall, � blue). The solid black line (——) is slope −1.13 observed for underwater explosions (Cole
1948).

3.5. Symmetric domain configuration
We examine the configuration of a channel-centred bubble as the channel width is varied.
The aim is to determine the channel width at which the collapse dynamics change
and quantify the corresponding maximum wall pressures. The channel width, initial
bubble stand-off distance and collapse location are related such that γo = γc = ηo/2.
Figure 11 shows the non-dimensional pressure and numerical schlieren contours for
ηo = 9/4 (figure 11a1–a3), 3 (figure 11b1–b3) and 7/2 (figure 11c1–c3). For ηo = 9/4,
the proximity of the bubble walls to the channel walls prevents wall-normal (horizontal)
re-entrant jet formation due the attraction from the image bubbles (see figure 11a1).
That is, the channel wall boundary conditions inhibit the liquid surroundings to fill the
previously occupied space by the gas bubble as the bubble collapses in the horizontal
direction. The bubble continues to collapse with re-entrant jets forming in the wall-parallel
(vertical) direction (figure 11a2) as observed by Chahine (1982) and Kucera & Blake
(1990). The re-entrant jets impinge on each other yielding a water-hammer shock
(figure 11a3). Vortex rings form and stretch horizontally, collapse due to the incident
water-hammer shock, and emit water-hammer shocks of their own closer to the walls
relative the bubble initial location. At the critical channel width ηo ≈ 3, the vertical and
horizontal sides of the bubble collapse at a similar rate (figure 11b2). However, the collapse
is not spherical, and the bubble forms wall-normal at collapse, converging re-entrant jets.
The jets impinge at the channel centre and horizontal vortex rings are not observed.
A different collapse morphology takes place for ηo = 7/2. The jet direction goes from
wall-parallel to wall-normal. Angled jets are not observed for intermediate channel widths.
The surrounding liquid fills the space in the horizontal direction as the bubble collapses
(see figure 11b2). Two horizontal jets form and impinge on each other at the channel centre
yielding the outward-propagating shock (figure 11b2). The vortex ring’s normal direction
is horizontal and stretches in the vertical direction. After the collapse, the resulting shocks
travel across the channel, reflect from the walls towards the ring (figure 11b3).

Figure 12 shows the non-dimensional minimum bubble volume as a function of
initial stand-off distance (and channel width since γo = ηo/2). As the stand-off distance
increases, the liquid surroundings fill the space as the bubble collapses towards

946 A43-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.571


M. Rodriguez, S.A. Beig, C.N. Barbier and E. Johnsen

0 0.28 0.57p/ρlal(�p/ρl)
1/2: 0.85

(a) (b) (c)

(a1) t/tc = 1.34 t/tc = 1.16 t/tc = 1.22

t/tc = 1.44 t/tc = 1.31 t/tc = 1.28

t/tc = 1.48

t/tc = 1.39

t/tc = 1.33

(b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 11. Pressure (top of each panel) and numerical schlieren (bottom of each panel) contours along the
centre xz-plane for bubble centred in the channel with p∞ = 5 MPa and confinement ηo = 9/4 (a1–a3), 3
(b1–b3) and 7/2 (c1–c3): initial location (- - -); interface location (——). Movie animations of the simulations
are available in the supplementary material.

the centroid. Then, converging horizontal jets compress the gas to a volume smaller than
the single-wall cases for the same γo. However, as seen before, the larger distance from the
channel walls reduces the maximum wall pressures.

The maximum wall pressure for the channel-centred bubble versus collapse location
are shown in figure 13 (alongside the single-wall values). If we consider γc = γo
for these configurations, the critical channel width for horizontal-to-vertical jetting is
observed at ηo ≈ 3. The critical channel width is comparable to that observed by Chahine
(1982) of ηo ≈ 20/9. Despite the limitation of the weakly compressible assumption,
boundary-element methods may be able to accurately quantify the transition ηo in
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Figure 12. Minimum bubble volume at collapse versus γo for p∞: 2 (channel, � red; single wall, � red); 5
(channel, � green; single wall, � green); and 10 MPa (channel, � filled blue; single wall, � blue).
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Figure 13. Maximum proximal wall pressure versus collapse location for p∞: 2 (channel, � red; single wall,
� red); 5 (channel, � green; single wall, � green); and 10 MPa (channel, � filled blue; single wall, � blue).
The solid black line (——) slope is −1.13 observed for underwater explosion shocks (Cole 1948).

the absence of the compressible flow dynamics (Hsiao et al. 2013). For ηo � 5/2,
the wall-parallel re-entrant jets strengthen the collapse of the resulting vortex ring.
The proximity of the vortex-ring remnants to the walls yields higher maximum wall
pressures than the single-wall cases if γo = γc. Instead, we consider the bubble remnant
collapse location (see figure 11a3) in figure 13. We note that for ηo � 5/2, the vortex
ring remnant collapse location is γc ≈ 4(γo − 1). The non-dimensional maximum wall
pressure amplitude decay of 1/r1.13 is retained with these collapse locations. For ηo > 5/2,
the maximum channel wall pressures follow the pressure scaling with γc = γo.

4. Conclusions

Numerical simulations were conducted to understand the role of confinement on the
dynamics and pressures generated by a single inertially collapsing bubble between rigid,
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parallel walls (channel). As the bubble collapses, rarefaction waves propagate radially
outward, reflect off both walls (typically at separate times depending on the bubble
location and channel size), and interact with the bubble again. A re-entrant jet directed
towards the proximal wall forms, impinges upon the opposite side of the bubble, and
generates a water-hammer shock that impinges upon the proximal wall. The presence of the
second wall changes the pressure field during collapse compared with the corresponding
collapse near a single wall; in particular, the pressure on the distal side of the bubble
(farthest from the proximal wall) is reduced, thus generally reducing the intensity of the
collapse (larger minimum volume and farther distance to the wall at collapse). For a fixed
initial stand-off distance, as the channel width increases, i.e. ηo → ∞, the bubble volume,
migration distance and re-entrant jet speed approach their single-wall counterparts. The
maximum wall pressure, however, monotonically approached a value below observed in
the single-wall case due to the modified the pressure field in the channel.

Varying stand-off distance reduced the maximum wall pressures in the channel relative
to the single wall. For γo � 3/2, the collapse was less intense due to the proximity to
the wall (attraction to image bubble). For γo � 3/2, the collapse was intensified (i.e.
smaller minimum volume and higher re-entrant jet speed); however, the bubble collapses
farther away from the channel walls such that the water-hammer shock pressure decayed
below the single-wall value. The stand-off distance observations are consistent for three
different driving pressures. Two different jetting behaviours are seen for a channel-centred
bubble collapse. Horizontal re-entrant jets form for channel widths greater than the critical
channel width ηo ≈ 3. For ηo � 5/2, wall-parallel (vertical) re-entrant jets impinged at
the bubble centroid strengthening the remnant vortex ring’s collapse due to the channel
walls sufficiently restricting the bubble’s horizontal motion (image bubbles) such that
the vertical direction collapse dominates the flow morphology. By accounting for bubble
remnant collapse location, the maximum pressure decay of 1/r1.13 was observed. Future
studies will consider the inertial collapse of wall-attached bubbles to compare with the
results of Hsiao et al. (2014) and Zeng et al. (2020).

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.571.
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