
J. Functional Programming 9 (3): 347–354, May 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

347

Book reviews

Functional Programming Languages in Education by P. H. Hartel and R.

Plasmeijer, editors, Springer-Verlag, 1995.

General impressions

This Proceedings of the First International Symposium on Functional Programming Languages

in Education embraces four kinds of paper:

1. Straightforward experience or technical narratives.

2. Papers with interesting technical insights or applications.

3. Profound expositions of the combination of pedagogy with functional programming.

4. An invited paper which may well be seen as seminal in its technical insight.

Narratives

The more straightforward experience or technical contributions cover topics such as:

• opportunities/challenges in using functional programming as vehicle for a range of

typical computer science curriculum topics (introduction to programming principles, as

a first language, teaching data structures, compilers);

• somewhat less usual applications: (algebraic theory, relational database);

• enabling functional programming (execution animation, proof skills).

Interesting technicalities

The following papers were more interesting.

• Davison (p. 35) deals with the transition from Miranda∗ as a first language to C/C++

as a second.

• Jarvis, Pavia and Morgan (p. 103) is actually an exposition of how functional languages

support language extensibility, in this case for the specific domain of natural language

processing.

• Lester and Mintchev (p. 159) present a machine assistant to help students learn and

perform inductive proofs.

• O’Donnell (P. 195) presents a functional CHDL (computer hardware description lan-

guage) and recounts experience in using it to teach computer architecture.

Profound combinations

A further set have deep insights of potentially lasting value.

∗ Miranda is a trade mark of Research Software Ltd.

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

348 Book reviews

• Thompson and Hill (p. 85) show how functional languages can be used to model a wide

variety of technological concepts across the computer science curriculum (procedural

languages, machine architecture, graphics, automata theory), and so further justifies

the choice of functional programming as the basic paradigm for teaching and learning

programming.

• Burton (p. 179) consists of fascinating insights in how to teach recursion, according to

a small but useful taxonomy. The advocated pedagogy is to show how the one problem

can be solved by taxonomically-different solutions, and then how there are similar

solutions to different problems.

• Clack and Myers (p. 289) close the volume in similar but somewhat more reactive vein,

cataloguing a veritable ‘syllabus of errors’ of functional programming students, and

how teachers may help in their avoidance. There is no apparent connection between

the various cases, but in this case the usefulness of the breadth outweighs the lack of

depth.

Seminal insight

While the papers surveyed immediately above would suffice to justify this volume, the real gem

is the invited paper by David Turner (p. 1) on ‘Elementary Strong Functional Programming’.

Your reviewer contends that subrecursive programming (i.e. in systems less powerful than

Turing machines) is a big sleeping theme in computer science, whose day is now come. Every

so often then appears a letter to an editor, or maybe even a refereed paper, pointing out that

while-loops are really not all that necessary, and that for all ‘normal’ applications, bounded

iteration (for-loops) suffice.

A ‘language extension’ interpretation

Your reviewer’s perspective on the issue derives from a language extensibility point of view,

as follows. Programming on the one hand, and language design on the other, have such

apparent affinity that it is compelling to propose language extensibility as a useful paradigm

for understanding software development. That is, all the artefacts constructed by programmers

(abstract data types, libraries, etc.) should be regarded as language extensions; however, not

all extensions are desirable.

Sometimes, rather than directly denoting some semantic entity, a programmer will represent

it by data and provide interpretation routine(s) to supply the semantics. For example, a C-

based implementation of Miranda needs to represent function-valued functions as data,

and to provide an implementation of function application that will animate these data

structures. Such interpretive language extensions (where we define ‘interpretive’ to be when

an extended ‘guest’ language is represented by data structures in a ‘host’ base language) are in

principle undesirable, introducing an additional layer of conceptual complexity. Some of the

negative consequences of this extra layer may include: less efficient execution; erroneous re-

implementation of base language constructs or, at least, the need to (re-) verify the interpreter

against the language’s semantic specification before being able confidently to verify programs

written in the extended language.

This argument generalises as follows. Interpretation is meta-level computation that ‘an-

imates’ (i.e. makes executable) data that represents some computation. Now, can not all

computation that processes data be regarded as interpretation? Moreover, just as more

powerful base languages (e.g. functional compared to conventional) lessen the need for in-

terpretative extensions, cannot the use of data plus associated animating interpretations,

be replaced in more powerful languages by direct denotation of the desired computational

behaviour?

For example, the recursive implementation of a bounded iteration (‘for-loop’)

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

Book reviews 349

i := 1;

while i n loop

S;

i := i + 1

end loop;

is really an interpreter to animate ‘n’. A non-interpretive functional rendition represents

numbers directly as iterations, e.g. as Church numerals:

n f x = f (f (f ... (x)...))

and then just applies them to the object of the iteration:

n S

We go so far as to speculate that for each data type there exists a class of functions that

embodies the inherent functional/animated behaviour of the data: just as the inherent nature

of numbers in computation – to determine the number of times to perform some operation –

is represented by Church numerals, so is the nature of sets – to distinguish between members

and non-members – represented by characteristic predicates. Programming language design

(including extension) would then become basically a task of identifying what we call these

‘platonic combinators’ for the different data types.

The link between the above approach, and Turner’s (Elementary) Strong Functional Pro-

gramming, is as follows: by exploiting the expressiveness of programmer-defined higher-order

functions, there is a reduced role for iteration/recursion to play in the construction of

the various kinds of interpreter. For all programs other than Universal Turing Machines,

iteration/recursion is superfluous.

(Elementary) Strong Functional Programming

This reviewer’s understanding of Turner’s specific approach to this question, of the excessive

computational power of current programming languages, includes the following salient points:

1. The simplicity of equational reasoning for functional programs is not quite as attractive

as promoted, in view of the need to handle nonterminating computations.

2. Type-theoretic approaches to the problem (e.g. constructive type theory) have poor

pragmatics.

3. Essentially syntactic restrictions on a pragmatic functional language give a computa-

tionally-equivalent result.

4. Even operating systems can be programmed in this style.

5. In the context of all the above, the inability of the language to program its own

interpreter is no loss, especially as compilers can still be programmed.

6. In contradistinction to this reviewer’s dogma, Turner retains the appearance of data.

Some of Turner’s details may be questioned, e.g. his extension of division so that

0/0 = 0

Why not extend the domain of arithmetic operations to include explicit error values, as he

suggests be done with list processing operations? These quibbles do not, however, detract

from the significance of the development, which at last promotes subrecursive languages and

programming to the mainstream. It remains perhaps for apologists of alternatives to link their

proposals to Elementary Strong Functional Programming, e.g. for us to show that Turner’s

total primitive data types are merely syntactic sugar for appropriate suites of our so-called

‘platonic combinators’. Backus’ FP is another candidate system for comparison to Turner’s.

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

350 Book reviews

Conclusions

Personally, I was thrilled to see the treatment in these proceedings of some of my favourite

topics (functional programming as enabling language extensibility, a conceptual basis for

functional programming throughout the curriculum, and promotion of subrecursive program-

ming). I do hope that the conference organisers liberate the title in future, however. While

functional programming languages are needed for functional programming, use of that term

in a proceedings title conveys to me the impression of an emphasis on language technology,

such as type checking, implementation, etc., whereas this proceedings rightly concentrates on

the application or exploitation of the technology. Moreover, while the papers (appropriately)

focus on educational applications of functional programming, there is much more than the

narratives that one would expect. In other words, this volume is much more useful than its

title would suggest.

Paul A. Bailes

Algebra of Programming by Richard Bird and Oege de Moor, Prentice Hall,

1996 (dated 1997).

Background

The histories of functional programming and program transformation have been intertwined

from their inception. Serious program manipulations are not feasible in modern imperative

languages which allow aliasing, pointer and reference modifications, type casting and so

forth. More suited are current functional languages which support the definition of general

operations – such as map, filter and fold over lists – as polymorphic higher-order functions.

The properties of these functions – such as map (f ◦ g) = map f ◦ map g – can be expressed

in a logic which extends the definitional equality of the programming language, and largely

equational reasoning in that logic allows transformations to be written down in a formal

way.

Early work in this field is typified by Burstall and Darlington’s fold/unfold transformations

(see, for instance, Darlington (1982)), in which new – recursive – definitions of functions are

built using the defining equations left-to-right (unfolding) and right-to-left (folding).

Similarly influential is the work of Backus and his collaborators on the language FP

(Backus, 1978). Backus’s response to the well-publicised ‘software crisis’ was to design a

combinator-based language in which functions were to be given explicit, variable-free defini-

tions. These definitions would be more amenable to being manipulated formally, and indeed a

literature of FP transformations emerged. On the other hand, the relatively limited uptake of

FP showed that users of functional languages were unhappy to eschew the more free-wheeling

definition forms of the mainstream functional languages emerging at that time.

During the late 1970s and 1980s a systematic corpus of functional transformations was

built up by many researchers, but perhaps most prominently by Bird and Meertens. Notable

in their work is the formalisation of the theory of lists (Bird, 1987), and related theories of

bags and sets, brought together in so-called Boom hierarchy.

In the 1990s several people, including Bird and de Moor, have worked at generalising

this theory of program transformations from functions to relations. The obvious advantage

of relations over functions is in increased expressiveness, which makes it possible to reason

about specifications, and non-deterministic and partial functions.

The book presents the state of the art in this approach. The first three chapters introduce

an algebra of functions, the next three chapters extend this theory from functions to relations,

and the final four chapters apply this theory to various optimisation problems.

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

Book reviews 351

Category theory

The traditional foundation for mathematics is the language and theory of sets: functions,

relations and, indeed, all mathematical structures can be reduced to sets, but in practice it is

often of little help to look at the underlying set representation. An alternative, higher-level,

approach is given by category theory. Instead of representing structures as sets, a category

consists of the structure-preserving functions (‘arrows’) between the structures, together with

the structures (‘objects’) themselves. From a slightly different point of view, then, a category

is an abstract theory of functions, as was known to Joachim Lambek and Dana Scott in their

independent work on the relationship between the typed lambda-calculus and the theory of

cartesian closed categories in the 1970s.

The categorical approach is point-free, so that constructions – such as the product of two

types A and B – which are traditionally defined by giving their elements – the pairs (a, b) for

a in A and b in B – are instead axiomatised by describing the functions between them and

related types. The categorical definition of product states that

• there are projections fst : A× B → A and snd : A× B → B

• for every two functions f : C → A and g : C → B there is a unique function

〈f, g〉 : C → A× B so that the equations

f = fst ◦ 〈f, g〉 g = snd ◦ 〈f, g〉
hold. This is often abbreviated by saying that 〈f, g〉 is the unique function making the

following diagram commute:

C

BA A×B

f g

fst snd

〈 f, g〉

Transforming functional programs

Category theory, then, can give a general account of various programming phenomena, and

in the field of program transformation it has been used successfully to describe general forms

of definition over inductively defined (‘algebraic’) data types, the theory of catamorphisms,

anamorphisms, and the like. This theory is covered in Chapters 1–3 of Bird and de Moor’s

book, in which they introduce the relevant concepts of category theory while simultaneously

looking at their applications in functional programming and transformation.

Their categorical approach means that they are able to provide general rules for equational

program manipulation. Prominent among these is the Fusion Law which states that

h ◦ (| f |) = (| g |)
under the circumstance that h ◦ f = g ◦ Fh. The ‘banana’ brackets denote a catamorphism,

that is a generalisation of foldr over lists, and so the rule gives a situation in which a

composition including a fold can be made into a fold itself. Moreover, the law applies to all

algebraic (or initial) data types, so that there is no need separately to develop theories for

lists, binary trees, rose trees and so on.

Does this generality have a cost? We have to examine the foundations of the approach to

see the limitations of this algebra of functional programming.

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

352 Book reviews

First, the approach is total – no partial objects are available. In itself, this is an advan-

tage rather than a disadvantage. It means that there are no awkward ‘undefined’ elements

around, which invalidate many program transformations. The only possible drawback is the

restriction in expressiveness it brings, in particular the restriction to the recursion scheme

of catamorphisms. Primitive recursion is a simple generalisation of the catamorphism, and

can be coded up using catamorphisms; other more general schemes can also be supported.

(Recent work – see, for instance, Telford and Turner, (1997) – shows that it is possible for

total systems to support complex recursion schemes.) However, there are algorithms that

require more liberal forms of recursion than catamorphisms (e.g. fast exponentiation).

A system of combinators is functionally complete relative to a programming language

if all terms definable in the language are definable using the combinators; in other words,

applications of the combining forms provide the mechanism to simulate the definitions of the

full language. The system of categorical combinators given by Bird and de Moor is functionally

complete relative to the simply typed lambda calculus (with definitions by primitive recursion

over structured types) so that the reader is able to code his or her own definitions in the

categorical language used for program manipulation. This language is, of course, a proper

subset of Haskell or ML because of the limited forms of recursion available.

The system of categorical combinators used by Bird and de Moor has one main disadvan-

tage and one main advantage.

The disadvantage is that even simple programs like factorial require some manipulation to

be given a catamorphic form, and a two-argument function like concat requires substantial

machinery to put it in catamorphic form, and thus make it amenable to manipulation. Similar

problems require a detour into distributive categories to handle the conditional form of the

filter function. It is arguable that this weight of categorical overhead makes their work less

approachable than it might be.

A pleasant feature of the categorical approach is the degree to which their reasoning

can be equational. In particular the McCarthy conditional form (which is the function-level

equivalent of the if . . . then . . . else . . .) gives case-free reasoning for functions for which a

more traditional approach would require proof by cases.

Relations

The first three chapters of the book can be seen as a preamble to the remainder, where the

calculus of functions is replaced by a calculus of relations, based on the generalisation of a

category to an allegory, as discussed in Freyd and Scedrov (1990). Taking an instrumental

point of view, what does this additional generality bring by way of benefits and specifically

what extra tools does it give the programmer?

First, the increased power of expressivity that relations provide in comparison with functions

is useful for specifications. For instance, every relation has an inverse, and so it is possible

formally to specify a (complicated) function – such as a parser, or a text formatter – by

saying it is the inverse of a simpler function, namely a pretty printer or un-formatter. Since

the calculus is relational, the (relational) inverse always exists, and can be manipulated within

the laws provided by the system. Another example of an operation on relations useful for

specifying is the relational meet, the intersection of two relations. This can be used to specify

a program incrementally, by conjoining two constraints into a single one; the laws of the

calculus allow users to manipulate expressions which involve meets. A further advantage

is that the system supports reasoning about containment of one relation in another, so

permitting a proof of equality of two relations by showing that each is contained in the other.

Another advantage of relations over functions is that the relations include the non-

deterministic functions. This means that an algebra of relational programming allows us to

reason about non-deterministic functions. This is of vital importance in the optimisation

problems discussed in the final chapters.

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

Book reviews 353

Finally, the relations also include the partial functions. So an algebra of relational pro-

gramming provides all the familiar partial functions, but without the complexity of partial

elements. In particular, it provides the fixpoint operator without the complexity of partial

elements and divergence normally associated with it: a non-well-founded recursion will not

produce a non-terminating function, but rather an empty relation. Note that this means that

one disadvantage of the functional approach, namely the restriction to recursive functions

that are catamorphisms, no longer applies in the relation setting.

Bird and de Moor’s approach is to develop the appropriate theory by reference to the

category of sets and the relations between them. They develop a system of relational combi-

nators with the advantage and disadvantage of this combinatorial approach discussed earlier.

While in the functional context the reader is always able to refer to their intuition about

functions definable using variables, since the various sets of combinators are known to be

complete, relative to the simply typed lambda calculus with primitive recursion, this is by

no means so clear here. In the bibliographical remarks to Chapter 4 the authors observe

that ‘the axioms introduced here... precisely constitute the definition of a topos’. It would be

interesting to develop this theme further, and to see what language of relations (akin to the

lambda calculus) is equivalent to their combinators, and also to see the precise relationship

between this system and a more traditional relational calculus à la Tarski and adherents of

his approach.

Applications

The theory developed in the first six chapters is put into practice in the final four chapters

which look at various optimisation problems. The authors point out that the application

of techniques like dynamic programming and greedy algorithms go beyond the traditional

areas of combinatorial optimisation. Among the applications are that of splitting text into

paragraphs, in which they compare a greedy algorithm (as appears in most word processing

systems) with an optimal solution as implemented in TeX. The approach of the authors is to

find the appropriate generic description of a particular form of program definition which are

then applied across a range of fields.

Overall

The book is very clearly written, and its approach of introducing categorical concepts only as

they are needed works well for the most part. It is only in looking at the theory of allegories

that it becomes difficult to see ‘the big picture’ of what underlies their approach. As was said

earlier in this review, it would be helpful to be able to see the particular set of relational

combinators as a realisation of a higher-level theory; maybe this is the place for a more

thorough discussion of topos theory and its internal logic?

As mentioned earlier, there are many advantages in moving from a algebra of functions

to an algebra of relations. However, there is a price to pay for this that cannot be avoided,

namely the inherent complexity of the calculus of relations. This means there is a lot of theory

to go through before the interesting applications can be given in the last four chapters.

The book is full of exercises of an appropriate level, and hints for solutions are available

electronically. Particularly valuable are the bibliographical remarks which conclude each

chapter and which provide evidence of the complex historical background to the work in

relational algebra, category theory, theory of algorithms and program transformation.

It has become a commonplace in computing science to distinguish between formality and

rigour. Bird and de Moor’s book is written with a mathematician’s rigour, and so can move

successfully between different levels of abstraction when that is necessary. It begs the question

of how easily the ideas can be formalised and implemented in a working system of program

transformation. The authors have taken a big step in making rigorous some powerful and

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

354 Book reviews

fundamental ideas in programming. It remains to others to take these ideas and make them

a part of a practical computer programming system, but there is every expectation that this

will happen and that this will in turn make the authors’ ideas accessible to a wider audience.

The text under review provided the theme of the Theoretical Computer Science seminar

at the University of Kent for a considerable part of 1997; we are indebted to participants

in the seminar, and particularly to Eerke Boiten, for their insights into the material of this

challenging work.

References

Backus, J. (1978) Can programming be liberated from the Von Neumann style? Comm. ACM

21(8).

Bird, R. (1987) An introduction to the theory of lists. In Broy, M. (ed.), Logic of Programming

and Calculi of Discrete Design. Springer-Verlag.

Darlington, J. (1982) Program transformation. In Darlington, J., Henderson, P. and Turner,

D. A. (eds.), Functional Programming and its Applications. Cambridge University Press.

Freyd, P. and Scedrov, A. (1990) Categories, Allegories. North-Holland.

Telford, A. and Turner, D. (1997) Ensuring Streams Flow. In Johnson, M. (ed.), Algebraic

Methodology and Software Technology, 6th International Conference, AMAST’97, Sydney

Australia, pp. 509–523. Springer-Verlag.

Erik Poll and Simon Thompson

https://doi.org/10.1017/S095679689922326X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689922326X

