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Abstract

We define a finally tagless, shallow embedding of a typed grammar language. In order to

avoid the limitations of traditional parser combinator libraries (no bottom-up parsing, no full

grammar analysis or transformation), we require object-language recursion to be observable in

the meta-language. Since existing proposals for recursive constructs are not fully satisfactory,

we propose new finally tagless primitive recursive constructs to solve the problem. To do this

in a well-typed way, we require considerable infrastructure, for which we reuse techniques

from the multirec generic programming library. Our infrastructure allows a precise model

of the complex interaction between a grammar, a parsing algorithm and a set of semantic

actions. On the flip side, our approach requires the grammar author to provide a type- and

value-level encoding of the grammar’s domain and we can provide only a limited form of

constructs like many . We demonstrate five meta-language grammar algorithms exploiting our

model, including a grammar pretty-printer, a reachability analysis, a translation of quantified

recursive constructs to the standard one and an implementation of the left-corner grammar

transform. The work we present forms the basis of the grammar-combinators parsing

library,1 which is the first to work with a precise, shallow model of abstract context-free

grammars in a classical (not dependently typed) functional language and which supports a

wide range of grammar manipulation primitives. From a more general point of view, our work

shows a solution to the well-studied problem of observable sharing in shallowly embedded

domain-specific languages and specifically in finally tagless domain-specific languages.

1 Introduction

Parser combinator libraries are a prime example of using functional languages to

embed a Domain-Specific Language (DSL) in a shallow way, i.e. reusing many

facilities from the host language. Nevertheless, despite their advantages, current

mainstream purely functional parser combinator libraries are not satisfactory from

a parsing theory point of view. While many other parsing tools employ more

powerful bottom-up parsing algorithms, parser combinators are naturally restricted

to top-down algorithms. Unlike other tools, they do not employ much grammar

analysis or precalculate tables; grammar authors are not provided with standard

implementations of well-known grammar analysis, transformation or visualization

techniques.

1 http://projects.haskell.org/grammar-combinators
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In this paper, we work towards the aim of functional parsing libraries, which

combine the advantages of parser combinators with the power that is standard in

parser generators and associated tooling. In this paper, we focus on a major problem

that needs to be solved for this to happen: Lifting the limitations of the grammar

model currently used by parser combinators.

It turns out that many of the limitations of purely functional parser combinator

libraries are caused by the direct encoding of recursion in the grammar object

language using meta-language recursion. We show that we can do better with a

new encoding of primitive recursive constructs. Our constructs are parametric in the

interpretation of the grammar’s recursion.

Our object-language recursive constructs use the finally tagless style as described

by Carette et al. (2009). This modelling of a parsing DSL allows grammar algorithms

to interpret a grammar’s production rules in the way they need to and to distinguish

regular, context-free and extended context-free grammars (CFGs) in a natural way.

We use an alternative to the fix construct of Carette et al., which seems better

suited for the parsing domain. The main technical challenge we face is ensuring

that our constructs remain well-typed, for which we employ techniques from the

multirec generic programming library (Rodriguez et al., 2009). We show that our

infrastructure allows for a precise and modular modelling of complex interaction

between grammar, parsing algorithm and semantic actions.

A limitation of our representation of recursion is that it crucially depends on

the grammar author providing a type- and value-level encoding of the grammar’s

domain. In addition, the encoding of some constructs becomes more difficult: We

will discuss how we need to restrict the standard many operator (corresponding to

Kleene-*) to non-terminal references to allow algorithms to interpret the constructs

in the way they need. We have no detailed measurements of parsing performance

for our grammars, but with current compilers, our additional indirection and

our use of generic programming techniques introduce significant performance

costs.

We show that our approach does bring important additional expressivity by

demonstrating five well-known grammar algorithms from the parsing literature,

including a grammar pretty-printer, a reachability analysis, a translation of quantified

recursive constructs to the standard one and an implementation of the left-

corner grammar transform. In our grammar-combinators library, we provide

implementations of a range of other algorithms. These include an implementation

of the packrat parsing algorithm (Ford, 2002) and a grammar transformation that

induces a bottom-up matching order on the original grammar using a top-down

parsing of the transformed grammar.

More generally, the problem of observing recursion and sharing in Embedded

DSL (EDSL) terms has triggered a lot of research. Our approach presents a novel

solution applied to a parsing DSL. Our solution does not compromise referential

transparency, or unnecessarily force the user to resort to models of code with side

effects. We keep the validation of our approach in other domains (like the typical

example of hardware description DSLs) as future work. Our design also extends the

set of known programming patterns for finally tagless models of DSLs.
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1.1 Contributions

In this text, we make the following contributions:

• We provide evidence that observably recursive constructs are needed for full

power, purely functional parsing DSLs.

• We define primitive recursive constructs enabling a shallow embedding of a

purely functional grammar DSL.

• We use techniques from the multirec generic programming library in order to

properly type our constructs.

• The deforestation that our infrastructure allows is shown to be a precise model

of the complex interaction between grammar, parsing algorithm and semantic

actions, independent from the matching order.

• We present five grammar algorithms, including the left-corner grammar

transformation, showing that our encoding provides significant and important

additional expressivity over traditional parser combinator libraries.

An earlier account of some of the results in this paper was presented at the

2011 Practical Aspects of Declarative Languages Conference (Devriese & Piessens,

2011). The current work has a different presentation of the material, highlighting the

relation with finally tagless encodings, uses a more standard notation and type classes

for applicative functor operations and presents a rationale for our techniques. The

content of Section 5 was not presented at Practical Aspects of Declarative Languages

Conference. It is partly new and partly appeared in a technical report (Devriese &

Piessens, 2010).

1.2 Outlook

In Section 2, we introduce an example grammar, and a standard encoding of abstract

parser combinators in a finally tagless style. We take a brief look at the problem

of left-recursion, and then explain the problem with our standard modelling of

object-language recursion using direct meta-language recursion.

We introduce our new recursive constructs in Section 3, and we show how these can

be properly typed in Section 4. We present this through gradual (initially untyped)

transformations of the first definition of our example grammar. This allows us to

tackle technical problems one at a time and to show the rationale of our encoding.

In Section 5, we demonstrate the increased power of our grammar model with

the definition of five grammar algorithms:

• In Section 5.1, we show that the recursive structure can be observed in our

model by implementing a grammar pretty-printer.

• In Section 5.2, we show the equivalence between our final recursive constructs

and an alternative encountered in Section 3. The resulting algorithm is also a

useful technical aid for what follows.

• We show that our recursive constructs permit complex analyses, by

implementing a reachability analysis in Section 5.3.
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• In order to prove that our grammar model supports simple grammar

transformations introducing new non-terminals, and provides tight control

of the constructs allowed in a grammar, we define a translation of quantified

recursive constructs into the standard one in Section 5.4.

• Finally, in Section 5.5, we show that our technique supports complex, realistic

grammar transformations with the implementation of the standard left-corner

grammar transform.

We discuss related work in Section 6.

Much of the Haskell code in this text relies on a set of Haskell extensions that is

currently only supported by the Glasgow Haskell Compiler (GHC).2 However, these

are all well-accepted extensions that do not make type-checking undecidable. Our

library optionally supports the use of Template Haskell (Sheard & Peyton Jones,

2002) for performing grammar transformations at compile-time.

2 Finally tagless parser combinators

2.1 Arithmetic expressions

We start our presentation with a standard example from the parser literature: A

simple grammar describing arithmetic expressions of the form “(6 ∗ (4 + 2)) + 6”, in

a formalism similar to Extended Backus–Naur Form ((E)BNF) (Aho et al., 2006,

Section 2.2).

Line → Expr EOF

Expr → Expr ‘+’ Term

→ Term

Term → Term ‘∗’ Factor

→ Factor

Factor → ‘(’ Expr ‘)’

→ Digit+

Digit → ‘0’ | ‘1 ’ | ‘2 ’ | ... | ‘8 ’ | ‘9 ’

The definitions of Expr and Term are such that “a+ b ∗ c” can only be interpreted as

“a+(b∗c)” and “a+b+c” only as “(a+b)+c”. This modelling of operator precedence

and left-associativity is idiomatic for LR-style grammars, but fundamentally relies

on left-recursion: one of the productions of non-terminal Expr, for example, refers

back to Expr in the first position.

In order to obtain a parser for this grammar (without manually writing

it ourselves), parser generators like Yacc (Johnson, 1979) and ANTLR (Parr &

Quong, 1995) are typically used to translate the grammar (provided in an ((E)BNF)-

like formalism) into source code in the developer’s programming language. This

technique has proven successful in practice, but suffers from various downsides:

little assurance for syntax- and type-correctness of generated code, little reuse

of the developer’s existing programming environment (editor, type-checker, build

2 TypeFamilies, GADTs, MultiParamTypeClasses, FunctionalDependencies, FlexibleContexts and
RankNTypes.
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system etc.), limited support for abstraction, no support for grammars constructed

at runtime etc.

2.2 Finally tagless parser combinators

Parser combinator libraries provide an elegant alternative, modelling the grammar

directly in a general-purpose programming language. These libraries treat parsers

as first-class values that can be combined, extended, reused, abstracted from etc.

Many of these libraries only provide a single parsing algorithm, even though there

is no immediate technical reason for this. In this section, we define a more abstract

grammar model, without this coupling. This abstraction also saves us the trouble

of actually explaining a concrete parsing algorithm; our abstract model can be

used with many of the well-known parser combinator libraries (e.g. uu-parsinglib

(Swierstra, 2009) or Parsec (Leijen & Meijer 2001)).

The technique we use to achieve this decoupling has been already used by Swierstra

and Duponcheel (1996), and has been described and popularised by Carette et al.

(2009) as the finally tagless modelling of DSLs. In this style, we define our grammars

abstractly over a parsing algorithm with parser types p a , where p has instances for

a set of type classes containing primitive parsing operators. The type constructor p

is parameterised by the type of parsing results.

We define the necessary primitive parser operators in a type class:

CharProductionRule. Since parser combinators were a motivating example for the

development of the concept of applicative functors (McBride & Paterson, 2008) and

the type classes Applicative and Alternative (repeated below), it is no coincidence

that these map perfectly to our needs.3 Standard applicative functor laws apply,

but they may only be valid morally in some of our examples (e.g. for the pretty-

printer in Section 5.1: equivalent expressions might be pretty-printed in different but

equivalent ways).

class (Functor f )⇒ Applicative f where

pure :: a → f a

(�) :: f (a → b)→ f a → f b

class Applicative f ⇒ Alternative f where

empty :: f a

(�) :: f a → f a → f a

class (Alternative p)⇒ CharProductionRule p where

endOfInput :: p ()

token :: Char → p Char

In our setting, the Applicative operator � consecutively applies two given parsers. It

produces a parsing result by applying the first parser’s result to that of the second

parser. The pure primitive parser matches the empty string, producing the value

3 In the grammar-combinators library, we can unfortunately not use the Applicative or Alternative type
classes due to a technical reason related to an advanced feature that we do not discuss in this text
(Template Haskell lifting of grammars). The library also uses a different notation for the applicative
operators, for historical reasons.
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( $ ) :: Functor f ⇒ (a → b) → f a → f b
( $ ) = fmap
(⊂∗ ) :: Applicative f ⇒ f a → f b → f a
ma⊂∗ mb = const $ ma mb

(∗⊃) :: Applicative f ⇒ f a → f b → f b
ma∗⊃mb = flip const $ ma mb
(⊂$ ) :: Functor f ⇒ a → f b → f a
f ⊂$ m = const f $ m

Fig. 1. Definitions of standard related and derived Applicative operators �$ , ⊂∗ , ∗⊃ and ⊂$ .

provided as argument as its parsing result. The Alternative disjunction operator �

models a choice between two parsers producing the same result type and returns

the result of the parser that matched. The Alternative empty primitive parser never

matches anything, and can therefore return an arbitrary result type.

We will use only two operators that are specific to the parsing domain: the

endOfInput and token parsers. The first matches the end of the input string, returning

a unit result and the latter matches a single, specified character in the input stream

and returns it on success.

Figure 1 shows the definitions of standard related and derived applicative

operators �$ , ⊂∗ , ∗⊃ and ⊂$ , which respectively apply a given function to the result

of a rule, ignore a sequenced rule’s result and replace a rule’s result with a given

value. We temporarily omit operators many and some, which apply a given parser

any (resp. any non-zero) number of times, but we come back to them in Section 3.3.

Note that �$ is a synonym for fmap in the Functor type class, and for Applicative

functors, it is required to satisfy the (defining) property fmap f m = pure f � m . In

the rest of the paper we will consistently regard it as a derived operator and not

discuss its instances.

The gist of the finally tagless technique is visible in the type signature of the

parsing functions4:

line, expr , term , factor :: (CharProductionRule p)⇒ p Integer

digit :: (CharProductionRule p)⇒ p Char

The functions are defined abstractly over any type constructor p, which is an instance

of the class CharProductionRule. Because of this constrained universal quantification

over p, parametricity ensures that these functions can only construct values of type

p a through the primitive operators defined in class CharProductionRule and its

parent classes. The finally tagless style allows us to define more general or more

restricted typeclasses, so we can extend or restrict the primitive constructs which the

functions have access to and mix and match as suited. This is a facility we will exploit

later on, for example to make the distinction between extended and normal CFGs.

The functions can be defined as follows in terms of the primitive constructs:

line = expr ⊂∗ endOfInput

expr = (+) �$ expr ⊂∗ token ’+’ � term

� term

4 The parsing functions all return the calculated Integer value of matches, except for digit which just
returns a Char . It would be slightly cleaner to make digit also return a numeric value, but this would
be a bit more verbose throughout the text.

https://doi.org/10.1017/S0956796812000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000226


Tagless observable recursion for abstract grammar model 763

term = (∗) �$ term ⊂∗ token ’*’ � factor

� factor

factor = read �$ some digit

� token ’(’ ∗⊃ expr ⊂∗ token ’)’

digit = token ’0’ � token ’1’ � . . . � token ’9’

For every non-terminal, a grammar function is defined directly as a Haskell value

using the primitive parsing and combinator operators from the CharProductionRule

type class and its parents. The definitions look fairly standard for an applicative

parser combinator library, even though they are in fact abstract over the parsing

algorithm used. The code is fairly concise and reasonably close to the original

grammar.

Note that the above definitions of the parser functions incorporate semantic

actions; all parsers return the semantic value of the non-terminal they represent: the

integer or char value of the matched string. We consider this coupling of grammar

and semantics non-ideal and we will come back to this in Section 4.4.

2.3 Left-recursion

Readers familiar with parser combinator libraries will however have noticed an

important problem in the above code. With a mainstream applicative parser

combinator library like uu-parsinglib, it does not actually work. The problem is

caused by the left-recursion in the definition: expr , term and factor all immediately

refer to themselves in the leftmost position of one of their alternatives. A simple

top-down parsing algorithm asked to parse an expr , would at some point try to

match the first alternative for expr . The first thing it then needs is a parse of expr at

the location where it just started looking for an expr . Less naive parser combinator

libraries exist that can handle left recursion to a certain extent during top-down

parsing (Frost et al., 2008; Danielsson & Norell 2010; Might et al., 2011). However,

other libraries like uu-parsinglib and Parsec require the programmer to manually

transform the grammar to a non-left-recursive form:

line, expr , term , factor :: (CharProductionRule p)⇒ p Integer

exprTail , termTail :: (CharProductionRule p)⇒ p (Integer → Integer)

digit :: (CharProductionRule p)⇒ p Char

line = expr ⊂∗ endOfInput

expr = foldr ($) �$ term � many exprTail

exprTail = (+)⊂$ token ’+’ � term

term = foldr ($) �$ factor � many termTail

termTail = (∗)⊂$ token ’*’ � factor

factor = read �$ some digit

� token ’(’ ∗⊃ expr ⊂∗ token ’)’

digit = token ’0’ � token ’1’ � . . . � token ’9’

This transformed version of the grammar uses an alternative modelling of operator

precedence and associativity that does not rely on left-recursion and can be used

with naive top-down parsing algorithms. In fact, standard combinators exist (e.g.
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’(’

expr

’)’

termTail∗
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digit∗

exprTail∗
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’0’

expr

’2’’1’ ’4’’3’ ’6’’5’ ’8’’7’

digit∗

’9’

’0’

’(’

’2’’1’ ’4’’3’ ’6’’5’

exprTail∗

termTail∗

Fig. 2. A graphical representation of the expr parser after some expansions of its definition

(see Section 2.4). The expr node at the right (as well as some of the other nodes) can be

expanded further, arbitrarily deep.

pChainL in uu-parsinglib), which implement this pattern generically. But even with

these combinators, properly identifying and dealing with left recursion remains the

responsibility of the programmer.

There is however a more fundamental problem with the grammar model we have

defined so far.

2.4 ω-regular grammars considered harmful

The problem lies in the modelling of recursion between non-terminals using

recursively defined Haskell values. Haskell supports this, thanks to its call-by-

need (lazy) evaluation strategy. At first sight, it seems that this allows a faithful

representation of the recursive structure of the original grammar. However, closer

inspection reveals that what the Haskell values represent is in fact not so much a

graph as an infinite tree. We can see this by considering, for example, the most recent

definition of the expr parser function. Because of Haskell’s purely functional nature

(Sabry, 1998), expr is observationally equivalent to what we get if we expand it to its

definition, and likewise if we expand subexpressions to their definitions (highlighting

the term being expanded in each step):

expr ≡ foldr ($) �$ term � many exprTail

≡ foldr ($) �$ (foldr ($) �$ factor � many termTail ) � many exprTail

≡ foldr ($) �$ (foldr ($) �$ (read �$ some digit � pSym ’(’ ∗⊃ expr⊂∗ pSym ’)’)

� many termTail ) � many exprTail

Figure 2 shows a graphical representation of the expr parser after some further

expansions.
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In this way, we find an expansion of the definition of expr containing expr itself as

a subexpression. We can continue expanding forever, obtaining an infinite number of

expanded expressions, growing in size, and each indistinguishable from the original

definition of expr . In fact, for any n, it is even possible to construct a different

expression that cannot be distinguished from the original in less than n evaluation

steps: take the original definition of expr , perform n + 1 expansions and then make

a change in the result of the final expansion.

This observation has very real practical consequences. A parser library working

with our parser definitions (or those in most parser combinator libraries, which model

recursion the same way), and respecting referential transparency (see Section 6.3),

is fundamentally limited. It cannot, for example, print a representation of the

grammar in any finite number of evaluation steps n, because it might be looking at

another grammar that can only be distinguished from the original after more than

n computation steps. Similarly, no parsing library using this grammar model can

calculate parsing tables completely upfront, fully execute a grammar transformation

or perform a sanity check for LL(1)-ness.

Because of the similarity of these “infinite-tree” grammar definitions to what one

might see as infinite regular grammars, we will refer to this grammar model as

ω-regular.5

3 A different modelling of recursion

These fundamental limitations are in fact an instance of a more general problem.

For many DSLs, object language terms feature a mutually recursive structure and

it is often advantageous to be able to observe this structure in the meta-language.

For example, Sheard (2005) cites the problem as one of the main reasons to build

a special-purpose hardware design language instead of embedding the DSL in a

general-purpose programming language.

So, what could be a better way to represent recursion? In this section and the

next, we first consider the fix construct, which Carette et al. (2009) use in their

finally tagless modelling of a typed lambda calculus, and show that it is not perfect

for our needs. Next, we present our approach, which we introduce step by step. We

incrementally transform the parser combinators grammar introduced before, at first

postponing well-typedness concerns until we are ready to show the solution for this.

We will clearly mark all untyped pseudo-code as such in what follows.

3.1 Fixing recursion?

In their finally tagless model of a typed lambda calculus, Carette et al. (2009) use

a fix construct to model recursion. In our setting, such a construct would resemble

the following:

5 Our usage of the term ω-regular grammars is related to, but not the same as other usages in the
literature. For some insights from language theory, we refer to Park (1981), who proves a relation
between functions using ∗ and † operators and minimal and maximal fixpoints. In those terms, what we
call ω-regular grammars correspond to expressions generated by the regular operators with ∗ replaced
by †.
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class FixProductionRule p where

fix :: (p v → p v )→ p v

Recursive production rules could then be defined as follows:

expr :: (CharProductionRule p,FixProductionRule p)⇒ p Integer

expr = fix $ λself → (+) �$ self ⊂∗ token ’+’ � term

� term

This fix operator employs a finally tagless style and effectively makes object language

recursion observable in the meta-language, allowing meta-language algorithms to

interpret the recursion in the way that they need to. However, if we consider the

above definition more closely, it turns out that we missed a recursive occurrence of

expr . Indeed, the grammar is mutually recursive, with term referencing factor , and

factor referencing expr again. Indeed, what we require is an encoding of this mutual

recursion, allowing us to model the combined fixpoint of the following functions.

The example uses an omitted primitive fix3 , which can be defined in terms of fix :

expr , term , factor :: CharProductionRule p ⇒
p Integer → p Integer → p Integer → p Integer

digit :: (CharProductionRule p)⇒ p Char

expr e t f = (+) �$ e ⊂∗ token ’+’ � t

� term e t f

term e t f = (∗) �$ t ⊂∗ token ’*’ � f

� factor e t f

factor e t f = read �$ some digit

� token ’(’ ∗⊃ e ⊂∗ token ’)’

digit = token ’0’ � token ’1’ � . . . � token ’9’

line′ :: (FixProductionRule p,CharProductionRule p)⇒ p Integer

line′ = e ⊂∗ endOfInput where (e, t , f ) = fix 3 expr term factor

This approach seems successful, although the syntax is somewhat verbose. In a

typical lambda calculus, we could make it more concise by defining a object-language

record type containing three fields expr , term and factor . We could then construct

a value of that record type as the fixpoint of a single function based on the above

functions. However, to do this, we need record types in our object language, and

adding them to our parsing DSL purely for this technical reason is not our preferred

solution. We conjecture that the above syntax can also be made more concise with

a superficial Haskell extension similar to the recursive do notation by Erkök and

Launchbury (2002). In fact, we think that our FixProductionRule type class can be

seen more generally as an analogon to their MonadRec (later renamed to MonadFix )

for applicative functors.

However, we can also choose a different way to define a mutual recursion

construct: We model the record suggested above as a function from a finite domain

to production rules:
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warning: untyped pseudo-code...

data Domain = Line | Expr | Term | Factor | Digit

type Grammar = Domain → p ?

class FixGramProductionRule p where

fixG :: ((dom → p ?)→ (dom → p ?))→ dom → p ?

It turns out that this idea can be elaborated to a workable solution; there are ways

to properly type this fixG construct (we will encounter such techniques further on).

However, this fixG construct deviates from standard practice in grammar definitions,

since it can be used multiple times in different locations in the same grammar. In

standard CFG formalisms, all the recursion occurs at the top level. Our proposal

therefore does not introduce an actual fix construct, but instead we model the

grammar as the function of which it is the fixed point.

3.2 Towards context-free grammars

This idea corresponds to a classic technique from the functional programmer’s bag

of tricks: defining the grammar with open recursion. We factor out all recursive

calls in the definition by calls to a self function that it receives as an argument.

warning: untyped pseudo-code...

garith :: (CharProductionRule p)⇒ (Domain → p ?)→ Domain → p ?

garith self Line = self Expr � endOfInput

garith self Expr = self Expr � token ’+’ � self Term

� self Term

...

Even though it is not clear how to type this solution, this model does effectively

solve the problem of unobservable recursion. Algorithms working with the grammar

can provide custom interpretations of recursion to suit their needs. However, the self

parameter obscures the definition while its role is fairly technical and as a model of

a primitive object language recursion primitive, it stylistically differs from the other

object language primitives which are defined in type classes.

A more finally tagless recursion primitive can be defined by replacing the self

parameter by a primitive 〈·〉, defined in an additional type class RecProductionRule.

Production rule types p become linked to the domain for which recursive calls

are allowed, which we reflect in the RecProductionRule class’s parameters and its

functional dependencies:

warning: untyped pseudo-code...

class (CharProductionRule p)⇒ RecProductionRule p dom | p → dom where

〈·〉 :: dom → p ?

garith :: (RecProductionRule p Domain)⇒ Domain → p ?

garith Line = 〈Expr〉� endOfInput

garith Expr = 〈Expr〉� token ’+’ � 〈Term〉
� 〈Term〉

...
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This modelling is equivalent to the one using open recursion using the self

parameter. In fact, we will define a translation algorithm in Section 5.2, turning

the representation using RecProductionRule into the one using a self parameter.

This algorithm will be useful for technical reasons.

3.3 Extended context-free grammars

There is actually one thing still missing in this definition: We have craftily hidden

the use of the some operator in the production rule for Factor by including it in the

ellipsis above:

warning: untyped pseudo-code...

garith Factor = token ’(’ � 〈Expr〉� token ’)’

� some 〈Digit〉

The some operator is defined as follows (together with its sibling many):

many , some :: (CharProductionRule p)⇒ p a → p [a ]

many p = pure [ ] � some p

some p = (:) �$ p � many p

These definitions essentially rely on unobservable meta-language recursion, which

we need to replace with an observable form of recursion as well. In addition to the

〈·〉 primitive recursion operator RecProductionRule type class, we define restricted

versions of many and some in the LoopProductionRule type class, as follows:

warning: untyped pseudo-code...

class (RecProductionRule p dom)⇒ LoopProductionRule p dom | p → dom where

〈·〉∗ :: dom → p ?

〈·〉+ :: dom → p ?

The grammar type and the production rules for factor now become

warning: untyped pseudo-code...

garith :: (LoopProductionRule p Domain)⇒ Domain → p ?

...

garith Factor = token ’(’ � 〈Expr〉� token ’)’

� 〈Digit〉+

...

Note that operators 〈·〉∗ and 〈·〉+ are less powerful than the many and some

operators, which allow any production rule (not just recursive references) to be

quantified. This restriction is needed to make it possible for grammar algorithms to

interpret these object-language constructs appropriately. However, we think that the

new constructs are still general enough for most purposes. Grammar authors may

sometimes need to split out a production rule to be quantified into an additional

non-terminal.
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Note also that we are in fact replacing library algorithms (many and some) by what

are essentially new built-in operators in our object language. This is unfortunate, but

it is a part of the cost we pay in our approach to rule out ω-regular grammars. We

will show in Section 5.4 that 〈·〉∗ and 〈·〉+ support standard grammar transformations.

3.4 Typing context-free grammars

So this last representation is promising in the sense that algorithms can instantiate

the abstract grammar with their own interpretations of recursion and the primitive

parser combinator operations. Unfortunately, it is not clear how to properly define

the value that each of the production rules produce. In a typical implementation, our

example grammar above produces result values of the following Abstract Syntax

Tree (AST) type:

newtype Line = SExpr Expr

data Expr = Sum Expr Term

| STerm Term

data Term = Product Term Factor

| SFactor Factor

data Factor = Paren Expr

| Number [Digit ]

newtype Digit = MkDigit Char

When we now try to define the type of garith , we run into another problem. It turns

out that our modelling of the grammar as a function from the grammar domain to

production rules forces all production rules to produce the same type of values:

warning: untyped pseudo-code...

garith :: (CharProductionRule p)⇒ Domain → p ?

Similarly, if we try to define the type of the 〈·〉 operator, we cannot express that the

parser result of 〈idx〉 should vary based on the value of idx .

warning: untyped pseudo-code...

class (CharProductionRule p)⇒ RecProductionRule p dom | p → dom where

〈·〉 :: dom → p ?

garith Line = SExpr �$ 〈Expr〉� endOfInput

garith Expr = Sum �$ 〈Expr〉 ⊂∗ token ’+’ � 〈Term〉
� STerm �$ 〈Term〉

...

The essential problem here is that all our non-terminals are of type Domain so that all

references 〈idx〉 must share a single result type (because Haskell is not dependently

typed, see Section 6.2.2). Therefore, we cannot express that non-terminal Line

corresponds to a different type of semantic values than non-terminal Expr .
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4 Typing our recursion model

It turns out that we can define precise types for the untyped pseudo-code in the

previous section by using a representation of non-terminals not sharing a single

type.

4.1 Representing non-terminals

We model the set of non-terminals (the domain) as a “subkind” with proof terms,

using the technique employed by Rodriguez et al. (2009) to model indices into a set

of mutually recursive data types in multirec. The generalized algebraic data type

(GADT) (Peyton Jones et al., 2006) φarith is a “subkind” that represents the domain

of our arithmetic expressions grammar. Note that Haskell’s separation between type

and value name spaces allows the data constructor Expr and the type Expr to share

the same name.

data φarith ix where Line :: φarith Line

Expr :: φarith Expr

Term :: φarith Term

Factor :: φarith Factor

Digit :: φarith Digit

We use the previously defined AST types Line, Expr , Term , Factor and Digit to

represent the non-terminals at the type-level. The GADT φarith introduces, for every

non-terminal ix , a term of type φarith ix , serving as a proof that ix is part of the

domain φarith . With this “subkind” representation, the compiler will guarantee that a

function f typed ∀ ix . φ ix → . . . is polymorphic over precisely the five non-terminal

types in the domain.

4.2 A first typing of our grammars and the recursion operator 〈·〉

This representation of our domain as a subkind with proof terms allows us to

present a first proper typing of our grammars and the recursion operator 〈·〉, which

we introduced as untyped pseudo-code before.

We first consider the primitive recursion construct 〈·〉, defined in the

RecProductionRule type class. Within a grammar with domain φ (e.g. type

constructor φarith above), we can now declare that 〈·〉 can be invoked on any

value idx of type φ ix for some ix . The expression 〈idx〉 represents a parser for that

non-terminal, and returns a value of type ix : the AST type of the non-terminal.

The constructs 〈·〉∗ and 〈·〉+ are defined analogously in the LoopProductionRule type

class. We use functional dependencies to couple production rules with the domain

for which recursive references can be made.

class (CharProductionRule p)⇒ RecProductionRule p φ | p → φ where

〈·〉 :: φ ix → p ix

class (RecProductionRule p φ)⇒ LoopProductionRule p φ | p → φ where
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〈·〉∗ :: φ ix → p [ ix ]

〈·〉+ :: φ ix → p [ ix ]

garith :: (LoopProductionRule p φarith )⇒ φarith ix → p ix

garith Line = SExpr �$ 〈Expr〉 ⊂∗ endOfInput

garith Expr = Sum �$ 〈Expr〉 ⊂∗ token ’+’ � 〈Term〉
� STerm �$ 〈Term〉

garith Term = Product �$ 〈Term〉 ⊂∗ token ’*’ � 〈Factor〉
� SFactor �$ 〈Factor〉

garith Factor = Paren ⊂$ token ’(’ � 〈Expr〉 ⊂∗ token ’)’

� Number �$ 〈Digit〉+

garith Digit = MkDigit �$ (token ’0’ � token ’1’ � . . . � token ’9’)

4.3 Semantic value families

With this typed version of our grammars, we are making good progress, but this

representation of recursion in our object language is still not fully satisfactory. The

problem is in the result types of the recursive calls. Algorithms are now free to plug

in their own interpretation of object-language recursion, but these are still forced to

work with the full AST types as result types of the recursive calls. In many cases,

we want to be able to plug in different representation types, often a different type

for every non-terminal.

We can make this more concrete for the example of our grammar language. There,

the AST result types might at first sight seem acceptable, since conceptually the AST

is proper to the grammar, and practically we can apply any set of semantic actions

once we have the AST by implementing them as a structural fold (a catamorphism)

over the AST. However, this approach also allows semantics that are not formulated

as such catamorphisms. For example, the following semantics negates all literals that

are inside an uneven number of parentheses:

weirdSem :: φarith ix → ix → Int

weirdSem idx v = go False idx v

where unMkDigit (MkDigit c) = c

neg :: Bool → Int → Int

neg True x = −x

neg False x = x

go :: Bool → φarith ix → ix → Int

go inv Line (SExpr e) = go inv Expr e

go inv Expr (STerm t) = go inv Term t

go inv Expr (Sum e t) = go inv Expr e + go inv Term t

go inv Term (SFactor f ) = go inv Factor f

go inv Term (Product t f ) = go inv Term t ∗ go inv Factor f

go inv Factor (Paren e) = go (¬ inv ) Expr e

go inv Factor (Number n) = neg inv $ read $ map unMkDigit n

go Digit d = read (unMkDigit d : [ ])
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A disadvantage of semantics like weirdSem (which are not formulated as

catamorphisms) is that they are inherently coupled to a top-down matching order:

the semantics has to be applied to the top AST node once it is available. A

bottom-up parser already reduces production rules before it is sure at which depth

the production will fit in the final AST and it might want to force the semantics

to be already applied at such times during parsing, e.g. for optimization purposes.6

However, this is inherently not possible for semantics like weirdSem , whose behaviour

depends on the depth of the match in the final AST. Also for semantic reasons, we

find it preferable to define grammar semantics as catamorphisms over ASTs and

exclude definitions like weirdSem .

We can achieve this by abstracting our model even further, this time over semantic

value families. These are data families (Schrijvers et al., 2008) indexed by the non-

terminal types that we have seen before. A semantic value family r associates each

non-terminal type ix with the type of its semantic value r ix . We define one such

family for the φarith domain, written ��value
· . Note that the dot in this notation is a

placeholder for the type ix .

data family ��value
· ix

newtype instance ��value
· Line = �·�value

Line Integer

newtype instance ��value
· Expr = �·�value

Expr Integer

newtype instance ��value
· Term = �·�value

Term Integer

newtype instance ��value
· Factor = �·�value

Factor Integer

newtype instance ��value
· Digit = �·�value

Decimal Char

This semantic value family specifies that all of our non-terminals have Integer

semantic values (their calculated value) except for Digit , which has a character as

its semantic value.

We can now redefine the primitive recursion operator to return values of

some semantic value family r , which (like the domain φ) is required to be the

same throughout the grammar by the RecProductionRule type class’s functional

dependencies. Note that we provide default definitions of operators 〈·〉∗ and

〈·〉+ in terms of each other and 〈·〉 operator. However, we expect instances of

LoopProductionRule to provide custom definitions of at least one of the two

operators, otherwise they will behave as their ω-regular analogs.

class (CharProductionRule p)⇒ RecProductionRule p φ r | p → φ, p → r where

〈·〉 :: φ ix → p (r ix )

class (RecProductionRule p φ r)⇒ LoopProductionRule p φ r | p → φ, p → r where

〈·〉∗ :: φ ix → p [r ix ]

〈idx〉∗ = pure [ ] � 〈idx〉+

〈·〉+ :: φ ix → p [r ix ]

〈idx〉+ = (:) �$ 〈idx〉� 〈idx〉∗

6 Such a parser would typically use Haskell’s seq function to force the semantics to actually be evaluated
at such moments.

https://doi.org/10.1017/S0956796812000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000226


Tagless observable recursion for abstract grammar model 773

In the next section, we will show how this definition allows us to decouple the

grammar from a semantic value family. Here we can already show how we can

use the new definition of 〈·〉 to make the grammar work for the family ��value
· .

Like before, the mixing of semantic values in the grammar hampers the grammar’s

readability:

garith :: (LoopProductionRule p φarith ��value
· )⇒ φarith ix → p ��value

ix

garith Line = (λ�v�value
Expr → �v�value

Line ) �$ 〈Expr〉 ⊂∗ endOfInput

garith Expr = (λ�v1�
value
Expr �v2�

value
Term → �v1 + v2�

value
Expr ) �$ 〈Expr〉 ⊂∗ token ’+’ � 〈Term〉

� (λ�v�value
Term → �v�value

Expr ) �$ 〈Term〉
garith Term = (λ�v1�

value
Term �v2�

value
Factor → �v1 ∗ v2�

value
Term ) �$ 〈Term〉 ⊂∗ token ’*’ � 〈Factor〉

� (λ�v�value
Factor → �v�value

Term ) �$ 〈Factor〉
garith Factor = (λ�v�value

Expr → �v�value
Factor ) ⊂$ token ’(’ � 〈Expr〉 ⊂∗ token ’)’

� (�·�value
Factor ◦ read ◦ map (λ�c�value

Decimal → c)) �$ 〈Digit〉+

garith Digit = �·�value
Decimal �$
(token ’0’ � token ’1’ � . . . � token ’9’)

4.4 Semantic value family polymorphism

So, the next question is: Can we decouple the grammar from its semantics? Clearly,

there are other than aesthetic reasons for doing this. For our arithmetic expressions,

we have already seen a grammar producing AST values and a grammar calculating

integer values for them. Other useful semantic processors (a set of semantic actions

for non-terminals in a grammar) transform the same expressions into reverse polish

notation, construct an AST or perform some form of side effects in a Monad . It is

clear that we can improve the modularity of our grammar language by decoupling

a grammar from sets of semantic actions.

Our solution for this decoupling here uses (again) techniques from the multirec

generic programming library (Rodriguez et al., 2009), which uses a representation of

mutually recursive data types as the fixed point of a pattern functor to manipulate

them in generic algorithms. The AST data types shown previously are an example

of such a family of mutually recursive data types, and the following is its pattern

functor:

data PFarith r ix where

SExprF :: r Expr → PFarith r Line

SumF :: r Expr → r Term → PFarith r Expr

STermF :: r Term → PFarith r Expr

ProductF :: r Term → r Factor → PFarith r Term

SFactorF :: r Factor → PFarith r Term

ParenF :: r Expr → PFarith r Factor

NumberF :: [r Digit ]→ PFarith r Factor

MkDigitF :: Char → PFarith r Digit

This PFarith GADT defines analogons to each of the constructors of our AST data

types, but recursive positions of type ix are replaced with values r ix of the argument
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semantic value family r . As such, the semantic value family r plays the role of a

subtree representation functor (our terminology), defining what values to keep for

subtrees of AST nodes. Pattern functor values are tagged with the AST node type

they represent.

Note that we do not use the type functor combinators that Rodriguez et al.

(2009) define to build pattern functors. This is because we do not require the generic

operations that can be derived over these combinators and because we think our

direct presentation of the pattern functor is clearer.

Rodriguez et al. (2009) also define a type family PF mapping domains φ to their

pattern functor PF φ. The following type family instance registers PFarith as the

pattern functor for domain φarith :

type instance PF φarith = PFarith

Like for simply recursive types, data types isomorphic to our original AST data

types can be recovered from this pattern functor by taking its fixed point using a

type-level fixpoint combinator. But the pattern functor allows to do more with the

AST values. Rodriguez et al. (2009) demonstrate how to go back and forth between

a type ix in a domain φ and its one-level unfolding of type PF φ I∗ ix (with I∗ a

wrapping identity functor: I∗ ix ∼ ix ). In this way, a value of the AST type Expr can

be converted into an unfolded value of type PFarith I∗ Expr , exposing the top-level

of its structure (similar to the unfold operation for iso-recursive types (Pierce 2002,

pp. 276–277)). Generic operations on instances of the pattern functor can then be

used to implement various generic algorithms. All of this gives an impressive, elegant

and powerful generic programming machinery, but for our purposes, the pattern

functor is useful in another way.

A powerful feature of the pattern functor is that it abstracts over the subtree

representation functor r , allowing subtrees to be represented differently than as full

subtrees. If we take our semantic value family ��value
· as this subtree representation

functor (instead of the wrapping identity functor I∗), then subtrees in the one-

level unfolding of an AST are represented just by their calculated value (instead

of a full sub-AST). For example, the value (SumF �15�value
Expr �3�value

Term ) of type

(PFarith ��value
· Expr) represents an Expr value, constructed as the sum of another

Expr and a Term , where we only know that the arithmetic values of the left-hand

side Expr and the right-hand side Term are respectively 15 and 3. In general, the

pattern functor PFarith allows us to represent an AST where subtrees have already

been processed into a semantic value, and this turns out to be precisely the vehicle

we need for modelling the collaboration between a grammar, a parsing algorithm

and a semantic processor.

Let us consider production rule Expr → Expr ‘+’Term as an example. Figure 3

shows a graphical illustration of this collaboration (for a semantic processor working

with a semantic value family r). In Figure 3(a), the parser has matched the right-hand

side elements of the production rule, and has obtained their semantic values, typed

r Expr , Char and r Term . In Figure 3(b), the grammar specifies how to combine

these three values to the single-layer top of an AST, constructing a value of type

PFarith r Expr . For this production rule, the SumF constructor is used, throwing
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· · · Expr

Expr · · ·
’+’ · · ·

Term · · ·

r Expr

Char

r Term

(a) Parser

· · · Expr

Expr · · ·
’+’ · · ·

Term · · ·

r Expr

Char

r Term

PFarith r Expr

SumF

(b) Grammar

· · · Expr

Expr · · ·
’+’ · · ·

Term · · ·

r Expr

Char

r Term

PFarith r Expr

r Expr

(c) Semantic processor

Fig. 3. (Colour online) A graphical representation of the collaboration between parser,

grammar and semantic processor using φarith ’s pattern functor over a semantic value family r

as an intermediate representation.

away the parse result for the token ’+’. Note that the grammar does not make

any assumptions about the semantic value family r . In Figure 3(c), the semantic

processor accepts the constructed PFarith r Expr value, calculates the combined

semantic value and returns a processed value of type r Expr to the parser for use

in subsequent matches. Note that nothing here assumes any specific matching order

(top-down vs. bottom-up).

For readers who are familiar with the terminology (Meijer et al., 1991), it is

interesting to note that the grammar’s action on the semantic values is an

anamorphism from concrete parsing trees to our mutually recursive data types.

Correspondingly, the semantic processor specifies a catamorphism for the mutually

recursive data types, and multirec’s pattern functor machinery allows the parser to

explicitly fuse the two together according to its own matching order.

With this machinery, we can effectively decouple grammars from their semantic

processors and vice versa. In the next section, we take a look at the resulting code

to see how it all fits together.

4.5 So what do we get?

So our finally tagless model of observable recursion is completed; we know how to

abstract from the representation of return values of recursive calls, and we can even

model the interaction between a grammar and its semantic processors, and abstract

the grammar from the processors. We finally show the resulting definition of our

running example grammar:

type ExtendedCFG φ = ∀ p r ix . (LoopProductionRule p φ r)⇒ φ ix → p (PF φ r ix )

garith :: ExtendedCFG φarith

garith Line = SExprF �$ 〈Expr〉 ⊂∗ endOfInput

garith Expr = STermF �$ 〈Term〉
� SumF �$ 〈Expr〉 ⊂∗ token ’+’ � 〈Term〉

garith Term = SFactorF �$ 〈Factor〉
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� ProductF �$ 〈Term〉 ⊂∗ token ’*’ � 〈Factor〉
garith Factor = NumberF �$ 〈Digit〉+

� ParenF ⊂$ token ’(’ � 〈Expr〉 ⊂∗ token ’)’

garith Digit = MkDigitF �$ (token ’0’ � token ’1’ � ... � token ’9’)

We first define a general ExtendedCFG type synonym (CFG for context-free

grammar), expressing that an extended CFG is a function returning a production rule

for every non-terminal. The ∀ · quantification expresses that it must be defined for any

production rule interpretation type p supporting the CFG operations of type class

LoopProductionRule (and its parents Applicative, Alternative, CharProductionRule,

RecProductionRule). It must also work for any semantic value family r , producing

values of the pattern functor PF φ with r as the subtree representation type.

Our grammar garith is an extended CFG for the domain φarith . Its production

rules are defined using the combinators we saw before, and values of PFarith r are

produced using the pattern functor’s constructors. Stylistically, the pattern functor

constructors end up at the beginning of each production rule, giving a nice visual

tagging of the rules, and defining for each production rule what kind of AST node

it corresponds to. This final definition of our grammar is not linked to any parsing

algorithm, matching order or set of semantic actions. As such, it is about as close

as it gets to the formal definition of the grammar in Section 2.1.

Our semantic processors are algebras over the pattern functor. In fact, our type

synonym Processor is identical to multirec’s Algebra as defined by Rodriguez et al.

(2009). Note also that syntactically, they look remarkably similar to syntax-directed

definitions traditionally used with parser generators (Aho et al., 2006, pp. 303–323):

type Processor φ r = ∀ ix . φ ix → PF φ r ix → r ix

calcarith :: Processor φarith ��value
·

calcarith Line (SExprF �e�value
Expr ) = �e�value

Line

calcarith Expr (SumF �e�value
Expr �t�value

Term ) = �e + t�value
Expr

calcarith Expr (STermF �t�value
Term ) = �t�value

Expr

calcarith Term (ProductF �e�value
Term �t�value

Factor ) = �e ∗ t�value
Term

calcarith Term (SFactorF �t�value
Factor ) = �t�value

Term

calcarith Factor (ParenF �e�value
Expr ) = �e�value

Factor

calcarith Factor (NumberF ds) = �read $ map (λ�d�value
Decimal → d ) ds�value

Factor

calcarith Digit (MkDigitF c) = �c�value
Decimal

This processor implements the direct calculation of Integer values for subexpressions

that we have previously described. Its type expresses that it is a processor for

domain φarith , producing semantic values of family ��value
· . Like in traditional parser

combinator libraries, a semantic processor can also produce side effects, simply by

working with monadic calculations as semantic values instead of simple values.

Another example of a semantic processor, for which we do not need to provide

any code, has been defined by Rodriguez et al. (2009). Their function to :: φ ix →
PF φ I∗ ix → ix in the Fam type class transforms a single-level unfolding of an

AST (as described earlier) back into the traditional AST data type. Serendipitously,

composing to with the I∗ constructor yields a ready-to-use and important semantic
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processor for our grammars. The function (I∗◦) ◦ to (applying I∗ to the result of

applying to to two arguments) is precisely the semantic processor that produces a

wrapped version of AST as its semantic value. This direct correspondence illustrates

that our use of multirec pattern functors to abstract semantic actions is a natural

and powerful fit.

A processor and a grammar can be combined using the following function. It

takes an extended CFG for domain φ, and a processor for domain φ and semantic

value family r and turns it into an extended CFG that produces values of semantic

value family r .

type ProcessingExtendedCFG φ r =

∀ p ix . (LoopProductionRule p φ r)⇒ φ ix → p (r ix )

applyProcessor :: Processor φ r → ExtendedCFG φ→ ProcessingExtendedCFG φ r

applyProcessor proc g idx = proc idx �$ g idx

Some of the algorithms we define further on in this text will be able to work on

grammars of types ExtendedCFG and ProcessingExtendedCFG . It is therefore useful

to define a more general type of grammars as follows:

type GeneralExtendedCFG φ r rr =

∀ p ix . (LoopProductionRule p φ r)⇒ φ ix → p (rr ix )

Note that ProcessingExtendedCFG φ r is the same type as

GeneralExtendedCFG φ r r and ExtendedCFG φ can be written as ∀ r .

GeneralExtendedCFG φ r (PF φ r). For non-extended and regular CFGs, we

introduce analogous type synonyms:

type GeneralCFG φ r rr = ∀ p ix . (RecProductionRule p φ r)⇒ φ ix → p (rr ix )

type ProcessingCFG φ r = GeneralCFG φ r r

type CFG φ = ∀ r . GeneralCFG φ r (PF φ r)

There are ways to abstract this even further to remove duplication between the

extended and the non-extended type synonyms, but we do not go into that here.

4.6 Grammar ingredients

In summary, our approach requires the grammar author to provide five things.

• The standard AST data types from Section 3.4 (the types Line, Expr etc. for

our example).

• The domain subkind with the proof term constructors as in Section 4.1 (φarith

for our example), defining the collection of non-terminals for the grammar.

Various grammar algorithms require extra information about the domain,

which needs to be provided through instances of the type classes ShowFam ,

FoldFam and EqFam that we will encounter further on.

• The pattern functor from Section 4.4 (PFarith for our example), defining

the recursive structure of the relations between the non-terminals, and the

corresponding instance of the multirec PF type family. As discussed in

Section 4.4, it can also be useful to implement multirec’s Fam type class,
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which defines the link between the domain, the pattern functor and the AST

types.

• A grammar for the domain (garith in our example), defining the concrete

syntactic structure. Various algorithms allow the programmer to analyse

and/or transform the grammar. Multiple grammars can even be defined for

the same domain.

• If the programmer wants to create a parser, he probably also requires one

or more semantic processors as defined in Section 4.4 (e.g. calcarith for our

example). These define how to combine parsed non-terminals to a value

needed. Standard processors exist (e.g. a constant processor that leads to a

recognizer for the grammar or the AST constructing processor (I∗◦) ◦ to that

we encountered in Section 4.4).

However, of these five things, the second and the third consist of boilerplate code,

which could be mechanically derived from the definition of the AST data types. In

fact, the multirec library provides Template Haskell functions that mechanise this

translation. The concepts we defined in addition to multirec (like the instances for

the ShowFam , FoldFam and EqFam type classes) could be generated in a similar way.

Finally, we note again that we do not use Rodriguez et al.’s (2009) type functor

combinators to define the pattern functor. These combinators allow them to derive

certain generic operations over it, reducing the amount of the required boilerplate

code. We avoid them for presentation reasons: We find that they make pattern

functor and semantic processor definitions more difficult to read and we do not

need the automatically derived generic operations.

5 The proof of the pudding

In their previously mentioned paper, Carette et al. (2009) show how a finally tagless

encoding allows them to interpret a DSL for a simple higher order typed object

language in different ways. They demonstrate an evaluator, a compiler, a partial

evaluator and call-by-name and call-by-value continuation passing style transforms.

In Sections 3 and 4, we have extended their approach with a model of recursion in

the object language such that it is observable in the meta-language.

We will now demonstrate that we can define different interpretations for the

recursive constructs. In fact, these interpretations will work similarly to that of

Carette et al.’s (2009) different interpretations of object language primitives: A

suitable production rule interpretation type is defined, and the behaviour of primitive

parsing and recursion constructs supported by the algorithm is defined in the

instances of the Applicative, Alternative, CharProductionRule, RecProductionRule

and/or LoopProductionRule type classes. Transformations are possible using a

production rule interpretation parametric in an abstract underlying interpretation

type p. In this section, we demonstrate this approach with a couple of such

algorithms, both analyses and transformations.

The algorithms we discuss will have varying requirements on the grammars

they work for (and for transformations: the grammars they produce), either for
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fundamental reasons (e.g. foldLoops and transformLeftCorner will be defined only

for processing grammars and cannot straightforwardly be extended to abstract

grammars) or for reasons of conciseness (e.g. isReachable and foldReachable will

be defined for normal grammars only but can trivially be generalised to extended

CFGs).

5.1 Pretty-printing grammars

A first grammar algorithm that requires a custom interpretation of recursion is

pretty-printing. The implementation is not terribly difficult but it is instructive as

a first demonstration of how to work with our recursion model. Furthermore, as

a first test bed, it will also motivate some further infrastructure we need to put in

place. This algorithm is a simplified version of the one in our grammar-combinators

library.

To compute textual representations, we use a custom production rule

interpretation type PrintRuleInterp, containing simply a String representation of

the rule. It needs to carry the domain type φ and semantic value family r along in

its type because of the functional dependencies of the production rule interpretation

type classes.

newtype PrintRuleInterp (φ :: ∗ → ∗) (r :: ∗ → ∗) v = MkPRI {printRule :: String }

We implement the ProductionRule operations by simply constructing a proper

String representation of the rule. Note that this is in fact the first time in this paper

that we provide instances for these classes.

instance Applicative (PrintRuleInterp φ r) where

pure = MkPRI "pure"

a � b = MkPRI $ printRule a ++ " " ++ printRule b

instance Alternative (PrintRuleInterp φ r) where

empty = MkPRI "empty"

a � b = MkPRI $ "(" ++ printRule a ++ " | " ++ printRule b ++ ")"

instance CharProductionRule (PrintRuleInterp φ r) where

endOfInput = MkPRI "endOfInput"

token t = MkPRI $ show t

For the RecProductionRule instance, we need to know how to represent a non-

terminal as a String . We therefore require our domain φ to be an instance of a new

type class called ShowFam , telling us how to convert a domain proof term into a

String .

class ShowFam φ where showIdx :: φ ix → String

instance (ShowFam φ)⇒ RecProductionRule (PrintRuleInterp φ r) φ r where

〈idx〉 = MkPRI $ "<" ++ showIdx idx ++ ">"

instance (ShowFam φ)⇒ LoopProductionRule (PrintRuleInterp φ r) φ r where

〈idx〉∗ = MkPRI $ "<" ++ showIdx idx ++ ">*"

〈idx〉+ = MkPRI $ "<" ++ showIdx idx ++ ">+"
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ghci> putStr $ printGrammar garith

<Line> ::= <Expr> EOI

<Expr> ::= <Term> | (<Expr> ’+’ <Term>)

<Term> ::= <Factor> | (<Term> ’*’ <Factor>)

<Factor> ::= <Digit>+ | (’(’ <Expr> ’)’)

<Digit> ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Fig. 4. Printing out an (E)BNF-like representation of the arithmetic expressions grammar

with the library grammar printing algorithm (result manually indented).

Given this interpretation for production rules, we can define how to print the

production rules for a single non-terminal:

printNT :: (ShowFam φ)⇒ GeneralExtendedCFG φ r rr → φ ix → String

printNT gram idx = "<" ++ showIdx idx ++ ">" ++ " ::= " ++ printRule (gram idx )

This printNT function takes a grammar, a non-terminal proof term, and produces a

string representation of the grammar’s production rules for that non-terminal. Note

that it takes our most general form of grammar GeneralExtendedCFG .

To print a full grammar, all that is left to do is to consecutively apply this printNT

function to all non-terminals in a grammar. To do this, we again need information

from the domain, and we define this as another general requirement for domains in

the FoldFam type class. Since we cannot require that there exists a list of all non-

terminals (because all their proof terms have a different type), the FoldFam class

contains a function foldFam , which folds a given function over all non-terminals in

the domain.

class FoldFam (φ :: ∗ → ∗) where foldFam :: (∀ ix . φ ix → b → b)→ b → b

printGrammar :: (FoldFam φ, ShowFam φ)⇒ GeneralExtendedCFG φ r rr → String

printGrammar gram = foldFam ((++) ◦ (++"\n") ◦ printNT gram) ""

One might have the impression that we are defining ad hoc XFam classes for all of

our algorithms, but this impression is false. The type classes FoldFam and ShowFam

(and EqFam , which we will encounter further on) express general requirements for

domains. Only for presentation purposes, we have chosen to define them when we

first encountered the need. The instances for our domain φarith are trivial:

instance ShowFam φarith where showIdx Line = "Line"

showIdx Expr = "Expr"

showIdx Term = "Term"

showIdx Factor = "Factor"

showIdx Digit = "Digit"

instance FoldFam φarith where

foldFam f = f Line ◦ f Expr ◦ f Term ◦ f Factor ◦ f Digit

A more polished version of this algorithm produces output as given in Figure 4.
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5.2 Open recursion

In Section 3.2, our first attempt at a better representation of recursion used a form

of open recursion, different from 〈·〉 construct, which we introduced later. It is in fact

easy to formalize the equivalence between these two representations of grammars.

In this section, we define a function called openRecursion that will turn out to be a

useful technical aid in the implementation of other algorithms. It has the following

type signature:

openRecursion :: (CharProductionRule p)⇒
GeneralCFG φ r rr → (∀ ix . φ ix → p (r ix ))→ φ ix → p (rr ix )

This function turns a grammar using 〈·〉 construct from the RecProductionRule

type class into a grammar taking a self parameter instead. To implement this, we

define a production rule type ORRule, which wraps a production rule taking a self

parameter.

newtype ORRuleInterp p φ r v = MkORR {unORR :: (∀ ix . φ ix → p (r ix ))→ p v }

We omit the instances for the classes Applicative, Alternative and

CharProductionRule for this type. They simply pass through the self parameter

to their components (if any). The RecProductionRule instance replaces calls 〈idx〉
with calls to self idx .

instance CharProductionRule p ⇒ RecProductionRule (ORRuleInterp p φ r)φ r where

〈idx〉 = MkORR $ λself → self idx

In the implementation of openRecursion , we construct the production rule for

non-terminal idx in the new grammar by interpreting the grammar with our

ORRuleInterp production rule type and unwrapping the result.

openRecursion g self idx = unORR (g idx ) self

Note by the way that the reverse transformation is even easier to define:

closeRecursion :: (RecProductionRule p φ r)⇒
(∀ p . (CharProductionRule p)⇒ (∀ ix . φ ix → p (r ix ))→ φ ix → p (rr ix ))→
φ ix → p (rr ix )

closeRecursion g idx = g 〈·〉 idx

5.3 Reachability

The previous transformation is sometimes a useful technical tool in the

implementation of other algorithms. In this section, we implement a simple non-

terminal reachability analysis. We perform a depth-first search while keeping track

of an environment of non-terminals already encountered, which we represent as a

function from non-terminals to Bools. The environment nothingSeen represents the

empty set:
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newtype SeenEnv φ = MkSG {seenIdx :: ∀ ix . φ ix → Bool }
nothingSeen :: SeenEnv φ

nothingSeen = MkSG $ \ → False

To mark a non-terminal as seen in an environment, we need to be able to override

the wrapped function for a single non-terminal and leave it unmodified for others.

In fact, overriding polymorphic functions in this way is another general requirement

on domains, which we model in the EqFam type class:

class EqFam φ where

overrideIdx :: (∀ ix . φ ix → r ix )→ φ oix → r oix → (∀ ix . φ ix → r ix )

This type class models a general notion of domains with a decidable equality between

non-terminals. However, unlike a simpler equality test (like the derived eqIdx below),

the overrideIdx function allows us to exploit this decidable equality to override a

polymorphic function over a domain φ for one of the non-terminals φ oix .

We need to instantiate the EqFam type class for all of our domains:

instance EqFam φarith where overrideIdx Line v Line = v

overrideIdx Expr v Expr = v

overrideIdx Term v Term = v

overrideIdx Factor v Factor = v

overrideIdx Digit v Digit = v

overrideIdx f idx = f idx

Using the general overrideIdx function, we can define a specialisation overrideIdxK

for functions returning values of a constant type. We use a standard constant type

functor K∗ from multirec. We can also use it to define equality of non-terminal

proof terms.

overrideIdxK :: (EqFam φ)⇒ (∀ ix ′ . φ ix ′ → v )→ φ oix → v → φ ix → v

overrideIdxK f idx v = unK∗ ◦ overrideIdx (K∗ ◦ f ) idx (K∗ v )

eqIdx :: (EqFam φ)⇒ φ ix1 → φ ix2 → Bool

eqIdx idx1 = overrideIdxK (const False) idx1 True

With this additional infrastructure, we can update our sets of non-terminals as

follows:

setSeen :: (EqFam φ)⇒ φ ix → SeenEnv φ→ SeenEnv φ

setSeen idx s = MkSG $ overrideIdxK (seenIdx s) idx True

We implement our reachability analysis as a foldReachable function. Like the

foldFam that we have seen before, this function folds a function over a set of

non-terminals. However, unlike that function, it does not fold the function over all

non-terminals in the domain. The folding is restricted to the non-terminals reachable

from a given start non-terminal in a given grammar:

type Folder φ n = ∀ ix . φ ix → n → n

foldReachable :: ∀φ ix n r rr . (EqFam φ)⇒
GeneralCFG φ r rr → φ ix → Folder φ n → n → n
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The implementation of this function uses an interpretation type wrapping an

algorithm with the set of encountered non-terminals SeenEnv φ as a mutable

state variable. The wrapped algorithm takes the function to be folded and the start

value and its return type is the result type of the fold.

newtype FoldReachableRuleInterp φ n v = MkFRRI {
foldRule :: Folder φ n → n → State (SeenEnv φ) n }

putSeen :: (EqFam φ)⇒ φ ix → State (SeenEnv φ) ()

putSeen idx = modify $ setSeen idx

The algorithm is simple. For leaf rules in the grammar, the algorithm does not

need to do anything, and for branch nodes, we simply iterate over subnodes. We

omit the instances for Applicative, Alternative and CharProductionRule, which simply

translate all operations into the following foldLeaf or foldBranch as appropriate:

foldLeaf :: FoldReachableRuleInterp φ n v

foldLeaf = MkFRRI $ λ n → return n

foldBranch :: FoldReachableRuleInterp φ n v → FoldReachableRuleInterp φ n v ′ →
FoldReachableRuleInterp φ n v ′′

foldBranch ra rb = MkFRRI $ λf n → do n ′ ← foldRule ra f n

foldRule rb f n ′

The only magic of the algorithm is in the handling of references to non-terminals.

For a reference to the non-terminal idx , we need to check if we have encountered the

non-terminal idx already and if so, terminate the recursive search. If not, we fold the

fold function over the non-terminal and subsequently recurse over the production

rules of this non-terminal:

foldRef :: (EqFam φ)⇒ φ ix → FoldReachableRuleInterp φ n v →
FoldReachableRuleInterp φ n v ′

foldRef idx r = MkFRRI $ λf n →
do seen ← gets (λseenSet → seenIdx seenSet idx )

if seen then return n else putSeen idx >> foldRule r f (f idx n)

In order to define an instance of RecProductionRule for our

FoldReachableRuleInterp using foldRef , we need to modify that type to carry along

the rules for the entire grammar. By using the previously introduced openRecursion

function as a technical aid, we avoid a bit of this verbiage. The self parameter

we provide to that algorithm is constructed using the foldRef function. We then

evaluate the fold in the start non-terminal’s production rule with an initially empty

set of seen non-terminals:

foldReachable g idx f n =

let g ′ :: ∀ ix . φ ix → FoldReachableRuleInterp φ n (rr ix )

g ′ = openRecursion g (λidx → foldRef idx (g ′ idx ))

in evalState (foldRule (g ′ idx ) f n) nothingSeen

Checking whether a non-terminal end is reachable from a non-terminal start is easy

to implement in terms of foldReachable:
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isReachable :: ∀φ r rr ix ix ′ . (EqFam φ)⇒
GeneralCFG φ r rr → φ ix → φ ix ′ → Bool

isReachable g start end = foldReachable g start ((∨) ◦ eqIdx end ) False

5.4 Production rule origami

In Section 3.3, we have introduced 〈·〉∗ and 〈·〉+ operators, and we have defined

their types in Section 4.4. Formally, these operators are very similar to the other

recursive operator 〈·〉, and our modelling of them in the LoopProductionRule type

class allows us to define different interpretations, like for 〈·〉 operator.

From a parsing point of view, these operators are less fundamental than 〈·〉
operator. In this section, we implement a standard transformation, known as the

recursive interpretation of regular right part grammars (Grune & Jacobs 2008,

Section 2.3.2.4), which transforms grammars using 〈·〉∗ and 〈·〉+ to grammars which

only use 〈·〉.
The grammar transformation works by replacing calls to 〈idx〉∗ for non-

terminal idx with normal references
〈
idx ∗

〉
to newly introduced non-terminals

idx ∗. We define suitable production rules for these new non-terminals in the

transformed grammar. This transformation is implemented in our library as the

foldLoops algorithm.

In a first step, we define the domain of the transformed grammar:

data ·1 ix

data ·∗ ix

data ·fl φ ix where ·1 :: φ ix → φfl ix 1

·∗ :: φ ix → φfl ix ∗

We introduce new non-terminal types ix 1 and ix ∗, parameterised over an underlying

non-terminal type ix . The new non-terminal ix 1 represents the base non-terminal ix ,

and ix ∗ as its quantified *-variant.7 The new domain φfl , parameterised over an

underlying domain φ (the dot is a placeholder for φ in the definition), contains

proof terms for ix 1 and ix ∗ given a proof that ix is a non-terminal in the underlying

domain φ. We use the names ·1 and ·∗ in Haskell’s namespace for types and values

as respectively the non-terminal types and the constructors of the proof terms.

All necessary type classes (like FoldFam and ShowFam , and others that we have

not encountered yet) can be implemented for this new domain. As an example, we

show the FoldFam instance, which simply uses the underlying domain φ’s foldFam

function to iterate over both types of non-terminals in domain φfl :

instance FoldFam φ⇒ FoldFam φfl where

foldFam f n = foldFam (λidx → f idx ∗) $ foldFam (λidx → f idx 1) n

For representing semantic values for the new domain, we introduce a semantic

value family adapter rflv , parameterised over an underlying semantic value family r .

7 We do not require values for ix1 and ix∗ types, so we define these using the EmptyDataTypes GHC
Haskell extension.
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As you might expect, rflv wraps a value of type r ix for the new non-terminal ix 1

and a value of type [r ix ] for the non-terminal ix ∗.

data family ·flv (r :: ∗ → ∗) ix

newtype instance ·flv r ix 1 = FLBV {unFLBV :: r ix }
newtype instance ·flv r ix ∗ = FLMV {unFLMV :: [r ix ]}
consFLV :: rflv ix 1 → rflv ix ∗ → rflv ix ∗

consFLV (FLBV v ) (FLMV vs) = FLMV (v : vs)

In a second step, we define the foldLoops algorithm, which turns an extended CFG

over domain φ into the equivalent non-extended CFG over the larger domain φfl .

The algorithm only supports grammars that have already been combined with a

semantic processor, i.e. grammars of type ProcessingExtendedCFG . This leads to the

following type signature:

foldLoops :: ProcessingExtendedCFG φ r → ProcessingCFG φfl rflv

The transformed grammar is defined by the production rules for both types of

non-terminals in domain φfl . The production rules for a non-terminal idx ∗ are

straightforward. Such a non-terminal must either be the corresponding base non-

terminal idx 1 followed by another instance of non-terminal idx ∗ itself, or it must be

empty. In both cases, we make sure to produce the correct semantic value.

foldLoops bgram idx ∗ = consFLV �$ 〈
idx 1

〉
�

〈
idx ∗

〉

� pure (FLMV [ ])

The production rules for a base non-terminal idx 1 are obtained by taking the

production rules of the unmodified grammar and replacing all references to 〈idx〉∗

with calls to
〈
idx ∗

〉
. We perform this substitution by instantiating the original

grammar’s production rules with a special production rule interpretation type FLW .

The type FLW implements a production rule for the original CFG over domain φ

in terms of an underlying production rule for the transformed CFG over the

extended domain φfl . The classes Applicative, Alternative and CharProductionRule

are implemented by just passing the call through to the underlying production rules

and wrapping/unwrapping the results as appropriate (not shown for brevity). The

RecProductionRule instance transforms a reference 〈idx〉 into a reference
〈
idx 1

〉
and

the LoopProductionRule instance transforms a quantified reference 〈idx〉∗ into the

desired normal reference
〈
idx ∗

〉
. The default definition of 〈·〉+ transforms 〈idx〉+

into (:) �$ 〈idx〉� 〈idx〉∗, which is perfect for our purposes.

data FLRuleInterp p (φ :: ∗ → ∗) (r :: ∗ → ∗) v = MkFLRI {unFLRI :: p v }
instance (RecProductionRule p φfl rflv )⇒

RecProductionRule (FLRuleInterp p φ r) φ r where

〈idx〉 = MkFLRI $ unFLBV �$ 〈
idx 1

〉

instance (RecProductionRule p φfl rflv )⇒
LoopProductionRule (FLRuleInterp p φ r) φ r where

〈idx〉∗ = MkFLRI $ unFLMV �$ 〈
idx ∗

〉
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ghci> putStr $ printGrammar (foldLoops $ applyProcessor calcarith garith)

<Line*> ::= (<Line> <Line*>) | pure

<Expr*> ::= (<Expr> <Expr*>) | pure

<Term*> ::= (<Term> <Term*>) | pure

<Factor*> ::= (<Factor> <Factor*>) | pure

<Digit*> ::= (<Digit> <Digit*>) | pure

...

<Factor> ::= (<Digit> <Digit*>) | ’(’ <Expr> ’)’

...

Fig. 5. A printed version of the added production rules for ·∗ non-terminals added by the

foldLoops algorithm. We omit the ·1 production rules that are identical to the rules in Figure 4.

ghci> putStr $ printReachableGrammar (filterDiesE
(transformLeftCornerE calcGrammarArith)) $ LCBase Expr

(...)

<Expr> ::= (’(’ <Expr-’(’>) | (’0’ <Expr-’0’>) | (’1’ <Expr-’1’>) |

(’2’ <Expr-’2’>) | (’3’ <Expr-’3’>) | (’4’ <Expr-’4’>) |

(’5’ <Expr-’5’>) | (’6’ <Expr-’6’>) | (’7’ <Expr-’7’>) |

(’8’ <Expr-’8’>) | (’9’ <Expr-’9’>)

<Expr-’(’> ::= <Expr> ’)’ <Expr-Factor>

<Expr-Factor> ::= <Expr-Term>

<Expr-Term> ::= ((’*’ <Factor>) <Expr-Term>) | <Expr-Expr> | pure

<Expr-Expr> ::= ’+’ <Term> (<Expr-Expr> | pure) | (EOI <Expr-Line>)

<Expr-Line> ::= empty

<Expr-’9’> ::= <Expr-Digit>

<Expr-Digit> ::= <Digit>* <Expr-Factor>

(...)

Fig. 6. Some rules from the printed version of the arithmetic expressions grammar after

applying the left-corner transform and dead-branch removal. Output reformatted, reordered

and selected.

We can now finish our algorithm with the definition of the transformed grammar’s

production rules for non-terminals idx 1. These simply unwrap the FLRuleInterp

production rule interpretation type:

foldLoops bgram idx 1 = FLBV �$ unFLRI (bgram idx )

In Figure 5, we show the result of applying the foldLoops algorithm to the

arithmetic expressions grammar. We omit the base rules that are identical to the

rules in Figure 4.

5.5 The left-corner transform, declaratively...

As a final demonstration of a special interpretation of recursive constructs, we show

by example that our framework allows the definition of non-trivial general grammar

transformations. We develop an implementation of the left-corner transform as

defined (among others) by Moore (2000). It removes left-recursion from a grammar,

solving the problem that we have seen in Section 2.3.

Figure 6 partially shows the result of applying the left-corner transformation to

the arithmetic expressions grammar. What happens is that for, for example, the
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Expr non-terminal, the transformation has analysed the set of terminals and the set

of non-terminals that a match of Expr can possibly start with. The second set is

called the set of left corners of Expr . New non-terminals define what remains of the

Expr non-terminal after one of these terminals (e.g. Expr − ’(’) or non-terminals

(e.g. Expr − Factor) has been matched. The new rules are not (directly or mutually)

left-recursive but they define the same language as the original grammar.

In the literature, the left-corner transform is typically presented in an algorithmic

style (e.g. Blum & Koch, 1999; Moore, 2000; Baars et al., 2009): an initial grammar

is analysed, and step-by-step new rules are added to obtain a final transformed

grammar. We conjecture that such an implementation can be supported in our

framework using techniques similar to Baars et al. (2009). They define transformation

arrows to generate new type-level identifiers as well as keep track of a modifiable

typing environment for non-terminal references.

However, we prefer to give a more declarative account of the transformation. It

turns out that by analysing the algorithmic description, we can identify the three

different forms of production rules that will be generated, and the production rules

for all three can be derived from the rules in the original grammar. For any given

domain φ, we define a new domain φlc , containing three types of non-terminals: for

given non-terminals a and b and terminal t , we have non-terminals a1 (representing

the base non-terminal a), b \NT a (matching the remainder of non-terminal a when

non-terminal b has already been matched) and t \T a (matching the remainder of

non-terminal a when character t has been matched). Note again the · as placeholder

in notations.

data ·1 ix

data (· \NT ·) ix ′ ix

data (\T ·) ix

data ·lc φ ix where ·1 :: φ ix → φlc ix 1

· \NT · :: φ ix ′ → φ ix → φlc (ix ′ \NT ix )

· \T · :: Char → φ ix → φlc (\T ix )

For a semantic value family r for the underlying domain φ, we define a new

semantic value family rlc for our new domain φlc , with appropriate semantic values

for the newly introduced non-terminals. For example, since a non-terminal b \NT a

represents the remainder of a non-terminal a starting with a non-terminal b that

has already been parsed, we define the type of its semantic value as r b → r a: a

function that returns the semantic value of non-terminal a when given the value of

the already parsed non-terminal b.

data family ·lc (r :: ∗ → ∗) ix

newtype instance rlc ix 1 = LCV 1 {unLCV 1 :: r ix }
newtype instance rlc (ix ′ \NT ix ) = LCV ·\NT · {unLCV ·\NT · :: r ix ′ → r ix }
newtype instance rlc (\T ix ) = LCV ·\T · {unLCV ·\T · :: Char → r ix }

In order to construct the production rules for these new non-terminals, we need

to analyse the existing rules in the grammar. The information we need is collected

in the four fields of production rule interpretation type TLCRuleInterp:
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data TLCRuleInterp p φ r v =

MkTLCRI {tlcEmpty :: Maybe v ,

tlcFull :: p v ,

tlcNTMinNT :: ∀ ix ′ . φ ix ′ → p (r ix ′ → v ),

tlcNTMinT :: Char → p (Char → v )}

The field tlcEmpty keeps track of whether the production rule can (directly) match

the empty string, and if so, what value that produces. Under tlcFull , we keep an

unmodified version of the original production rule. Under tlcNTMinNT , we keep the

original production rule with leading (direct) references to a given base non-terminal

removed (or, in the absence of such a leading reference, a never-matching empty

rule) and tlcNTMinT provides the original production rule with leading (direct)

references to a given terminal removed.

We do not show the instances for the Applicative, Alternative and

CharProductionRule type classes for brevity. In the Applicative instance, we need to

make sure to properly handle empty and non-empty left-hand sides in the sequencing

operator (to make sure we properly detect leading tokens and references). In the

CharProductionRule instance, we interpret a call to token tt specially under the

tlcNTMinT interpretation, replacing it with the pure id rule that simply passes

through the already matched token.

The RecProductionRule instance is the most interesting one. Under the

tlcNTMinNT interpretation of the base production rule (where the current rule

has to consume a given already matched non-terminal), we need to interpret a

call to a base non-terminal 〈idx〉 as a pure rule that simply passes through the

already matched semantic value, but only if the already matched non-terminal is the

requested non-terminal idx . Otherwise, the tlcNTMinNT interpretation must fail. To

do this in a well-typed way, we use the function overrideIdx , defined in Section 5.3:

overrideIdx :: (EqFam φ)⇒ (∀ ix . φ ix → r ix )→ φ oix → r oix → (∀ ix . φ ix → r ix )

The RecProductionRule instance above defines the tlcNTMinNT interpretation of

an underlying production rule as a function that will fail for all non-terminals except

for the requested non-terminal, in which case it is an empty rule passing through

the already matched result. A technical problem is that the overrideIdx function

requires the result type of the overridden function to be directly parametric in the

non-terminal type ix , requiring us to wrap and unwrap the returned rules in the

wrapper type WrapNTMinNTP . The other interpretations are straightforward.

instance (RecProductionRule p φlc rlc ,EqFam φ)⇒
RecProductionRule (TLCRuleInterp p φ r) φ r where

〈idx :: φ ix〉 = MkTLCRI {tlcEmpty = Nothing ,

tlcFull = unLCV 1 �$ 〈idx 1〉 ,
tlcNTMinNT = rNTMinNT ,

tlcNTMinT = const empty }
where rNTMinNT :: ∀ ix ′ . φ ix ′ → p (r ix ′ → r ix )

rNTMinNT idxm = unWNMNP $
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overrideIdx (\ →WNMNP empty) idx (WNMNP (pure id )) idxm

newtype WrapNTMinNTP p r ix ix ′ = WNMNP {unWNMNP :: p (r ix ′ → r ix )}

With these instances, we have the machinery that we need to analyse a grammar’s

production rules, and we can proceed to the actual transformation of the grammar in

the function transformLeftCorner . This function is restricted to processing grammars

because the left-corner transform inherently mixes transformed versions of rules from

the original grammar and new rules of standard forms, making it difficult to work

with non-processing grammars.

transformLeftCorner ::

(FoldFam φ,EqFam φ)⇒ ProcessingCFG φ r → ProcessingCFG φlc rlc

To define the production rules of the transformed grammar, we need to know

the FIRST sets of the non-terminals (Aho et al., 2006 pp. 188–189): the set

of terminals that a match of a given non-terminal can start with. To obtain

this information, we make use of a general algorithm calcFirst , which performs

the standard FIRST-set analysis. We omit its implementation, which is relatively

straightforward (˜70 LOC in the library). With this extra information, we call

another function transformLeftCorner ′, which will generate the actual production

rules for our new non-terminals.

transformLeftCorner gram idx = transformLeftCorner ′ gram (calcFirst gram) idx

The production rules for non-terminals idx 1 are of the following form: They first

expect to see one of the tokens of the FIRST set of the non-terminal idx and then

pass on the work to the non-terminal t \T idx , properly wrapping and unwrapping

values along the way:

transformLeftCorner ′ bgram firstSet idx 1 =

let ruleT tt = flip ($) �$ token tt � (unLCV ·\T · �$ 〈tt \T idx〉)
in LCV 1 �$ Set .fold ((�) ◦ ruleT ) empty (firstSet idx )

Omitting the production rules for non-terminals ix ′ \NT ix (which are technically

similar to those that follow), all that is still required for the left-corner grammar

transformation are the rules for non-terminals t\T idx . These rules come in two forms,

because the non-terminal idx can start with character t in two ways. Either one of

the original production rules for the non-terminal idx starts with character t directly,

and in that case the remainder of that production rule becomes the production rule

for t \T idx . This remainder of the original production rule is precisely what is

represented by its interpretation under tlcNTMinT t .

The other possibility is that a production rule of idx starts with a (direct or

indirect) reference to another non-terminal idxB , and that non-terminal directly

starts with character t . This is captured by a production rule for non-terminal t\T idx

that starts with the remainder of the production rules for non-terminal idxB starting

with character t (which we again get using that production rule’s interpretation

under tlcNTMinT ) and then references non-terminal idxB \NT idx . Because non-

terminal idxB \NT idx represents the remainder of a base non-terminal idx after a
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non-terminal idxB has been matched, its production rules will properly match the

remainder of non-terminal idx .

transformLeftCorner ′ bgram (t \T (idx :: φ ix1 )) =

let bMinT :: φ ix2 → p (Char → r ix1 )

bMinT idxB = flip (◦) �$ tlcNTMinT (bgram idxB ) t �
(unLCV ·\NT · �$ 〈idxB \NT idx〉)

bMinTs = foldFam ((�) ◦ bMinT ) empty

in LCV ·\T · �$ bMinTs

� LCV ·\T · �$ tlcNTMinT (bgram idx ) t

Note that we do not actually check whether character t is in the FIRST set

of non-terminal idxB , nor that idxB is a left corner of idx . These would both

be worthwhile optimisations, but they are not necessary because in those cases

subsequent parts of the production rule in question become empty rules and can be

removed using general postprocessing algorithms (dead-branch removal and dead

non-terminal unfolding).

5.6 The grammar-combinators library

The above algorithms show that our grammar model adds useful expressiveness

to parser combinator libraries in a finally tagless style: we can do more grammar

analyses and transformations. The limitation of parser combinator libraries to

top-down parsing algorithms is also lifted: after the left-corner transform, a top-

down matching order in the transformed grammar corresponds to a left-corner

matching order for the original grammar (Rosenkrantz & Lewis, 1970). Our semantic

processors can be applied during parsing, independent of the matching order.

In addition to what we have shown, we have implemented an elaborate grammar

analysis, transformation and parsing Haskell library called grammar-combinators.

This library is designed as a collection of independently usable grammar algorithms.

The library provides a combination of various features that, to the best of our

knowledge, are unavailable in any existing parser EDSL library.

Practical features include a powerful transformation library (including the

left-corner transform and a uniform version of Paull’s left-recursion removal

(Aho et al., 2006 p. 177), support for performing grammar transformations at

compile time using Template Haskell (Sheard & Peyton Jones, 2002)), a generic

packrat parser (Ford, 2002) and basic interfaces to uu-parsinglib (Swierstra, 2009)

and Parsec (Leijen & Meijer 2001) as backend parsers. The library is an open source

and is available online.

5.7 Limitations

Notwithstanding its advantages, our typing of recursive constructs entails a certain

overhead in defining concepts such as the domain, its proof terms and pattern functor

and semantic value families, when compared to standard parser combinators (see

Section 4.6). On top of this, some limitations need to be taken into account.
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Our recursive constructs are clearly more verbose than the almost trivial recursion

in typical parser combinator libraries. However, we believe that a certain verbosity

is unavoidable if we wish to support a wide range of standard algorithms from

the parsing literature, many of which require observable recursion. Also, supporting

additional recursive constructs requires quite a bit of work. In this paper, we can see

that supporting quantified recursive constructs on top of normal recursive constructs

(which is again almost trivial in normal parser combinators) required an extra type

class, a translation algorithm involving a model of the modified domain and semantic

value families etc.

A compelling feature of parser combinators that we have not looked at is the

ease with which you can combine unrelated parsers into new ones. An example is

the definition of grammar patterns like typical comment styles or standard number

notations. We require a full view of grammars, and this makes us lose some of

the simple compositionality of parser combinators. We are experimenting with a

grammar combination primitive that partly recovers this, but it is not ready for

inclusion in the library.

Another limitation is that the added abstraction unfortunately has a performance

cost. In some initial tests, we have effectively noticed an important performance

impact, even though general optimizations for generic code (Magalhães et al., 2010)

appear to reduce it considerably. The performance impact could also be reduced

by performing grammar transformations at compile-time using Template Haskell.

A more detailed performance analysis remains for future work, but we expect that

compiler improvements are needed (like better inlining heuristics and more control

over partial evaluation) to improve performance of generic code in general and our

code in particular.

6 Related work

For background material on CFGs, parsing and grammar transformations, we refer

to Aho et al. (2006).

6.1 Finally tagless DSLs

The finally tagless style for modelling a typed object language in a meta-language

was identified and popularised by Carette et al. (2009). They demonstrate a model

of a higher order typed lambda calculus in a typed functional meta-language (they

use both Haskell and ML). Their model is parameterised by an interpretation of

the primitive operations of their object language. It uses meta-language typing to

statically ensure type-correctness of the modeled object language terms. Carette

et al., demonstrate a set of different interpretations of their lambda calculus: an

evaluator, a staged interpreter, a partial evaluator and call-by-name and call-by-

value continuation passing style transformations.

In this text, we have described why the standard fix operator is not a perfect

fit for our requirement for meta-language observable recursion in our parsing DSL

and we have defined an alternative model. It is interesting however that for any
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grammar AST, we can also consider the AST as a representation type for terms of a

separate embedded type object language, representing the semantics of the grammar.

In Carette et al.’s (2009) terminology, the standard AST type from Section 4 is an

“initial” embedding of this language, but we could have used a “finally tagless”

model for it as well. In this model, the Sum constructor would, for example,

correspond to a sum function in a grammar-specific ArithSemantics type class. Such

a finally tagless encoding is more extensible than the naive AST representation,

but our representation using the multirec pattern functor actually features this

extensibility as well; because the pattern functor is parametric in the representation

of recursive sub-data, we can apply the same technique as Swierstra (2008). In this

sense, the pattern functor offers an alternative “initial” modelling, less naive than

the standard GADT representation, and lacking its inextensibility. In addition, it

offers some benefits of its own that seem unavailable in a finally tagless style (e.g. it

supports generic algorithms using multirec (Rodriguez et al., 2009)). A more detailed

study of this correspondence is an interesting future work.

6.2 Parser combinators

Parser combinators have a long history (see Leijen & Meijer (2001) for references),

but most work employs an ω-regular representation of grammars with the associated

downsides that we have discussed in Section 1. Here we limit ourselves to work that

uses a representation of grammars in which recursion is observable. Even then,

almost all libraries are tied to a single parsing algorithm.

6.2.1 TTTAS

Baars and Swierstra (2004) and Baars et al. (2009) implement the left-corner

grammar transform (Moore 2000) using type-level naturals as the representation of

non-terminals. They ensure type-safety using a type environment encoded as a list

of types. They propose a transformation library based on the arrows abstraction,

which they use essentially for the generation of fresh type-level identifiers. Like

ours, their grammar representation explicitly represents the grammar’s recursion

in a well-typed way and allows them to implement the left-corner transform and

support left-recursive grammars.

Nevertheless, we believe our work provides advantages over theirs. Our

representation of non-terminals as a “subkind with proof terms” (Rodriguez

et al., 2009) and type environments as data families is less complex. We provide

semantic value family polymorphism, which they do not. They use stateful Trafo

transformation arrows to allow for generation of fresh non-terminal identifiers.

This allows them to implement the standard, imperative-style descriptions of

grammar transformations and imperatively extend domains step-by-step during the

transformation. Our algorithms work with fixed domains, which we found beneficial

in the sense that it has forced us to formulate the algorithms in a more functional

style. However, there may be algorithms that do not lend themselves well to such

a reformulation (although we have not encountered them in the parsing domain),
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in which case more complex techniques like Baars and Swierstra’s (2004) extensible

domains are required.

Finally, Baars and Swierstra’s (2004) grammars seem designed for compiler-

generation in Viera et al.’s (2008) alternative for the standard Haskell read -function

and they are less easily human-readable than our grammars. In the parsing domain,

Baars and Swierstra (2004) only discuss an implementation of the left-corner

grammar transform, while we show the importance of our approach for a wider

parsing library, discussing implementations of a variety of useful algorithms for

grammar analysis, transformation and parsing.

6.2.2 Dependently typed parser combinators

Brink et al. (2010) describe a dependently typed parser combinator library

implemented in the Agda programming language (Norell, 2007). Agda’s dependently

typed nature strongly simplifies the requirements on the representation of non-

terminals (types of production rules can more simply depend on non-terminals).

They implement the left-corner transformation in their formalism, and provide a

machine-checkable proof of a language-inclusion property for the transformation.

The proof of correctness properties beyond type-safety is out of range in our

Haskell implementation. In addition to making such proofs possible, the power of

dependent types also lets the authors get away with very simple models of grammars

(a list of production rules) and production rules (a left-hand side non-terminal and

a list of right-hand side symbols). They simply recalculate types from these simple

models when needed instead of going through a lot of trouble to model and carry

them around. Our use of Haskell limits us to a more restricted formalism, but this

does make our ideas more portable and our approach more disciplined. Our use

of a finally tagless model allows us to define different sets of primitives that can

be mixed and matched (keeping e.g. extended CFGs separate from normal CFGs),

whereas Brink et al. (2010) restrict themselves to standard CFGs.

Danielsson & Norell (2010) use Agda to define a provably terminating parser

combinator library of total parser combinators. They use unobservable (co-)

recursion,8 limiting them to a top-down parser algorithm. They manage to support

left-recursion (although their approach does not seem suited for online parsing)

with an algorithm based on the Brzozowski derivatives, and they provide a static

termination guarantee using dependent types and a mixture of induction and

coinduction. It is interesting that in an unpublished draft, seemingly a pre-cursor of

their total parser combinators, Danielsson and Norell (2010) investigate a model of

grammars with observable recursion, using an operator ! similar to our 〈·〉. They

discuss it as one of the two alternative modellings of grammars that solves certain

technical modularity problems of a more standard parser combinator model. The

authors do not discuss the fact that their “grammar-based” model makes recursion

observable or the additional power this provides to the model.

8 What we have been calling recursion throughout this paper is actually corecursion in their terminology.
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6.3 Observable recursion

In order to model and work with recursive structures in a pure language like

Haskell, several approaches have been explored in the literature. One branch of

research has focused on introducing a varying amount of impurity, ranging from

observing sharing within the IO monad (Gill, 2009) to adding referential identity as

a fundamental language feature (Claessen & Sands, 1999). We do not go into these

approaches in detail, as it is our goal to model the recursion in the parsing EDSL

with a representation that is observable in Haskell without compromising purity.

Much of this research focuses on the application domain of hardware description

languages and we would be interested to see if our approach can be successfully

applied in this field as well.

Carette et al. (2009) provide a form of observable recursion through the fix

primitive, which we have discussed in detail in Section 3, so we do not go into that

further. Another interesting proposal is the recursive do notation as proposed by

Erkök and Launchbury (2002), who add a primitive recursive operator for monads

in a type class MonadRec (later renamed to MonadFix ):

class Monad m ⇒ MonadRec m where

mfix :: (α→ m α)→ m α

Instances are supposed to obey three laws (strictness, purity and left-shrinking).

Analogous to the translation of Haskell’s do-notation to pure code involving the

monadic operators, Erkök and Launchbury (2002) define a recursive mdo-notation

and a translation to pure code involving monadic operators and the mfix primitive.

Erkök and Launchbury’s (2002) proposal could be used to provide observable

recursion in a monadic parser EDSL, but unfortunately, a monadic parser EDSL is

more difficult to analyse for other reasons (see e.g. Swierstra and Duponcheel, 1996,

Section 5.2). As discussed in Section 3, we believe that the FixProductionRule type

class and its fix method (based on the fix method defined by Carette et al., 2009)

are natural analogons of MonadRec and mfix for applicative functors and we think

it is an interesting future work to extend the bracket notation for applicative code

by McBride & Paterson, (2008) with a notation for recursion.

The do-notation for arrows by Paterson (2001) also translates recursion to a

recursion primitive in the ArrowLoop class, which seems to support observable

recursion. Allowing for the (limited-depth) LL(1) analysis performed by UUParse

(Swierstra & Duponcheel, 1996) was a motivation for the development of arrows

(Hughes, 2000), so together with the observable recursion primitive provided by the

ArrowLoop type class and the recursive do-notation, arrows may allow for the more

elaborate kinds of grammar analysis and transformation that we perform, but we

are not aware of any work that investigates this in more detail.
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