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Fast heuristic algorithms for computing relations in the class group
of a quadratic order, with applications to isogeny evaluation

Jean-François Biasse, Claus Fieker and Michael J. Jacobson Jr

Abstract

In this paper, we present novel algorithms for finding small relations and ideal factorizations in
the ideal class group of an order in an imaginary quadratic field, where both the norms of the
prime ideals and the size of the coefficients involved are bounded. We show how our methods can
be used to improve the computation of large-degree isogenies and endomorphism rings of elliptic
curves defined over finite fields. For these problems, we obtain improved heuristic complexity
results in almost all cases and significantly improved performance in practice. The speed-up is
especially high in situations where the ideal class group can be computed in advance.

1. Introduction

Given an ideal a in an order O in a quadratic field K and a bound B > 0, this paper presents
heuristic techniques to decompose a = (α)

∏
i p
ei
i , where α ∈ K, N (pi) 6 B and where

log|ei| 6 log|D|1/3 log log2/3 |D| for D = disc(O). Such a decomposition corresponds to the
relation a ∼

∏
i p
ei
i in Cl(O). The search for relations between prime ideals of small norm has

a direct application to the computation of Cl(O) in subexponential time. Ideal decomposition
techniques are also used to solve the discrete logarithm problem in Cl(O) in subexponential
time and the principal ideal problem (in real quadratic fields).
The main motivation for our ideal decomposition method is its application to algorithms

for elliptic curves. In particular, it allows us to evaluate the action of an ideal a ⊆ O on the
isomorphism class of a curve E over Fq satisfying End(E) ' O. Following the approach of the
Schoof–Elkies–Atkin algorithm, standard techniques enable the evaluation of the action of a
prime ideal [16]. These methods are impractical for ideals of large norm. In [4] Bröker, Charles,
and Lauter presented a method relying on the decomposition of the input ideal over a factor
basis of prime ideals of short norm. This strategy was subsequently rigorously analyzed by Jao
and Soukharev [11] who proved that the run-time was subexponential. Ideal decomposition
also applies to the computation of the endomorphism ring of an ordinary elliptic curve over
Fq. Bisson and Sutherland [3] showed how to calculate End(E) in subexponential time using
random relations in Cl(O) for candidate rings with Z[π] ⊆ O ⊆ OK , where πq is the Frobenius
endomorphism.
In the context of applications to algorithms for elliptic curves, being able to find short

relations (that is, relations with small exponents that involve only prime ideals of small norm)
has a direct impact on the running time. Isogenies of degree equal to the norm of each prime
ideal in the relation are evaluated, at a cost on the order of O(`3) for norm `. This forces
rather severe restrictions on the norm bound for finding relations required to optimize the
overall asymptotic running time. In practice, the small norm bound makes relations much
more difficult to find than is the case for other applications such as computing the ideal class
group.
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Our ideal decomposition method relies on the assumption that Cl(O) is generated by a small
number of ideal classes. We start by computing a first decomposition of the class of the input
ideal a over a larger set of primes B (which is computationally easier). Then we compute the
lattice L of all relations between ideals of B. By using the Hermite normal form (HNF) of L,
we deduce a decomposition of the class of a over a small set of generators of Cl(O) (with large
exponents). Finally, we solve the closest vector problem (CVP) in a low dimensional lattice to
deduce a decomposition of the class of a involving small exponents.

Contribution. We present a new heuristic technique for deriving short relations in Cl(O),
and we apply it to the evaluation of an isogeny of large degree on an ordinary elliptic curve
and to the computation of End(E).

Theoretical contributions
– We achieve a better asymptotic complexity for the decomposition of an input ideal a in

Cl(O) over ideals of small norm under Heuristic (H) introduced in § 5. Our complexity
is significantly better when the maximal order in which O is contained has small
discriminant.

– Our methods impact the complexity of the computation of End(E) and of the evaluation
of isogenies under Heuristic (H).

Practical contributions
– We present an implementation of our ideal decomposition technique finding short

relations significantly faster than Sutherland’s SmoothRelation C code used in [3, 11].
– Our implementation of the evaluation of large-degree isogenies and the computation of

End(E) performs significantly better than [3, 11], and can handle inputs of cryptographic
size. It is particularly fast when the ideal class group of Cl(O) is precomputed, in which
case individual isogenies can be evaluated even faster.

2. Background

Let O be an order in a number field K. We denote by Cl(O) the ideal class group of O. In
Cl(O), two fractional ideals a, b are equivalent if there is α ∈ K such that b = (α)a. We denote
this by a ∼ b. The class number of O is denoted by hO and it satisfies hO 6 |D| log|D|, where
D is the discriminant of O (see [7, § 5.10.1]). We denote the norm of a fractional ideal a of K
by N (a).
Let E1, E2 be two elliptic curves defined over Fq. An isogeny φ : E1 → E2 is a non-constant

rational map defined over Fq which is also a group homomorphism from E1 to E2. Two
curves over Fq are isomorphic over Fq if and only if they have the same j-invariant given by
j := 1728(4a3/(4a3 + 27b2)). There exists an `-isogeny between representatives of two
isomorphism classes with j-invariant j1, j2 if and only if Φ`(j1, j2) = 0, where Φ`(X,Y ) is
the `th modular polynomial.
Let E be an elliptic curve defined over Fq. We denote the ring of endomorphisms of E by

End(E). For ordinary elliptic curves over a finite field, End(E) is an order in an imaginary
quadratic field.

3. Ideal class group computation

Let (pi)i6k for some k > 0 be a set of prime ideals that generates Cl(O). Our results on the
computation of short relations in Cl(O) for a quadratic order O rely on the knowledge of a
basis of the lattice of exponent vectors (ei)i6k such that

∏
i6k p

ei
i ∼ (1). Getting this basis is

the bottleneck of the computation of Cl(O). In this section, we present updated results on the
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asymptotic complexity of the usual subexponential methods for computing Cl(O). The main
results are Conjecture 1 and Proposition 3.1.

– The computation of Cl(OK) has complexity in L∆(1/2, 3/
√

8 + o(1)), where ∆ =
disc(OK).

– The computation of Cl(O) from Cl(OK) has complexity in

L∆(1/2,
√

2/2 + o(1)) + Lf (1/3, 3
√

64/9 + o(1)) with [OK : O] = f2,

where LN (a, b) := eb log(N)a log(N)1−a . The algorithm for the computation of Cl(O) takes O as
input and outputs generators gi with their order di. It also returns a factor basis B = {p |
N (p) 6 L∆(1/2, 1/

√
8)} and a matrix H in HNF whose rows generate the lattice of ~v such

that B~v ∼ (1). The matrix H has shape

H =



h1,1 0 . . . 0
... h2,2

. . .
...

...
...

. . . 0
∗ ∗ . . . hk,k
. . . . . . . . . . . . . . . . . . . . .
(0) . . . . . . (0)


,

and it plays a crucial role in our algorithms for deriving short relations in Cl(O).

3.1. Updated complexity of the computation of Cl(OK)

Under the Generalised Riemann Hypothesis (GRH), the algorithm for computing Cl(OK)
with the best asymptotic complexity is due to Hafner and McCurley [9]. Its complexity is in
L∆(1/2,

√
2 + o(1)), where ∆ = disc(OK). This procedure is classic, and we only give its high-

level description here. Let B = {p | N (p) 6 B} for some B > 0 and n = |B|.

Algorithm 1. Computing Cl(OK) (high-level description).
Require: Maximal order OK of the imaginary quadratic field K.
Ensure: Generators and relations for Cl(OK).
1: Find m = n1+o(1) vectors ~vi such that B~vi ∼ (1).
2: Let M = (~vi)i6m. Compute the HNF H =

(H1

(0)

)
of M .

3: Compute the Smith normal form S = diag(dj) = UH1V of H1.
4: return

⊕
i Z/diZ, (gi = B~Vi)i6n, H1.

In light of the new results that have appeared since [9], we can prove, under the GRH,
that Algorithm 1 has a better complexity than L∆(1/2,

√
2 + o(1)). The proof of this updated

run-time is outside the scope of this paper and will be developed in a future work. In the rest
of the paper, we rely on Conjecture 1 to evaluate the complexity of Algorithm 1.

Conjecture 1 (GRH). Let OK be a quadratic maximal order and let ∆ = disc(OK). The
complexity of computing Cl(OK) is in L∆(1/2, 3/

√
8 + o(1)).

3.2. From Cl(OK) to Cl(O)

The complexity of our methods depend on the discriminant of the maximal order OK rather
than the discriminant of O. An important part of algorithm of Bisson and Sutherland is, given
an order O ⊆ OK , to efficiently find a generating set of relations for Cl(O). In this section, we
show how to use a precomputed generating set of relations for Cl(OK) to find the relations
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of Cl(O). Our method directly derives from a result of Klüners and Pauli [12], and it is very
efficient when the discriminant of OK is significantly less than that of O. The algorithm of
Klüners and Pauli gives us Cl(O) from Cl(OK) by using the exact sequence

1→ O∗ → OK∗ →
⊕
p|f

OKp
∗/O∗p → Cl(O)→ Cl(OK)→ 1,

where f is the conductor of O and Op denotes the localization of O at p. This means that the
knowledge of OK∗ and Cl(OK) (and of the factorization of f) gives us O∗ and Cl(O).

Algorithm 2. Computing Cl(O) from Cl(OK) (high-level description).
Require: Order O ⊆ OK of conductor f , generators and relations for Cl(OK).
Ensure: Generators and relations for Cl(O).
1: Compute generators (gi)i6k and a relation matrix M1 ∈ Zk×k for

⊕
p|f OKp

∗/O∗p.
2: Let (gi)i6l be generators of Cl(OK) and di, αi such that gdii = (αi)OK . M2 ← diag(di).
3: For each αi, find ~vi such that αi = (gj)

~vi
j6k, where αi is the image of αi in

⊕
p|f OKp

∗/O∗p.

4: M3 ← (−~vi)i6l. M ←
(
M1 M3

M2 (0)

)
.

5: Let G1, . . . , Gk ← g1, . . . , gk. Gk+1, . . . , Gk+l ← g1, . . . , gl.
6: return (Gi)i6k+l, M .

Algorithm 2 yields a representation of Cl(O) in terms of relations involving the generators of⊕
p|f OKp

∗/O∗p and Cl(OK). To compute endomorphism rings, we need to be able to represent
an ideal class in Cl(O) as a vector of exponents in Zk+l over this set of generators. Algorithm 3
describes a method to solve this problem.

Algorithm 3. Finding the class of a ⊆ O in Cl(O).
Require: Ideal a in O ⊆ OK of conductor f , generators (Gi)i6k+l and relationsM for Cl(O).

Generators (gj)j6l for Cl(OK).
Ensure: Vector ~v ∈ Zl+k such that (Gi)

~v
i6k+l is the class of a.

1: Decompose a in Cl(OK). Find α, (xi)i6k such that a = (α)
∏
i g
xi
i .

2: Decompose α in
⊕

p|f OKp
∗/O∗p. Find (yj)j6l such that α =

∏
j g

yj
j .

3: Let ~v = (x1, . . . , xk, y1, . . . , yl).
4: return ~v.

The run-time of Algorithm 3 depends on the complexity of factoring the conductor f . We
use the number field sieve [14] for this task. To date, its asymptotic complexity is conjectural.

Heuristic 1 (NFS). The complexity of factoring N > 0 with the number field sieve [14] is
in LN (1/3, 3

√
64/9 + o(1)).

Proposition 3.1 (GRH)+ (NFS). Given quadratic orders O ⊆ OK , Cl(OK), together with
the HNF of the matrix corresponding to the relations between elements in B = {p | N (p) 6
L∆(1/2, 1/

√
8)}, the run-time of Algorithm 3 is in

log(N (a))1+o(1) + L∆(1/2,
√

2/2 + o(1)) + Lf (1/3, 3
√

64/9 + o(1)) with [OK : O] = f2,

while the complexity of Algorithm 2 is in L∆(1/2,
√

2/2 + o(1)) + Lf (1/3, 3
√

64/9 + o(1)).

Proof. The two bottlenecks of this computation are the factorization of f and the original
decomposition of a with respect to B in Cl(OK). Step 1 of Algorithm 2 is achieved using
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[12, Algorithm 8.1], which is dominated by the factorization of f . Step 3 of Algorithm 2 consists
of solving the discrete logarithm problem in (O/p)∗ for p | f . Decomposing a over B is achieved
by multiplying a by random products of ideals in B, reducing the result and testing if it is
B-smooth. Reducing a induces the term log(N (a))1+o(1), while finding a smooth value takes
time L∆(1/2,

√
2/2 + o(1)).

4. Applications of the computation of short relations in Cl(O)

Action of ideals in End(E). Let O be a quadratic order and E be an ordinary elliptic curve
over Fq with O ' End(E). The class group of End(E) acts transitively on isomorphism classes
of ordinary elliptic curves (that is, on j-invariants of curves) having the same endomorphism
ring as E. More precisely, the class of an ideal a ⊆ O acts on the isomorphism class of E via
an isogeny of degree N (a). Let ` > 0, and assume that we want to evaluate an isogeny of
degree ` at P ∈ E. We choose an ideal a ⊆ O of norm ` and use the methods described in
[4, § 3.1] to compute the isogeny ϕ of degree ` corresponding to the action of a. This method
is attributed to Atkin and Elkies and was first published by Schoof [16, § 7, 8] in the context
of point counting.
Bröker, Charles and Lauter [4] proposed an algorithm to evaluate a horizontal isogeny (that

is, between curves of same endomorphism ring) of large degree ` at a point P on an ordinary
curve E of trace t defined over Fp. It produces a curve E′ that is `-isogenous to E and ϕ(P ),
where ϕ : E → E′ is the degree-` isogeny between E and E′. It was subsequently rigorously
analyzed by Jao and Soukharev [11]. Let a ⊆ O be an ideal satisfying N (a) = `. The strategy
of [4] consists in finding prime ideals p1, . . . , pk of small norm such that

∏
i pi is in the same

ideal class as a. The Atkin–Elkies method would be too expensive if applied directly to a and P .
Instead, we apply it to the (pi)i6k (which have small norm). This leads to the calculation of
Ec in the same isomorphism class as E′ and ϕc(P ), where ϕ : E → Ec is an isogeny. Then we
apply the right isomorphism ι between Ec and E′ to compute ϕ(P ).

Computing End(E). Let E be an ordinary elliptic curve of trace t over Fp and let π be its
Frobenius endomorphism. The order Z[π] lies inside the quadratic field K = Q(

√
t2 − 4p). Let

OK be the maximal order of K and let O be the order isomorphic to End(E). We know that
Z[π] ⊆ O ⊆ OK and computing End(E) can be done by identifying the conductor u of O. We
follow the approach of Bisson and Sutherland [3] that relies on the following lemma.

Lemma 4.1. Let f be the conductor of Z[π], let u be the conductor of O ' End(E), let ∆ be
the discriminant of OK and let pk be a prime power dividing f . Let O1 be the quadratic order
of discriminant D1 = (f/pj)2∆ and O2 be the quadratic order of discriminant D2 = p2k∆ for
j = vp(f)− k + 1. If a relation R of the form

∏
i pi ∼ (1) holds in Cl(O1) but not in Cl(O2),

then pk | u if and only if R does not hold in Cl(O).

The strategy from [3] consists of factoring the conductor v and testing whether pk | u for
p | f and k 6 vp(f). To perform this test, we first find a relation of the form

∏
i pi ∼ (1)

holding Cl(O1) but not in Cl(O2). Then we test whether this relation holds in Cl(O), using
the methods of [4, § 3.1].

5. Finding short relations in Cl(O)

Given generators and relations for Cl(O), the question of finding short relations between classes
of ideals of small norm is central to endomorphism ring computation and isogeny evaluation
algorithms. In this section, we show that there is a basis of short relations for Cl(O) and
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we show how to compute it. To achieve this goal, we restrict ourselves to instances of our
problem such that only C log2/3(D) ideals generate Cl(O), where D is the discriminant of O
and C > 0 is a constant. The overwhelming majority of instances of our problems satisfy this
condition. However, the best proven (under the GRH) bound, due to Bach, stipulates that
Cl(O) is generated by the primes of norm less than 12 log2(|D|). In the rest of the paper, we
restrict our complexity analysis to the case where few ideals are required to generate Cl(O).
However, our algorithms are valid for all O (with no guarantee on the run-time).

Definition 1 (Class QC). Let C > 0. We denote by QC the class of quadratic orders O
such that Cl(O) is generated by at most C log2/3(|D|) split primes, where D = disc(O).

A given quadratic order is in QC with overwhelming probability for a reasonable value of
C (say, C > 1). The proper evaluation of the proportion of quadratic ideals belonging to QC
for a given C is outside the scope of this paper. To illustrate numerically that few ideals are
required to generate Cl(OK), we drew 100 random fundamental discriminants ∆ of bit size
30, 50, . . . , 150. For each size, we reported in Table 1 the maximum number of split primes
required to generate Cl(OK) over the 100 fundamental discriminants.

5.1. Random walks in the Cayley graph of Cl(O)

Let C > 0 be a constant. Suppose we are given a family of orders O in QC . We need to argue
that each ideal class in Cl(O) can be represented by an ideal with a short decomposition. We
assume Heuristic 2.

Heuristic 2 (H). Let C > 0, O ∈ QC and (pi)i6k be C log2/3(|D|) split prime ideals
that generate Cl(O). Then each class of Cl(O) has a representative of the form

∏
i p
ni
i for

|ni| 6 elog1/3 |D|.

The main assumption behind Heuristic 2 is that the total number |D| � hO of different
possible products provides generators for all classes in Cl(O). To illustrate this, we drew
fundamental discriminants having between 20 and 50 decimal discriminants. For each of them,
we computed the ideal class group and drew 1000 classes at random, then decomposed them
over the set of the first log2/3|D| invertible primes (using the short decomposition technique
described in § 6). We reported the maximal absolute value of a coefficient occurring in a
decomposition. The results presented in Table 2 show that this maximal value is systematically
significantly less than elog1/3|D|.
To prove Heuristic 1, the natural direction would be to follow the approach of Jao et al. [10].

They were able to give bounds on the eigenvalue of the Cayley graph (Sx,Cl(O)), where
Sx is the set of primes p with N (p) 6 x together with their inverses. When x > log2|D|,

Table 1. Maximal number of primes required to generate Cl(OK).

log2|∆| blog2/3 |∆|c Maximal number of primes

30 7 4
50 10 5
70 13 3
90 15 4

110 17 4
130 20 4
150 22 3
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a non-trivial inequality between the non-trivial eigenvalues λ and the trivial one λtriv derives
from [10, Theorem 1.1]. Then [10, Lemma 2.1] shows that random walks in (Sx,Cl(O)) of
length (log(2|Cl(O)|)/|Sx|1/2)/log(λtriv/λ) have the same probability of ending in any subset
of Cl(O). This proves that short decomposition of ideal classes exist when we allow all the
primes of norm less than log2+ε|D| to occur in the relations. With our restriction on the factor
basis, the statement remains conjectural.

5.2. Existence of short relations

Let C > 0 and let O be a quadratic order in QC of discriminant D. Let B = {pi}i6k with
k 6 C log2/3(|D|) be a generating set for Cl(O). We show that there is a basis b1, . . . , bk of the
lattice of relations between elements of B such that each bi ∈ Zk has entries with absolute value
bounded by e(1+o(1)) log1/3|D|. We follow the approach of Bisson [2], which consists of rewriting
relations between ideals of B and generators of Cl(O) with respect to short decompositions
obtained from Corollary 2. For each invertible fractional ideal a, we define σ(a) ∈ Zk to be
one of the vectors ~v with entries bounded by elog1/3|D| such that a ∼ B~v (such a vector exists
under Heuristic 2.

Proposition 5.1 (H). There is a basis of the lattice L of vectors ~v such that B~v ∼ (1)

consisting of vectors with entries bounded by e(1+o(1)) log1/3|D|.

Proof. Let (gi)i6l be the generators of Cl(O) and di be the exponents such that gdii ∼ (1).
The following vectors are in L.

– σ(g2j

i )− 2σ(g2j−1

i ) for j 6 log2(di).
–
∑
j bjσ(g2j

i ), where bj is the jth bit of di.
This is just rewriting that gdii ∼ (1). The class of each p ∈ B can be re-written with respect to
the gi as p ∼

∏
gnii . Then we have two short vectors representing p: σ(p) and

∑
i

∑
j ci,jσ(g2j

i ),
where ci,j is the jth bit of di. The vectors σ(p)−

∑
i

∑
j ci,jσ(g2j

i ) are a basis for L and their

coefficients are in e(1+o(1)) log1/3|D|.

5.3. Finding a short relation

In this section, we show how to find short relations. Let C > 0 and let O be a quadratic order
in QC of discriminant D. Let B = {pi}i6k with k 6 C log2/3(|D|) be a generating set for
Cl(O). We start by finding an arbitrary basis for the lattice L of relations between elements in
B = {pi}i6k with k 6 C log2/3(|D|). We assume that Cl(OK) was precomputed. Our method
simply consists of repeated calls to Algorithm 3.

Table 2. Maximal exponent occurring in short decompositions (over 1000 random instances).

log10|D| log2/3|D| Maximal coefficient elog
1/3|D|

20 13 6 36
25 15 8 48
30 17 7 61
35 19 9 75
40 20 10 91
45 22 14 110
50 24 13 130
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Algorithm 4. Relation matrix for B.
Require: Order O, generators and relations for Cl(OK) and B = {pi}i6k.
Ensure: A basis for the lattice of relations between elements of B in Cl(O).
1: For each p in B, compute the class of p with Algorithm 3.
2: Build the matrix of the morphism φ : Zk → Cl(O), defined by φ(~v) = [B~v].
3: Find a basis b1, . . . , bk of the kernel of φ.
4: return b1, . . . , bk.

Once a basis b1, . . . , bk of L is found, we use standard methods to compute U ∈ GLn(Z) such
that U ·M = H, where H is the HNF of M . The upper k× k block of the HNF of M has the
shape

(H1 (0)

H2 I

)
, where I is an identity block. The block H1 is called the essential part of the

HNF. Under GRH, the dimensions of H1 are in O(log2|D|) while, under Hypothesis 2, they
are in O(log2/3|D|). This means that the rows of H1 are relations with very short support.
Unfortunately the coefficients of H1 are of the order of magnitude of

√
|D|. However, we

showed heuristically, in § 5.2, that the lattice L generated by the rows of H1 contained short
relations. To find them, we use the BKZ lattice reduction method. With the appropriate block
size, its run-time is in LD(1/3, O(1)).

Algorithm 5. Finding small relations in Cl(O).
Require: C > 0, r > 0, O ∈ QD of discriminant D, B > 0, generators and relations for

Cl(OK).
Ensure: A matrix M ′ whose rows (e1, . . . , ek) are such that

∏
i6k p

ei
i ∼ (1) for split primes

pi generating Cl(O) and k = C log2/3(|D|).
1: Let p1, . . . , pk be a generating set for Cl(O) for k = C log2/3(|D|).
2: Let B = {p1, . . . , pm}, where {pk+1, . . . , pm} are the split primes of norm less than B.
3: Find the matrix M whose rows generate the lattice of relations between prime of B using

Algorithm 4.
4: Find the HNF

(
H1 (0)

H2 I

)
of M , where H1 ∈ Zk×k.

5: Let M ′ be the output of the BKZ reduction of the rows of H1.
6: return M ′.

Proposition 5.2 (GRH)+ (NFS)+ (H). Given Cl(OK) and relations between primes in
{p | N (p) 6 L∆(1/2, 1/

√
8)}, Algorithm 5 used with block size r = log|D|1/3 log log1/2 |D|

returns a basis of vectors of L with entries in LD(1/3, 1 + o(1)) in time

L∆(1/2,
√

2/2 + o(1)) + LD(1/3, 1 + o(1)) + Lf (1/3, 3
√

64/9 + o(1)) with [OK : O] = f2.

Proof. Ajtai, Kumar and Sivakumar’s updated BKZ reduction [1] stipulates that we can
obtain an approximation factor of rk/r in time 2O(r). With r = log|D|1/3 log log1/2 |D|, the
run-time satisfies 2O(r) � LD(1/3, 1 + o(1)). The rest of the run-time is bounded by Step 2
which is done using Algorithm 3 for all ideals in B. The approximation factor rk/r = elog(r)k/r

satisfies the inequality

k

r
log(r) 6

C

3
log1/3(|D|) log1/2(|D|)(1 + o(1))� log1/3(|D|) log2/3(|D|)(1 + o(1)).

Under Heuristic 2, the size of the smallest vector of L is no more than e(1+o(1)) log1/3|D|.
Therefore, the entries of the output of Algorithm 5 are in LD(1/3, 1 + o(1)).
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6. Computation of a short decomposition of an ideal

In this section, we show how to compute a short decomposition of an input ideal a ⊆ O.
More specifically, we show that given Cl(OK) (together with a relation matrix in HNF form),
an input ideal a and a factor basis B such that |B| 6 C log2/3|D|, where D = disc(O), our
algorithm returns (ni)i6k with |ni| ∈ LD(1/3, 1 + o(1)) such that a ∼

∏
i p
ni
i . This is used

in § 7 to evaluate an isogeny of large degree ` = N (a). Our strategy has two main steps.
(1) Find a decomposition a ∼ pm1

1 . . . pmkk in Cl(O), where B = {pi}i6k.
(2) Refine the previous decomposition to a ∼ pn1

1 . . . pnkk , where |ni| ∈ LD(1/3, 1 + o(1)).

6.1. Description of the ideal decomposition procedure

First decomposition. We decompose a with respect to the factor basis of Cl(O) by calling
Algorithm 3 and solving a linear system. The original decomposition has coefficients that can
be as large as |D|1/2, which prohibits efficient isogeny evaluation.

Algorithm 6. Decomposition of a with respect to B.
Require: C > 0, O ∈ QC , ideal a ⊆ O, generators (Gi)i6k+l and relations for Cl(O),

generating set B = {pi}i6k for Cl(O) with k 6 C log2/3|D|, D = disc(O).
Ensure: (mi)i6k such that a ∼

∏
i p
mi
i in Cl(O).

1: Find the vector ~a of the decomposition of a with respect to (Gi)i6k+l with Algorithm 3.
2: Find the vectors ~vj of the decomposition the pj with respect to (Gi)i6k+l with Algorithm 3.
3: Let M = (~vj)j6k. Solve the linear system ~mM = ~a.
4: return ~m.

Proposition 6.1 (GRH)+ (NFS)+ (H). Algorithm 6 returns a valid decomposition of a
with respect to B = {pi}i6k with k 6 C log2/3|D|, where D = disc(O) in time

log(N (a))1+o(1) + L∆(1/2,
√

2/2 + o(1)) + Lf (1/3, 3
√

64/9 + o(1)) with [OK : O] = f2.

Refinement of the decomposition. The next step consists of finding a close vector (ei)i6k
to (mi)i6k that belongs to the lattice of relations between elements of B and which satisfies
|B| 6 C log2/3|D|. Exactly solving the CVP is a hard problem. Even with a subexponential
approximation factor, the dimension of the relation lattice (under GRH) is too large to allow for
a subexponential run- time. In Proposition 6.2, we show that Algorithm 6 has a subexponential
run-time if O ∈ QC for a constant C > 0 and if we assume Heuristic 2.

Algorithm 7. Short decomposition of a with respect to B.
Require: C > 0, O ∈ QC with D = disc(O), prime ideals (pi)i6k with k 6 C log2/3(|D|) that

generate Cl(O) and a basis for the lattice L of (vi)i6k ∈ Zk such that
∏
i6k p

vi
i ∼ (1).

Ensure: Decomposition a ∼
∏
i p
ni
i in Cl(O) with |ni| ∈ LD(1/3, 1 + o(1)).

1: Find a decomposition a ∼
∏
i p
mi
i in Cl(O) with Algorithm 6.

2: Use BKZ with block size r = log|D|1/3 log log2/3 |D| to get a reduced basis (bi)i6k of L.
3: Use Babai’s nearest plane algorithm to find a close vector (ei)i6k to (mi)i6k in L.
4: For i 6 k, ni ← mi − ei.
5: return (ni)i6k.
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Proposition 6.2 (GRH)+ (NFS)+ (H). Algorithm 7 returns a valid decomposition of a
with respect to a factor basis B satisfying |B| 6 C log2/3|D| with coefficients in LD(1/3, 1+o(1))

in time

log(N (a))1+o(1) + L∆(1/2,
√

2/2 + o(1)) + LD(1/3, 1 + o(1)) + Lf (1/3, 3
√

64/9 + o(1)),

with [OK : O] = f2.

Proof. The run-time of Step 1 is given by Proposition 6.1. The rest of the run-time of
Algorithm 7 is dominated by Step 2. As we assume Heuristic 2, the dimension of the input
lattice L is in O(log2/3|D|), whereas it would be in O(log2(|D|)) if we were only assuming
the GRH. This has a direct impact on the run-time of Step 2 of Algorithm 7. Apart from the
dimension of L, the run-time of Step 2 is ruled by the block size that is used to run the BKZ
algorithm. Choosing r = log|D|1/3 log log1/2 |D| implies that the output of Step 2 is a reduced
basis of L with vectors of size within a factor rk/r of the size of the shortest vectors of L. With
this block size, the run-time of Step 2 is in 2O(r) � LD(1/3, 1 + o(1)).
Step 3 solves the approximate CVP problem, that is, it finds a vector ~e = (ei)i6k ∈ L such

that ‖~e − ~m‖ 6 γ dist(~m,L) for some γ > 1, where ~m = (mi)i6k. If the input of Step 3 is a
basis for L, whose vectors have size within a factor

√
γ/n of the size of the smallest vector of

L where n = dim(L), then the output of Step 3 is a solution to the approximate CVP with
approximation factor γ (see [17, § 5] for a proof of that statement). According to Heuristic 2,
dist(~m,L) is in e(1+o(1)) log1/3|D|. The approximation factor for the solution to γ-CVP of Step 3
satisfies γ = nr2k/r � LD(1/3, 1 +o(1)), and hence the output of Algorithm 7 is a vector with
coefficients in LD(1/3, 1 + o(1)).

Comparison of the theoretical complexity with other methods. In [3, 11], another
decomposition method was used. Let us compare the run-time of Algorithm 7 with the
algorithm of [3, 11]. Our algorithm decomposes an input ideal a in Cl(O) with respect to
prime ideals of norm bounded by B, where B is chosen by the user. It also produces random
relations in Cl(O) between primes of norm less than a bound B (by setting a = O). For the
applications to isogeny evaluation and endomorphism ring computation, we are interested in
choosing a small B. In [3, 11], relations with smoothness bound L∆(1/2, 1/2

√
3) are derived.

The complexity of the method used in [3, 11] is in

log(N (a))1+o(1) + LD(1/2,
√

3/2 + o(1)) where D = disc(O).

For the same smoothness bound B, our method for deriving relations in Cl(O) offers an
asymptotic speed-up in two typical scenarios:

– when the ideal class group of Cl(OK) is known in advance; and
– when O ( OK .

In the event that O = OK and that Cl(OK) is not known, our method still provides an
asymptotic speed-up if we seek short relations with a smaller smoothness bound B. However, if
one only seeks one random relation between primes of norm bounded by L∆(1/2, 1/2

√
3), then

the complexity of the computation of Cl(OK) will dominate the run-time. This is expected
as there is no reason why the computation of one random relation without any particular
restriction would be any slower than the computation of the entire lattice of relations. In [11], it
was shown that these relations were asymptotically optimal for isogeny evaluation. In practice,
however, we observed that evaluating the action of large primes comes at a high cost (see § 7).
Deriving short relations for a small smoothness bound B is therefore very relevant to isogeny
evaluation and we can easily show that, even when O = OK and when Cl(OK) is unknown,
our algorithm performs asymptotically better than the methods of [3, 11] when looking for
relations involving primes of norm bounded by B 6 LD(1/2,

√
2/6).
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6.2. Comparative timings
Timings for a decomposition in Cl(OK). We present numerical experiments highlighting the

impact of our decomposition method when working in a maximal order of large discriminant.
We compared our method to Sutherland’s SmoothRelation C code which was used in [3] for
computing endomorphism rings and in [11] for evaluating isogenies. We considered quadratic
orders of (fundamental) discriminant ∆ = −(1030 + 57), ∆ = −(1040 + 121), ∆ = −(1045 + 9)
and ∆ = −(1050 + 151). For each discriminant, we decomposed one of the prime ideals above
the first twenty Elkies primes above |∆|/2 over the split primes of norm less than B where B
ranges between 100 and 500. We compared the average time over the twenty instances with
the amortized time, which assumes that the precomputation of the ideal class group of OK is
done only once. Besides the timings, we also reported an average score of the relations that
were found. This score consists of the theoretical complexity of the evaluation of the action of
a relation of the form a ∼

∏
i p
ei
i on an elliptic curve with endomorphism ring OK . According

to [11], this cost is proportional to
∑
i p

3+ε
i + |ei|p2+ε

i for ε > 0 arbitrarily small and where
pi = N (pi). A high score means that the relation is of bad quality because the estimated
time to evaluate the corresponding isogeny is high. The results are presented in Table A.1, in
Appendix A. Our method achieves a significant speed-up for non-trivial instances. For example,
it is about 100 times faster when B = 260 and allows us to reach a lower smoothness bound
than SmoothRelation at no extra cost.

Timings for a decomposition in Cl(O) when O ( OK . We now illustrate the impact of
deriving relations in Cl(O) from relations in Cl(OK). We chose a series of quadratic orders
O4 ⊂ O3 ⊂ O2 ⊂ O1 ⊂ OK , whereOK is the ring of integers ofK = Q(

√
−7). This corresponds

to orders illustrating Bisson and Sutherland’s algorithm for computing the End(E) [3, § 5.2].
The discriminants of the quadratic orders are:

– disc(O1) = −7 · 8528572;
– disc(O2) = −7 · 8528572 · 5825112;
– disc(O3) = −7 · 8528572 · 5825112 · 5825092; and
– disc(O4) = −7 · 8528572 · 5825112 · 5825092 · 23058430092136939512.

We followed the same protocol as in the previous paragraph. For each order Oi,
where i = 1, . . . , 4, we decomposed the first twenty Elkies primes over |Di|/2 in Cl(Oi), where
Di = disc(Oi). We repeated the experiment for different values of the smoothness bound.
The timings are presented in Table B.1, in Appendix B. We observed a significant speed-up
for non-trivial inputs (O3 and O4). For example, the average time to find a decomposition in
Cl(O3) with a smoothness bound of B = 200 with our method is 0.12 s, while it is 133.06 s
with SmoothRelation for a comparable score. As before, our method does not suffer from
restrictions on the size of the factor base. In this case, as the ideal class group of OK is
particularly small, it is, in fact, faster to derive shorter relations.

7. Isogeny evaluation

We show the impact of § 5 on the evaluation of an isogeny. Let E be an ordinary elliptic curve
defined over Fp with trace t. The endomorphism ring End(E) is isomorphic to an order O
inside K = Q(

√
t2 − 4p). Given a prime ideal L of K of large norm, we show how to evaluate,

up to isomorphisms of E, the unique normalized horizontal isogeny whose kernel is isomorphic
to L ∩ O. Our approach follows [11], which derives from [4].

7.1. Description of the algorithm

Algorithm 8 describes how to evaluate a large-degree isogeny at a point on an ordinary
curve using an ideal decomposition method. This corresponds to [4, Algorithm 4.1] and
[11, Algorithm 1].
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Algorithm 8. Isogeny evaluation.
Require: E defined over Fq of characteristic p, P ∈ E(Fpn) with gcd([OK : Z[π], #E(Fpn) =

1) and L ⊆ OK of prime norm ` 6= p - [OK : Z[π]].
Ensure: E′ admitting a normalized isogeny φ : E → E′ with kernel E[L] and x(φ(P )).
1: Find O ' End(E) with Algorithm 9.
2: Decompose L ∩ O ∼

∏
i p
ei
i with |ei| ∈ LD(1/3, 1 + o(1)) with Algorithm 7.

3: Find α such that L ∩ O = (α)
∏
i p
ei
i using Cornacchia’s algorithm.

4: Repeat the method of [4, § 3.1] to find φc : E → Ec with kernel E[
∏
i p
ei
i ].

5: Evaluate φc(P ) ∈ Ec[Fqn ].
6: Write α = (u+ vπ)/(zm). Find η : Ec → E′ with η∗(ωE′) = (u/zm)ωEc , using [4, § 4].
7: Compute Q = η(φc(P )) and (zm)−1 mod #(E(Fqn)). R← ((zm)−1(u+ vπ))(Q).
8: return E′, x(R).

Proposition 7.1 (GRH)+ (NFS)+ (H). Let C > 0 be a constant. Suppose that End(E) '
O ∈ QC with disc(O) = D and let f be the conductor of Z[π], where π is the Frobenius
endomorphism and OK is the maximal order containing O. The complexity of Algorithm 8 is
in

log(`)1+o(1) + Lf (1/3, 3
√

64/9 + o(1)) + LD(1/3, 1 + o(1)) + L∆(1/2, 3/
√

8 + o(1)),

with ∆ = disc(OK). Moreover, the run-time of subsequent isogeny computation (for any curve
E′ with End(E′) ' O′ ⊆ OK) is in log(`)1+o(1) +Lv(1/3,

3
√

64/9 + o(1)) +LD(1/3, 1 + o(1)) +

L∆(1/2,
√

2/2+o(1)). This complexity also holds true for the first isogeny evaluation if Cl(OK)
is known in advance.

The algorithm of Jao and Soukharev runs in time log(`)1+o(1) + Lf (1/3, 3
√

64/9 + o(1)) +

LDπ (1/2,
√

3/2 + o(1)) if we incorporate the computation of End(E) in the evaluation of φ. If
not, the complexity of Jao and Soukharev’s method becomes log(`)1+o(1) + LD(1/2,

√
3/2 +

o(1)). Therefore, our method provides an asymptotic speed-up when O ( OK and when
Cl(OK) is known in advance. In addition, as we see in § 7.2, we obtain a significant speed-up
in practice even when O = OK and Cl(OK) is not known because of the cost of evaluating the
action of large primes of large size (as discussed in § 7.2).

7.2. Numerical experiments

The cost of the action of p in practice. Our numerical experiments highlighted the cost
of the evaluation of the action of a prime p on the curve E when N (p) is large (above 300)
and when the characteristic of the field of definition of E is large. This means that even
when our method cannot leverage a precomputation of Cl(OK) or take advantage of a large
gap between O and OK , we still obtain a significant speed-up when working with non-trivial
examples. Indeed, our algorithm returns very short relations that only involve primes whose
action is easy to evaluate. According to [11], the cost of evaluating a relation is dominated
by the computation of the Φ`(X,Y ) mod p, where ` is the norm of prime ideals occurring in
the relation. The computation of Φ`(X,Y ) mod p can be expensive, in practice, as shown by
[5, Table 3]. Other modular polynomials can be used on restricted classes of curves, for example
the Weber polynomials. Also, the methods of [18] allow us to compute Φ`(X, j(E)), given j(E)
and `, significantly faster than the computation of Φ`. However, our numerical experiments
highlighted the high cost of computing the action of p given Φ`, where ` = N (p). We collected
the run-time of the execution of the Atkin–Elkies technique for split primes ` < 300 using the
modular polynomials available on Sutherland’s web page on the curve E : y2 = x3 + ax + b
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over Fp, where

p = 862591559561497151050143615844796924047865589835498401307522524859467869

a = 20125117492400602839381236756362453725976037283079104527317913759073622

b = 545482459632327583111433582031095022426858572446976004219654298705912499.

Table C.1 shows that the cost of running the Atikin–Elkies technique is, in practice, higher
than the cost of computing the modular polynomials. To the best of our knowledge, there is
no record in the literature of the execution of the Atkin–Elkies technique for non-trivial values
of p. Indeed, the computations of [4, 11] were made on the precomputed modular polynomials
available in Magma of lever less than 60. This makes our short relation algorithm even more
relevant in practice than what theory suggests.

ECC_p239: a large example. Our first example to illustrate the impact of our ideal
decomposition technique on isogeny evaluation is the curve ECC_p239 of the Certicom
challenge. As in [11, § 5.3], we decompose the first Elkies prime above p/2. In [11, § 5.3],
Jao and Soukharev only decomposed the input ideal over primes of norm less than 5000 using
SmoothRelation. Over twenty random instances, the average time on a Intel Core i7-2600 CPU
at 3.40 GHz to find a smooth relation was 21.5 h, and the estimated time to compute the
corresponding modular polynomials was 12.3 h. Our method returned a short decomposition
L ∼ p4

277p
−3
271p

1
269p

5
257p

1
239p

−3
211p

−6
199p

−1
197p

−5
193p

4
179p

−3
167p

10
163p

−7
151p

8
137p

8
131p

−2
113p

5
97p

1
89p
−3
83 p

2
71p
−3
59 p

1
37p
−2
29

p−2
23 p
−3
19 p
−8
11 p

3
7 in 2.7 h, which we were able to evaluate at the point P of the challenge in

47 min. The time to find subsequent relations is under 100 s.

ECC_p359: a very large example. We handled this example which was out of the reach of
the methods developed in [11]. We evaluated an isogeny of degree `, where ` is the next Elkies
prime above p/2 on the curve ECC_p359 from the Certicom challenge. Our method returned
the short decomposition L ∼ p−22

293 p
15
277p

4
263p

8
251p

17
239p

19
229p227p

19
223p

−15
211 p

−10
191 p

−11
179 p

−12
173 p

−15
157 p151p

−2
137

p−1
131p

18
113p

−10
103 p

26
101p

−10
71 p−12

67 p13
61p

20
59p

23
53p
−2
37 p

15
31p19p

−21
17 p−7

7 . We computed the relation matrix in six
days on 64 cores Intel X7560 Xeon at 2.27 GHz. Computing its HNF took an extra eight days
on 64 cores using Gaussian elimination and the HNF algorithm of [15]. The first factorization
of the ideal took four days on one core, and the search for a small relation took only two
minutes. The subsequent evaluation of the isogeny corresponding to L at the point P of the
challenge took five hours. The bottleneck of the evaluation is because the repeated execution
of the Atkin–Elkies, using Sutherland’s precomputed modular polynomials of level up to 300,
leads to the curve E : y2 = x3 + acx+ bc, where

ac = 0x17926806106C0B651E621375531E008FFA57A529DF58B2CB4BAE28

794301EC671638134938F6BF8C8110539B98,

bc = 0x3CD8EC661E34C138DC8619B776B4464194D22A53797E5360A81AC64

16E27A50634F7CD57765113325DBBF845AD.

This took 17954.42 CPU sec on an Intel Core i7-2600 CPU at 3.40 GHz with 8 GB of memory.
The image of P by the corresponding isogeny φc is

Pc = (0x32E0033B0ECFDE10D1D4A3924267356E71C05C62A3F47C0408457B

E6C150A44540F377277B7214CF9D55DEE14F

: 0x61C3257F04B967F180FA47237A73B7660158E344959BB982BACC9F0

9843260F4079AC0B69E840E602CFCAEB3D : 1).
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Using the method of [4, § 4], we find η : E → E′ and E′ : y2 = x3 + a′x+ b′ over Fp, where

a′ = 0x3C11F6F60BE244C7F3CA424353FB5AA6E307ECBCB1FD46523A64EC

C66DCBA2650CA3F5F86AE07FDA4ECB70DECB,

b′ = 0x1348E3530180FA7FF30F387E52ACFB1BE7945AB2F910C63891E4D06

14F0071FFE13C57B787DC0D590456350E39.

Then we compute u, v, z,m such that α = (u + vπ)/(zm), Q = η(Pc) and P ′ = ((zm)−1

(u+ v))Q.

P ′ = (0x35CAE02BC65146B0252B5CE0FDEBA04205AE070128993BB208A7E2

5DE06404D2F2CCFAB21EBB3

: 0x40DAAA91EABF3D3B6ED5368E9A667289C6CA72CE89DE24046CF282

EF7AA1E18CB50F8EBFAEDCDB4F50B96A07D : 1).

8. Calculating End(E)

We also successfully applied our ideal decomposition technique to the computation of the
endomorphism ring of an ordinary elliptic curve E over Fp. We followed the approach of
Bisson and Sutherland. Given the maximal order OK and Z[π], where π is the Frobenius
endomorphism andK = Q(

√
t2 − 4p), we compute the orderO which is isomorphic to End(E).

The orders Z[π] ⊆ O ⊆ OK are identified by their conductor u, which satisfies 1 6 u 6 f ,
where f is the conductor of Z[π].

8.1. Theoretical complexity of computing End(E)

The result of Bisson and Sutherland consists of two different methods for computing u. From
below: for increasingly large divisors u of f , try to certify with [3, Alg. Certify] if the conductor
of End(E) is u. From above: for each p | f , test if p | u (corresponds to Algorithm 9. Both
strategies rely on two ingredients: finding random relations in Cl(O) for some Z[π] ⊆ O ⊆ OK
and testing if the action of a product

∏
i p
ei
i on the isomorphism class of E is trivial. Therefore,

substituting the random walk relation search in Cl(O) by the methods we described in § 5
provides a significant speed-up.

Algorithm 9. Computing End(E) (from above).
Require: E of trace t defined over Fp, DK = disc(OK) and v conductor of Z[π] in OK .
Ensure: u such that End(E) is the quadratic order of order u.
1: u← 1.
2: for p | f do
3: for k 6 vp(f) do
4: Let O1 with disc(O1) = (f/pj)2DK and O2 with disc(O2) = p2kDK .
5: Find a relation R holding in Cl(O1) but not in Cl(O2). We denote it by R/O1.
6: If R/O1 does not hold in Cl(End(E)): u← u · p.
7: end for
8: end for
9: return u.
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Proposition 8.1 (GRH)+ (NFS)+ (H). Let C > 0 be a constant. Let f be the conductor
of Z[π], let Dπ = disc(Z[π]) and let ∆ = disc(OK), where OK ∈ QC is the maximal order
containing Z[π]. The complexity of computing End(E) with Algorithm 9 (from above), using
the short relation generation methods described in § 5 is in

Lf (1/3, 3
√

64/9 + o(1)) + LDπ (1/3, 1 + o(1)) + L∆(1/2, 3/
√

8 + o(1)).

The endomorphism ring computation ‘from below’ is described in detail in [3, Algorithm 2].
Let D = disc(End(E)). The complexity of the methods described in [3] is:

– Lf (1/3, 3
√

64/9 + o(1)) + LDπ (1/2,
√

3/2 + o(1)) when computing End(E) from above;
and

– Lf (1/3, 3
√

64/9 + o(1)) + LD(1/2 + ε, 1) for arbitrarily small ε > 0 from below.
Our method is asymptotically faster in all cases except when Z[π] = OK , but, in this case, the
answer End(E) = OK to our problem is trivial.

8.2. Numerical experiments

Finding interesting examples for the problem of computing End(E) is a hard problem. To
illustrate the speed-up provided by our ideal decomposition technique, we computed End(E)
from above, where E is the example provided by Bisson and Sutherland [3, § 5.2]. We ran this
computation only for comparison purposes, as the approach from below works better for this
particular curve. The conductor v of Z[π] factors as

v = 2 · 127 · 582509︸ ︷︷ ︸
p1

· 582511︸ ︷︷ ︸
p2

· 852857︸ ︷︷ ︸
p3

· 2305843009213693951︸ ︷︷ ︸
p4

.

The primes 2 and 127 are treated by isogeny climbing. Then we perform the following tests.
– p1 - u: we get R/O1 in 0.06 s and check it does not hold in Cl(End(E)) in 465 s.
– p2 | u: we get R/O2 in 0.07 s and check it holds in Cl(End(E)) in 540 s.
– p3 - u: we get R/O3 in 0.07 s and check it holds in Cl(End(E)) in 426 s.
– p4 - u: we get R/O4 in 0.03 s and check it holds in Cl(End(E)) in 108 s.

In comparison with relations derived with SmoothRelation, the computation of End(E) from
above takes the better part of a day [3, § 5.2]. Indeed, according to a private communication of
Sutherland, the total time to produce B-smooth relations with B = 4000 for all orders is fifteen
minutes. Then, as Weber polynomials do not apply to this particular curve, the evaluation of
the action of each prime of norm more than 2000 takes at least an hour. The exact relations
R/Oi can be found in Appendix C.

9. Conclusion and further perspectives

Curves of higher genus. Our ideal decomposition technique readily applies to orders in
families of number fields with fixed degree. Therefore, it can be used for evaluating isogenies
and computing the endomorphism ring of abelian varieties with complex multiplication by
such orders. In particular, we anticipate that it will be rather straightforward to implement our
techniques for the genus two case since we can substitute the j invariants and the corresponding
modular polynomials by their generalization [8].

Quantum algorithms. Our ideal decomposition algorithm minimizes the impact of the
execution of the BKZ algorithm. Quantum computers can compute Cl(O) and factor the
conductor of O in polynomial time. Therefore, the run- time of the decomposition of a ⊆ O
is dominated by the BKZ algorithm (in LD(1/3, 1 + o(1))). Applying our method to isogeny
evaluation and to the computation of End(E), yields a quantum LD(1/3, 1 +o(1)) complexity.
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Proposition 9.1. Given an ordinary elliptic curve E over Fq and ` > 0, there is a heuristic
quantum algorithm for computing End(E) in time LD(1/3, 1 + o(1)) and for evaluating a
horizontal l-isogeny on E in time LD(1/3, 1 + o(1)), where D = disc(End(E)) and where the
polynomial factors are omitted.

The previous state-of-the-art was LD(1/2, O(1)). Fast evaluation of the action of an ideal is
a key ingredient of the subexponential quantum algorithm of Jao and Soukharev to compute
an isogeny between two input curves [6]. Sadly, our method does not provide a better run-time
for this task because Kuperberg’s sieve, which was used to solve the isogeny problem, requires
LD(1/2, O(1)) calls to an oracle evaluating the action of an ideal, and thus dominates the run-
time.

Supersingular curves. Given an order O in a quaternion algebra, the `-isogeny path in O
was recently shown to be easy [13]. Therefore, the computation of the endomorphism ring of a
supersingular curve is very important for isogeny computation. Whether the search for small
decompositions of ideals in orders could be leveraged to identify the endomorphism ring of a
supersingular curve remains an open problem to this date.

Appendix A. Short decompositions in Cl(OK)

Timings are quoted in CPU seconds. They were obtained on a Intel Core i7-2600 CPU
at 3.40 GHz with 8 GB of memory. Timings for the SmoothRelation correspond to v1.3
compiled with GMP 6.1.0. Our methods were implemented with Magma v.2.21-7, which
includes Biasse’s implementation of Jacobson’s quadratic sieve algorithm for computing the
class group. Empty spaces correspond to input values for which SmoothRelation could not
complete the computational tasks. The amortized time correspond to the average time over
twenty instances, where the ideal class group is computed only once.

Table A.1. Decomposition of the first 20 Elkies primes above |D|/2 in Cl(OK).

Data This paper SmoothRelation
∆ B Average t Amortized t Average score Average t Average score

−(1030 + 57)

300 4.65 0.41 126 715 962 0.39 44 697 833
280 4.64 0.40 134 701 855 0.58 42 440 149
260 4.63 0.39 98 368 419 1.65 32 718 214
240 4.63 0.39 59 695 240 1.89 28 583 231
220 4.62 0.39 40 098 146 3.03 11 109 250
200 4.62 0.38 40 098 146 5.15 10 574 549
180 4.62 0.38 15 170 525 233.39 6 587 674
160 4.62 0.38 15 170 525 101.64 7 649 859
140 4.62 0.39 8 783 898 147.60 5 171 428
120 4.62 0.39 5 796 284
100 4.62 0.39 3 611 129
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Table A.1. (Continued).

Data This paper SmoothRelation
∆ B Average t Amortized t Average score Average t Average score

−(1040 + 121)

400 6.73 0.73 262 077 045 12.70 60 255 753
300 6.75 0.75 76 019 864 20.62 30 047 430
280 6.67 0.67 76 019 864 12.54 23 127 191
260 6.67 0.67 106 075 607 29.33 24 885 172
240 6.65 0.65 71 754 968 32.94 22 797 040
220 6.65 0.64 41 494 637 865.83 15 941 400
200 6.64 0.63 35 837 955 1110.38 10 165 036
180 6.64 0.64 13 966 941
160 6.65 0.64 10 231 198
140 6.64 0.63 10 231 198
120 6.68 0.67 5 423 093
100 6.77 0.76 5 423 093

−(1045 + 9)

500 32.88 7.36 921 100 376 281.01 250 827 784
400 27.54 2.03 572 851 862 523.94 129 440 986
300 27.39 1.87 178 659 605 4938.13 38 651 234
280 27.39 1.87 85 642 798 3344.17 32 955 470
260 27.35 1.83 87 776 993 2120.11 32 955 470
240 27.36 1.84 79 420 010
220 27.35 1.83 43 295 409
200 27.39 1.87 43 295 409
180 27.47 1.95 23 334 616
160 27.71 2.19 15 065 406
140 27.54 2.03 10 655 678
120 27.64 2.12 7 742 969
100 27.58 2.06 4 000 636

−(1050 + 151)

500 248.03 219.63 579 286 470 538.46 169 469 117
400 37.98 9.57 502 925 202 916.25 84 257 446
300 31.19 2.79 218 772 201 1232.27 60 835 899
280 31.00 2.59 131 830 056 8039.38 25 531 505
260 30.95 2.55 80 140 272
240 30.88 2.48 73 607 358
220 30.99 2.58 59 357 173
200 30.84 2.43 51 336 782
180 30.81 2.40 25 266 722
160 30.91 2.51 18 419 405
140 30.88 2.47 12 803 933
120 30.86 2.45 7 280 943
100 30.81 2.41 3 536 980
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Appendix B. Short decompositions in Cl(O)

Timings t are quoted in CPU seconds. They were obtained on a Intel Core i7-2600 CPU
at 3.40 GHz with 8 GB of memory. Timings for the SmoothRelation correspond to v1.3
compiled with GMP 6.1.0. Our methods were implemented with Magma v.2.21-7, which
includes Biasse’s implementation of Jacobson’s quadratic sieve algorithm for computing the
class group. Empty spaces correspond to input values for which SmoothRelation could not
complete the computational tasks. The amortized time correspond to the average time over
twenty instances, where the ideal class group is computed only once.

Table B.1. Decomposition of the first 20 Elkies primes above |D|/2 in Cl(O).

Data This paper SmoothRelation
∆ B Average t Amortized t Average score Average t Average score

O1

400 0.12 0.10 166 567 858 0.01 44 049 959
350 0.08 0.06 95 532 880 0.01 35 514 353
300 0.07 0.05 24 732 420 0.01 21 556 463
250 0.06 0.04 35 402 798 0.01 12 927 271
200 0.05 0.03 13 006 394 0.01 8 360 212
150 0.04 0.02 8 621 110 0.01 2 165 192

O2

400 0.29 0.28 313 425 886 0.03 69 068 937
350 0.12 0.11 104 228 139 0.03 48 508 682
300 0.10 0.09 75 085 703 0.02 26 263 081
250 0.12 0.11 64 896 476 0.03 17 048 229
200 0.10 0.10 38 731 894 0.03 12 023 808
150 0.07 0.06 6 985 717 0.06 4 582 418

O3

400 0.28 0.26 417 709 168 3.76 81 206 130
350 0.20 0.18 202 624 787 8.70 63 054 195
300 0.16 0.13 134 224 416 6.37 39 600 945
250 0.14 0.11 53 268 050 9.51 22 026 158
200 0.12 0.09 37 927 113 133.06 25 290 274
150 0.09 0.06 12 822 693

O4

400 0.42 0.33 455 234 165
350 0.35 0.26 245 653 258
300 0.22 0.13 145 753 178
250 0.20 0.10 75 975 948
200 0.19 0.09 52 021 907
150 0.16 0.07 20 857 964
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Appendix C. Supplement on the isogeny numerical evaluations

C.1. The cost of the action of p in practice

The numerical results presented in Table C.1 obtained on a Intel Core i7-2600 CPU at 3.40 GHz
with 8 GB of memory show a significantly slower run-time than the computation of the modular
polynomials [5, Table 3] (which are themselves harder to compute than Weber polynomials
and instantiated modular polynomials).

C.2. Computation of End(E) (§ 8)

We obtained our timings on a Intel Core i7-2600 CPU at 3.40 GHz with 8 GB of memory. We
used the precomputed modular polynomials of level up to 300 available on Sutherland’s web
page. The relations mentioned in the numerical experiment are the following.

R/O1 : p−8
11 p
−7
23 p
−10
29 p9

37p
−17
43 p−2

53 p
11
67p

14
71p
−11
79 p−1

107p
10
109p

8
113p

−13
137 p

4
149p

1
151p

−1
163p

4
179p

4
191p

11
193p

16
211 ∼ (1)

R/O2 : p2
11p

15
23p
−6
29 p
−6
37 p

9
43p
−10
53 p11

67p
5
71p
−2
79 p

9
107p

−4
109p

9
113p

−3
137p

−12
149 p

3
151p

9
163p

16
179p

4
191p

−9
193p

−13
197 p

−1
211 ∼ (1)

R/O3 : p4
11p
−2
23 p
−3
29 p

4
37p
−1
43 p
−7
53 p
−7
67 p

13
71p
−17
79 p−17

107 p
−2
113p

5
137p

−22
149 p

−8
151p

4
163p

−6
179p

−2
191p

−7
193p

−3
211 ∼ (1)

R/O4 : p46
11p
−29
23 p−24

29 p−47
37 p21

43p
−25
53 p−67

67 p42
71p

79
79 ∼ (1).

Table C.1. Cost of evaluating the action of p.

N (p) Run-time of the Atkin–Elkies method [4, § 3.1]

11 0.070
13 0.060
19 0.130
23 0.270
29 0.190
37 0.400
59 2.710
67 3.310
71 3.540
83 7.150
89 1.990
97 2.690

101 9.770
113 8.600
131 14.450
137 13.680
151 19.580
163 13.800
167 20.880
179 122.630
193 16.920
197 30.040
199 25.980
211 60.810
239 33.460
257 55.390
269 63.170
271 164.630
277 72.810
283 68.910
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