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Abstract
Constructible sheaves of abelian groups on a stratified space can be equivalently described in terms of representations
of the exit-path category. In this work, we provide a similar presentation of the abelian category of perverse sheaves
on a stratified surface in terms of representations of the so-called paracyclic category of the surface. The category
models a hybrid exit–entrance behaviour with respect to chosen sectors of direction, placing it ‘in between’ exit
and entrance path categories. In particular, this perspective yields an intrinsic definition of perverse sheaves as an
abelian category without reference to derived categories and t-structures.
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Introduction

Contents and future applications.

This paper is the first step in a larger project devoted to a systematic development of the theory of perverse
schobers. The latter are categorical analogs of perverse sheaves, in which vector spaces are replaced
by (enhanced) triangulated categories. The idea of perverse schobers was proposed in [31] based on
the features of various ‘elementary’ descriptions of perverse sheaves in terms of quivers. Namely, these
descriptions are often of such form that a natural categorical analog (quiver representations formed by
categories instead of vector spaces) suggests itself readily. For example, for the classical description [2,
24] of perverse sheaves on the disk in terms of diagrams

Φ Ψ,
𝑎

𝑏

(0.1)

with id−𝑎𝑏 and id−𝑏𝑎 invertible, such a categorical analog is found in the concept of a spherical
adjunction; see [31].

However, the quiver descriptions do not give satisfying definitions of the category of perverse sheaves
since they depend on auxiliary choices. For example, in the above case, a choice of a direction at the
origin is needed to define vanishing and nearby cycles. On the other hand, from the customary point of
view, a perverse sheaf is an object of an abelian category that arises as the heart of a certain t-structure
on the derived category of constructible sheaves on a stratified topological space. It is not clear whether
such an approach can be categorified directly.

In this paper, we identify perverse sheaves (not yet schobers) on a stratified surface X with so-called
Milnor sheaves (Theorem 3.1.13). Similarly to the description of constructible sheaves as representations
of the exit path category (see [45]), our result follows from an alternative parametrization in terms of
a hybrid of the exit and entrance path categories, called the Milnor category of the surface. Its objects,
Milnor disks, are given by disks in X together with a choice of a finite number of boundary intervals.
These intervals determine the interaction with the stratification: A disk may move on the surface via
isotopy such that the points in the zero-dimensional stratum exit the disk through the chosen boundary
intervals and enter the disk through their complement. In addition, the boundary intervals themselves
can interact in a way familiar from Connes’ cyclic category (see below for more details). A Milnor sheaf
is then defined as a representation of the Milnor category subject to certain natural gluing conditions
that arise from cutting Milnor disks into pieces.

As a result, we obtain an intrinsic definition of perverse sheaves on Riemann surfaces that is internal
to the framework of abelian categories, without reference to derived categories, and which can therefore
serve as an alternative to the definition given in [3]. Our main incentive is that the definition has a
comparatively straightforward categorification offering a good framework for perverse schobers. This
approach will be elaborated in sequels to this paper.

Even in the uncategorified context of perverse sheaves, Milnor sheaves provide a novel perspective
on classical aspects of the theory. For example, one motivation for the introduction of perverse sheaves
is the fact that, in contrast to constructible sheaves, they are preserved under Verdier duality. This
phenomenon becomes almost self-evident in the Milnor sheaf model. Namely, it is a direct consequence
of a canonical self-duality of the Milnor category obtained by swapping the boundary intervals with
their complements (generalizing the well-known self-dualities of the cyclic and paracyclic categories).
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Figure 1. A morphism in 𝑀 (𝑋, 𝑁) from (𝐴, 𝐴′) to (𝐵, 𝐵′) represented given by the isotopy H.

In higher complex dimensions, a possible generalization could involve mimicking more closely the
topology related to forming perverse sheaves of vanishing cycles associated to holomorphic functions.
When such a perverse sheaf is supported at a single point (the ‘isolated microlocal singularity’ case), it
reduces to a single vector space so we have purity just like for Riemann surfaces. We hope to explore
this approach in future work.

Details of the main result

Fundamental for us is the concept of a Milnor disk, a pair (𝐴, 𝐴′) where 𝐴 ⊂ 𝑋 is a closed disk,
containing at most one point from the zero-dimensional stratum N, and 𝐴′ ⊂ 𝜕𝐴 is a finite nonempty
disjoint union of closed intervals. These Milnor disks will be depicted by the symbols

We call the points in the zero-dimensional stratum N special and signify them via the symbol . For
example, a Milnor disk (𝐴, 𝐴′) with one boundary interval containing a special point will be referred
to as

leaving the embedding of A into the surface X implicit. Milnor disks form the objects of the Milnor
category 𝑀 (𝑋, 𝑁) where a morphism from (𝐴, 𝐴′) to (𝐵, 𝐵′) is given by an equivalence class of
isotopies 𝐻 : 𝐼 × D → 𝑋 with 𝐻0 : D � 𝐴 and 𝐻1 : D � 𝐵, together with a choice of bordism
𝑃 ⊂ 𝐼 × 𝑆1 from 𝐻−1

0 (𝐴
′) to 𝐻−1

1 (𝐵
′) such that the inclusion 𝐻−1

1 (𝐵
′) ⊂ 𝑃 is a homotopy equivalence

(see Figure 1). Here, roughly speaking, the trajectories 𝐻−1(𝑁) of the special points are required to
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enter the cylinder through (𝐼 × 𝑆1) \ 𝑃 and exit through P. This hybrid exit–entry behaviour puts the
Milnor category ‘in between’ the exit and entrance path categories of (𝑋, 𝑁). As will be explained in
the main body of this work, this phenomenon can be regarded as a geometric manifestation of the fact
that the perverse t-structure lies ‘in between’ the standard t-structure and its Verdier dual.

In particular, while the exit and entrance path categories are dual to one another, the Milnor category
is self-dual: On objects, the duality is given by

(𝐴, 𝐴′) ↦→ (𝐴, 𝜕 (𝐴) \ 𝐴′)

on morphisms, it is obtained by replacing the bordism P by the closure of (𝐼 × 𝑆1) \ 𝑃 and reversing the
direction of the isotopy H. For example, the action of the self-duality associates to the morphism

(0.2)

depicted in Figure 1, the morphism

(0.3)

Given an object F of the derived constructible category 𝐷 (𝑋, 𝑁;A) and a morphism (𝐻, 𝑃) :
(𝐴, 𝐴′) → (𝐵, 𝐵′) of Milnor disks, we obtain a correspondence on relative (hyper) cohomology

RΓ(𝐴, 𝐴′;F) (𝐼 × D, 𝑃; 𝐻∗F) RΓ(𝐵, 𝐵′;F)RΓ
� (0.4)

and hence a functor

RΓ(−;F) : 𝑀 (𝑋, 𝑁)op −→ 𝐷 (A). (0.5)

We note that RΓ(𝐴, 𝐴′;F) can be identified with Φ 𝑓 (F), the sheaf of vanishing cycles for F with
respect to an appropriate holomorphic function f (possibly with a zero of arbitrary order), hence the
name ‘Milnor disk’, modelled after ‘Milnor fibers’ in singularity theory. In particular, we may now
express the local classification data (0.1) at a special point ∈ 𝑁 in terms of our terminology:

1. The space of vanishing cycles:
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2. The space of nearby cycles:

3. The variation map

𝑎 = var : Φ→ Ψ

is the value of RΓ(−;F) on the morphism (0.2).
4. The canonical map

𝑏 = can : Ψ→ Φ

is the value of RΓ(−;F) on the morphism (0.3).

See §4.2 for a discussion of how to recover the relations 𝑇Ψ = id−𝑎𝑏 and 𝑇Φ = id−𝑏𝑎, expressing the
monodromy in terms of these data.

Our main result is based on the observations that

(1) Perverse sheaves can be characterized by the fact that their relative (hyper) cohomology on Milnor
disks is concentrated in degree 0,

(2) A perverse sheaf F is completely described by its values F(𝐴, 𝐴′) = 𝐻0(𝐴, 𝐴′; 𝐹) on Milnor disks.

Observation (1) immediately implies that, for a perverse sheaf F, the functor RΓ(−,F) from equation
(0.5) takes values in the abelian category A ⊂ 𝐷 (A) given by the heart of the standard t-structure.
Observation (2) then leads to the main result of this work: Theorem 3.1.13 establishes that the association
F ↦→ RΓ(−;F) provides an equivalence between the abelian category of perverse sheaves on the
stratified Riemann surface (𝑋, 𝑁) and the category of Milnor sheaves: A-valued presheaves on the
Milnor category 𝑀 (𝑋, 𝑁) that satisfy descent conditions with respect to the cutting and pasting Milnor
disks.

Method of proof:∞-categorical Kan extension

Although the statement of Theorem 3.1.13 is ‘purely abelian’, the proof utilizes the ambient derived
category and relies on ∞-categorical techniques. That is, we establish a result (Corollary 3.1.12)
identifiying constructible sheaves with values in a stable ∞-category D, and appropriately defined
Milnor sheaves valued inD. When D = D(A) is the∞-categorical enhancement of the derived category
of a Grothendieck abelian category A, then perverse sheaves are recovered among all constructible
complexes via the observation (1) above.

The method of proof of Corollary 3.1.12 is as follows. In general, identifying two given∞-categories
is hard to achieve by hand due to the infinite amount of coherence data involved. The technique of Kan
extensions allows for an efficient means of handling such data and ‘mediating’ it across parametrizing
diagram categories (see Proposition A.3). Using this technique, we produce equivalences between
representations of various subcategories of the larger paracyclic category Λ(𝑋, 𝑁) to mediate the
subcategories of standard disks, Milnor disks, and bounded disks. In this framework, we provide an
alternative construction of the presheaf RΓ(−,F) on the Milnor category 𝑀 (𝑋, 𝑁) as a Kan extension
from the category of standard disks (cf. §3).

Corollary 3.1.12 and various technical tools developed for its proof provide not only a stepping
stone for the more classical-looking Theorem 3.1.13 but also present a possible framework for the
generalization to perverse schobers. In that generalization, a stable ∞-categorical enhancement of
triangulated categories is important from the very beginning.
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The role of paracyclic Segal objects

Our approach to perverse sheaves via Milnor sheaves naturally involves structures familiar in the theory
of cyclic homology [11, 21, 36]. One of them is the paracyclic category Λ∞ which can be regarded as
the universal central extension (by Z) of the cyclic category Λ of Connes [11].

Namely, in the most classical case, when (𝑋, 𝑁) is the disk (D, {0}) with the origin as special
point, a Milnor sheaf can be uniquely recovered from its values on Milnor disks containing 0. These
disks form a subcategory of 𝑀 (D, {0}) equivalent to the paracyclic category Λ∞, and our approach
identifies A-valued perverse sheaves, with the following structures: paracyclic objects 𝑌 : Λop

∞ → A

whose restriction to Δop ⊂ Λop
∞ is a Segal [5, 20] simplicial objects (see Corollary 4.3.2). Further, the

equivalence of such structures with the more customary classification data (0.1) can be understood as a
special instance the duplicial Dold–Kan correspondence (see §4.4).

This point of view turns out to be important for the generalization to perverse schobers. The corre-
sponding analog of a perverse sheaf on the disk is, as mentioned above, a spherical adjunction. It turns
out that any such adjunction gives, via a variant of the relative Waldhausen 𝑆•-construction [48], rise to
a paracyclic object whose restriction to Δop is 2-Segal, that is, satisfies a two-dimensional generalization
of the Segal condition introduced in [20]. Such data then form the local data comprising the structure
of a perverse schober, as will be explained in subsequent work.

Relation to previous work

The dream of defining perverse sheaves in a way that would be at the same time topological (avoiding
analysis and D-modules) and abelian-categorical (avoiding derived categories) is of course as old as the
theory of perverse sheaves itself. We should particularly mention the 1990 preprint of MacPherson [40]
that introduced (in arbitrary dimension) the concept of Fary sheaves which are certain ‘cohomology
theory’ data on an appropriate class of pairs (𝑈+,𝑈−) of opens in a stratified manifold. Our concept of a
Milnor sheaf can be seen as an adaptation and a simplification of that of a Fary sheaf to the case of two
real dimensions, when instead of a functor associating a graded vector space (i.e., several cohomology
groups) to a pair of opens, we have a functor associating a single vector space, more in line with the
idea of a ‘sheaf’.
1. Perverse sheaves on stratified surfaces

1.1. Perverse sheaves with values in abelian categories

Sheaves with values in abelian categories.
Let A be an Grothendieck abelian category. In particular, A has arbitrary products and projective limits.

For any topological space X, we denote by Sh(𝑋,A) the category of A-valued sheaves over X. By
definition, such a sheaf F is a contravariant functor from the poset of opens in X into A, satisfying
descent. That is, for any open covering {𝑈𝑖} of an open set U, the map

F(𝑈) −→ Ker
{∏

𝑖

F(𝑈𝑖) −→
∏
𝑖, 𝑗

F(𝑈𝑖 ∩𝑈 𝑗 )

}
is an isomorphism.

By 𝐷 (𝑋,A), we denote the (unbounded) derived category of Sh(𝑋,A). We consider it as a triangu-
lated category.

For any continuous map 𝑓 : 𝑋 → 𝑌 of topological spaces, we have the standard adjoint functors

𝑓 ∗ : 𝐷 (𝑌,A) → 𝐷 (𝑋,A), 𝑅 𝑓∗ : 𝐷 (𝑋,A) → 𝐷 (𝑌,A).

If 𝑋,𝑌 are locally compact, we also have the functors

𝑅 𝑓! : 𝐷 (𝑋,A) → 𝐷 (𝑌,A), 𝑓 ! : 𝐷 (𝑌,A) → 𝐷 (𝑋,A),

with their standard adjunctions; cf. [33].

https://doi.org/10.1017/fms.2023.84 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.84


Forum of Mathematics, Sigma 7

Decompositions, stratifications and exit paths
Concerning stratified spaces, we follow the terminology of [27] part.II §1.1-2.

Thus, a decomposition of a topological space X is a collection S of locally closed subsets 𝑆 ∈ S
called strata such that 𝑋 =

⊔
𝑆∈S 𝑆 is a disjoint decomposition and the closure of a stratum is a union

of strata. The set S acquired then a partial order � by inclusion of the closures, that is, 𝑆 � 𝑆′ if 𝑆 ⊂ 𝑆′.
For each 𝑥 ∈ 𝑋 , we denote by 𝑆𝑥 ∈ S the stratum containing x. A decomposed space (𝑋,S) is a space
equipped with a decomposition.

The concept of decomposition is identical to that of an (S , �)-stratification in the sense of [38]
Definition A.5.1. Recall that the latter defined as a continuous map 𝑓 : 𝑋 → S , where the poset S is
given the topology consisting of upwardly closed sets, that is, of I ⊂ S such that 𝑆 ∈ I implies 𝑆′ ∈ I
whenever 𝑆 � 𝑆′. Explicitly, the map f is given by 𝑓 (𝑥) = 𝑆𝑥 .

Let (𝑋,S) be a decomposed space. We denote the inclusions of the strata by 𝑖𝑆 : 𝑆 → 𝑋 . By
Sh(𝑋,S ,A) ⊂ Sh(𝑋,A), we denote the category of sheaves F which are constructible with respect
to S , that is, such that each 𝑖∗𝑆F is locally constant on S. By 𝐷 (𝑋,S;A) ⊂ 𝐷 (𝑋,A), we denote the
subcategory of complexes of sheavesF whose cohomology sheaves 𝐻𝑖 (F) are constructible with respect
to S .

Let us recall the concept of exit paths for (𝑋,S), originally introduced by MacPherson; see [45] for
a more detailed treatment. For 𝑥 ∈ 𝑋 , we denote by 𝑆𝑥 ∈ S the stratum containing x. This gives a partial
order � on X (as a set) given by 𝑥 � 𝑦, if 𝑆𝑥 � 𝑆𝑦 , that is, 𝑆𝑥 ⊂ 𝑆𝑦 . An exit path for (𝑋,S) is a continuous
parametrized path 𝛾 : [0, 1] → 𝑋 which is monotone with respect to ≺, that is, such that for 𝑡1 ≤ 𝑡2
we have 𝛾(𝑡1) � 𝛾(𝑡2). The category of exit paths Exit(𝑋,S) has, as objects, all points 𝑥 ∈ 𝑋 , with
HomExit(𝑋,S) (𝑥, 𝑦) being the set of isotopy classes of exit paths 𝛾 with 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦. Thus,
Exit(𝑋,S) can be considered as a stratified version of the fundamental groupoid of X (to which it reduces
in the particular case when S consists of just one stratum X). By reversing the direction of the paths (or
passing to the opposite category), we get the category of entrance paths Entr(𝑋,S) = Exit(𝑋,S)op.

We will use some particular types of decompositions in which one imposes various ‘conicity’
conditions describing the neighborhood of a stratum in the closure of a larger stratum:

(1) Whitney stratifications, see [27] part II §1.2. In this case, the strata are 𝐶∞-manifolds.
(2) Topological stratifications, see [26] and [45] §3.1. In this case, the strata are topological manifolds.
(3) Conical stratifications, see [38] Definition A.5.5. In this case, strata are not required to be manifolds,

but near a stratum S, the space X is locally identified with the product of S and the cone over another
decomposed space with strata labelled by 𝑆′ ∈ S with 𝑆 ≺ 𝑆′.

It is known that these three conditions are of increasing generality, that is, (1)⇒(2)⇒(3).

Proposition 1.1.1. Let (𝑋,S) be a space with a conical stratification. The category Sh(𝑋,S ,A) is
equivalent to Fun(Exit(𝑋,S),A) (the category of covariant functors).

Proof. For topological stratifications, this is the original result of MacPherson; see [45] Theorem 1.2.
For conical stratifications, this follows from [38] Theorem A.9.3 which gives an∞-categorical upgrade
of Exit(𝑋,S). �

Suppose now that X is a complex manifold and S is a complex analytic Whitney stratification of
X. By PS(𝑋,S ,A) ⊂ 𝐷 (𝑋,S ,A), we denote the subcategory of perverse sheaves (with respect to the
middle perversity). Recall [3][33] that F ∈ P(𝑋,S ,A) iff two conditions are satisfied:

(𝑃+) For every 𝑆 ∈ S , we have 𝐻𝑛 (𝑖∗𝑆F) = 0 for 𝑛 > − dimC(𝑆),
(𝑃−) For every 𝑆 ∈ S , we have 𝐻𝑛 (𝑖!𝑆F) = 0 for 𝑛 < − dimC (𝑆)).

It is well known [3] that the category PS(𝑋,S;A) is the heart of a t-structure and so is an abelian
category.
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The case of stratified surfaces
We specialize to the case of dimC(𝑋) = 1, so X is a Riemann surface, possibly noncompact and with
nonempty boundary. We fix a finite subset 𝑁 ⊂ 𝑋 of interior points which we refer to as special points
and denote the corresponding stratification 𝑋 = 𝑁 ∪ (𝑋 \ 𝑁) by S = S𝑁 . This gives a topological
stratification, and we adopt the following definition.

Definition 1.1.2. By a stratified surface, we mean a pair (𝑋, 𝑁) consisting of:

(1) A topological manifold X of real dimension 2, possibly noncompact and with boundary.
(2) A finite subset 𝑁 ⊂ 𝑋 of interior points which we refer to as special points.

We denote by 𝑗 : 𝑋 \ 𝑁 → 𝑋 and 𝑖 : 𝑁 → 𝑋 the embeddings of the strata.

Let us fix a Grothendieck abelian category A. We denote by 𝐷 (𝑋, 𝑁;A) ⊂ 𝐷 (𝑋,A) the full
subcategory of complexes whose cohomology sheaves are constructible with respect to the stratification
S𝑁 , that is, in our case, locally constant on 𝑋 \ 𝑁 .

Further, the concept of a perverse sheaf makes sense in this context and is given explicitly as follows.

Definition 1.1.3. Let (𝑋, 𝑁) be a stratified surface and A a Grothendieck abelian category. An object
F of 𝐷 (𝑋, 𝑁;A) is called perverse if

(1) 𝑗∗F is isomorphic to 𝐿 [1], where L is a local system on 𝑋 \ 𝑁 with values in A,
(2) 𝐻𝑛 (𝑖∗F) = 0 for 𝑛 > 0,
(3) 𝐻𝑛 (𝑖!F) = 0 for 𝑛 < 0.

The category of perverse sheaves with respect to N will be denoted PS(𝑋, 𝑁;A). As explained above,
it is an abelian category.

1.2. Milnor disks, Milnor pairs and the purity property

We denote by D ⊂ C the closed unit disk. Let (𝑋, 𝑁) be a surface X with a set of special points 𝑁 ⊂ 𝑋
as in §1.1. By a closed disk, we mean a subspace 𝐴 ⊂ 𝑋 homeomorphic to D.

Definition 1.2.1. A Milnor disk in (𝑋, 𝑁) is a pair (𝐴, 𝐴′), where:

(1) 𝐴 ⊂ 𝑋 is a closed disk containing at most one special point.
(2) 𝐴′ ⊂ 𝜕𝐴 � 𝑆1 is a disjoint union of finitely many closed arcs, different from ∅ and the whole 𝜕𝐴.

See the left of Figure 2. The concept of a Milnor disk can be compared with the following possibly
more intuitive concept.

Definition 1.2.2. A Milnor pair for (𝑋, 𝑁) is a pair (𝑈,𝑈 ′), 𝑈 ′ ⊂ 𝑈, of closed subsets of X such that

(1) U is a closed disk containing at most one special point.
(2) 𝑈 ′ is a finite, nonempty, disjoint union of closed disks {𝑈𝑖}𝑖∈𝐼 such that 𝐾 = 𝑈 \𝑈 ′ is contractible.

Thus, a Milnor disk can be seen as a Milnor pair (𝑈,𝑈 ′) with𝑈 ′ being very thin, reducing to a union
of boundary arcs; see Figure 2. Up to homotopy equivalence, there is no difference between the two
concepts.

Example 1.2.3. Let X be a Riemann surface (one-dimensional complex manifold), z be a holomorphic
coordinate near an interior point 𝑥 ∈ 𝑋 and f be a holomorphic function defined near x such that
𝑓 (𝑥) = 0. Then for sufficiently small 𝜀 > 𝛿 > 0 the pair formed by

𝑈 = {|𝑧 | ≤ 𝜀}, 𝑈 ′ = {|𝑧 | ≤ 𝜀, �( 𝑓 (𝑧)) ≤ 𝛿}

is a Milnor pair. This explains our terminology, motivated by the concept of Milnor fibers in singularity
theory. Note that the cardinality |𝜋0 (𝑈

′) | is equal to ord𝑥 ( 𝑓 ), the order of vanishing of f at x.

https://doi.org/10.1017/fms.2023.84 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.84


Forum of Mathematics, Sigma 9

Figure 2. A Milnor disk (𝐴, 𝐴′) and a Milnor pair (𝑈,𝑈 ′).

The role of Milnor disks for our purposes stems from the following:

Proposition 1.2.4 (Purity property). Let (𝑋, 𝑁) be a stratified surface, let A be a Grothendieck abelian
category and let F be an object of the derived constructible category 𝐷 (𝑋, 𝑁;A). Then the following
are equivalent:

(i) F is a perverse sheaf.
(ii) For every Milnor disk (𝐴, 𝐴′), the relative hypercohomology 𝐻𝑖 (𝐴, 𝐴′;F) vanishes for 𝑖 ≠ 0.

We will refer to the condition (ii) as purity.

Proof of Proposition 1.2.4. (i)⇒ (ii): Assume that F is perverse.
Assume first that A either contains no special point or contains exactly one special point x in its

interior. Note that the first possibility is really a particular case of the second, as we can always introduce
a ‘dummy’ special point, where a singularity is allowed but not present. So we assume that the second
possibility holds. Denote by by 𝑖𝑥 : {𝑥} → 𝑋 the inclusion of the point. Note that 𝑅Γ{𝑥 } (𝐴,F) � 𝑖!𝑥F,
and so its cohomology, by Definition 1.1.3(3), is concentrated in degrees ≥ 0. Further, 𝑅Γ(𝐴, 𝐹) � 𝑖∗𝑥F,
and so its cohomology, by Definition 1.1.3(2), is concentrated in degrees ≤ 0. Consider now the
following diagram with rows and columns being exact triangles:

𝑅Γ{𝑥 } (𝐴, 𝐴′;F)

��

�� 𝑅Γ(𝐴, 𝐴′;F)

��

�� 𝑅Γ(𝐴\{𝑥}, 𝐴′\{𝑥};F)

��
𝑅Γ{𝑥 } (𝐴;F)

��

�� 𝑅Γ(𝐴,F)

𝑐

��

𝑎 �� 𝑅Γ(𝐴\{𝑥};F)

𝑏

��
𝑅Γ{𝑥 } (𝐴′,F) �� 𝑅Γ(𝐴′;F) 𝑑 �� 𝑅Γ(𝐴′\{𝑥};F).

(1.2.5)

Note that F |𝐴\{𝑥 } � 𝐿 [1], a local system in degree (−1) and 𝐴\{𝑥} is homotopy equivalent to 𝑆1. So
𝑅Γ(𝐴\{𝑥};F) has cohomology only in degrees {−1, 0}. The long exact sequence (LES) of cohomology
of the middle row of the diagram gives, using the information above, the following:

𝐻𝑛 (𝐴,F) = 0 for 𝑛 ∉ {−1, 0},
𝐻𝑛
{𝑥 } (𝐴,F) = 0 for 𝑛 ∉ {0, 1}.

(1.2.6)

Look now at the middle column of the diagram. Since 𝑅Γ(𝐴′;F) is concentrated in degree (−1),
in order to show that 𝑅Γ(𝐴, 𝐴′;F) has cohomology only in degree 0, it suffices to show that
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𝑐 : 𝐻−1 (𝐴; 𝐹) → 𝐻−1(𝐴′;F) is injective. For this, it suffices to prove that the maps induced by a and
b on 𝐻−1 are injective. For a, it follows from the fact (1.2.6) that 𝑅Γ{𝑥 } (𝐴;F) has no cohomology in
degree (−1). For b, we use the identification F |𝐴\{𝑥 } � 𝐿 [1] as above. Then the statement becomes that
𝐻0 (𝐴\{𝑥}; 𝐿) → 𝐻0 (𝐴′; 𝐿) is injective which is clear.

Suppose now that the special point x lies in 𝜕𝐴. If 𝑥 ∈ 𝐴′, then by excision we reduce to the case
when 𝐴 ∩ 𝑁 = ∅ treated above. So let 𝑥 ∈ 𝜕𝐴\𝐴′. In this case, the argument is similar to the above, as
𝐴\{𝑥} is contractible, and so F |𝐴\{𝑥 } = 𝐿 [1] has cohomology only in degree (−1).

(ii)⇒ (i): Vice versa, suppose that F is an object of 𝐷 (𝑋, 𝑁;A) satisfying the purity condition. Let
𝐴 ⊂ 𝑋 be a closed disk not containing any special points. Let 𝐴′ ⊂ 𝜕𝐴 be a disjoint union of two closed
arcs so that (𝐴, 𝐴′) is a Milnor disk. Since by our assumptions, F |𝐴 has locally constant, hence constant
cohomology, it is straightforward to conclude that

RΓ(𝐴,F) � RΓ(𝐴, 𝐴′;F) [1] .

By purity, this implies that 𝑗∗F[−1] � 𝐿 is quasi-isomorphic to a single local system with values in A.
This shows Condition (1) of Definition 1.1.3.

Now, let A be an closed disk that contains exactly one special point x in its interior. Let 𝐴′ ⊂ 𝜕𝐴 be the
disjoint union of two arcs. We consider again the diagram (1.2.5), arguing now ‘in the other direction’.

That is, look at the middle column. By purity, 𝑅Γ(𝐴, 𝐴′;F) has cohomology only in degree 0. But
since 𝑗∗F[−1] = 𝐿 is a single local system in degree 0, the complex 𝑅Γ(𝐴′; 𝐹) has cohomology only
in degree (−1). Therefore, 𝑅Γ(𝐴, 𝐹) � 𝑖∗𝑥F has cohomology only in degrees {−1, 0}, thus establishing
Condition (2) of Definition 1.1.3.

Next, look at the left column. Clearly, 𝑅Γ{𝑥 } (𝐴′;F) = 0, as 𝑥 ∉ 𝐴′, and so 𝑖!𝑥𝐹 � 𝑅Γ{𝑥 } (𝐴,F) is
identified with 𝑅Γ{𝑥 } (𝐴, 𝐴′;F). Now, the latter can be analyzed via the top row of the diagram, which
contains 𝑅Γ(𝐴, 𝐴′;F), with cohomology in degree 0 and 𝑅Γ(𝐴\{𝑥}, 𝐴′\{𝑥};F) which, we claim, has
cohomology only in degree 0. This follows from looking at the right column, where the statement
reduces to the claim that 𝐻0(𝐴\{𝑥}; 𝐿) → 𝐻0 (𝐴′; 𝐿) is injective. Therefore, 𝑖!𝑥F has cohomology only
in degrees {0, 1}, thus establishing Condition (3) of Definition 1.1.3. �

Remark 1.2.7. Assume that we are in the situation of Example 1.2.3. Then 𝑅Γ(𝑈,𝑈 ′;F) is identified
with Φ 𝑓 (F)𝑥 , the stalk at x of the complex of vanishing cycles for F with respect to f ; see [33]. It is well
known (loc. cit.) that Φ 𝑓 (F) is itself a perverse sheaf which, in our case, amounts to saying that Φ 𝑓 (F)𝑥
is quasi-isomorphic to a single vector space in degree 0. This provides an alternative proof of purity for
such Milnor pairs, at least in the classical case when A is the category of vector spaces over a field.

2. The paracyclic category and constructible sheaves

In this section, we will introduce the paracyclic category Λ(𝑋, 𝑁) of a stratified surface and explain
how the formalism of Kan extensions, applied to a directed version of Λ(𝑋, 𝑁), can be used to describe
the Verdier duality of the derived constructible category. The ideas and constructions introduced in this
section serve as a preparation for the main part of this work, §3, where we will apply similar techniques
to parametrize perverse sheaves in terms of the subcategory 𝑀 (𝑋, 𝑁) ⊂ Λ(𝑋, 𝑁) of Milnor disks.

2.1. The standard paracyclic category and the Ran space of the circle

Recall that the standard simplex category Δ has, as objects, the standard finite nonempty ordinals
[𝑛] = {0, 1, · · · , 𝑛}, 𝑛 ≥ 0, with morphisms being monotone maps. The morphisms of Δ are generated
by the coface and codegeneracy maps

𝛿𝑖 : [𝑛 − 1] −→ [𝑛], 𝑖 = 0, · · · , 𝑛 (omitting 𝑖);
𝜎𝑗 : [𝑛 + 1] −→ [𝑛] 𝑗 = 0, · · · , 𝑛 (repeating 𝑗),
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subject to well-known relations; see, for example, [11], Chapter III, Appendix A, Proposition 2. We
denote by Δsurj ⊂ Δ the subcategory with the same objects and only surjective maps as morphisms. In
other words, morphisms of Δsurj are generated by the 𝜎𝑗 only. As usual, we call a simplicial object in a
category A a contravariant functor 𝑍 : Δ → A. Thus, Z consists of objects 𝑍𝑛 = 𝑍 ([𝑛]) ∈ A, 𝑛 ≥ 0
and morphisms (face and degenaracy maps)

𝜕𝑖 : 𝑍𝑛 −→ 𝑍𝑛−1, 𝑖 = 0, · · · , 𝑛; 𝑠 𝑗 : 𝑍𝑛 −→ 𝑍𝑛+1, 𝑗 = 0, · · · , 𝑛 + 1,

satisfying the relations dual to those among the 𝛿𝑖 and 𝜎𝑗 . We will also use the term half-simplicial
object for a contravariant functor Δsurj → A. Thus, a half-simplicial object has only degeneracy maps
but no face maps.
Definition 2.1.1 ([11] Chapter III Appendix A, [36] Definition 6.1.1). (a) The standard paracyclic
category Λ∞ has the objects 〈𝑛〉, 𝑛 ≥ 0 which are in bijection with those of Δ . Its morphisms are
generated by those of Δ (i.e., the 𝛿𝑖 : 〈𝑛−1〉 → 〈𝑛〉 and 𝜎𝑗 : 〈𝑛+1〉 → 〈𝑛〉 as above satisfying the same
relations) together with additional automorphisms 𝜏𝑛 : 〈𝑛〉 → 〈𝑛〉 which are subject to the following
relations:

𝜏𝑛𝛿𝑖 = 𝛿𝑖−1𝜏𝑛−1 for 1 ≤ 𝑖 ≤ 𝑛, 𝜏𝑛𝛿0 = 𝛿𝑛;
𝜏𝑛𝜎𝑖 = 𝜎𝑖+1𝜏𝑛+1 for 1 ≤ 𝑖 ≤ 𝑛, 𝜏𝑛𝜎0 = 𝜎𝑛𝜏

2
𝑛+1;

(b) The cyclic category Λ is obtained from Λ∞ by imposing the additional relations 𝜏𝑛+1𝑛 = Id.
The following proposition is well known; see [13]. It can be expressed by saying that Λ∞ is a central

extension of Λ by Z.
Proposition 2.1.2.

(a) The automorphisms 𝜏𝑛+1𝑛 ∈ HomΛ∞ (〈𝑛〉, 〈𝑛〉) form a central system (i.e., define a natural trans-
formation from the identity functor to itself).

(b) Let 𝑝 : Λ∞ → Λ be natural functor (identical on objects, surjective on morphisms). The fibers of
each induced map

HomΛ∞ (〈𝑚〉, 〈𝑛〉) −→ HomΛ (〈𝑚〉, 〈𝑛〉)

are principal homogeneous spaces with respect to the action of Z given by composition with powers of
𝜏𝑚+1𝑚 or, what by (a) is the same, by composition with powers 𝜏𝑛+1𝑛 .

We also denote Λsurj
∞ ⊂ Λ∞ the subcategory on the same objects with the morphisms generated

by the 𝜎𝑗 and 𝜏𝑛 only. By a paracyclic object in a category A, we will mean a contravariant functor
𝑍 : Λ∞ → A. As for simplicial objects, we write 𝑍𝑛 for the value of Z on 〈𝑛〉 and 𝜕𝑖 , 𝑠 𝑗 , 𝑡𝑛 for the values
on 𝛿𝑖 , 𝜎𝑗 , 𝜏𝑛. By a half-paracyclic object we will mean a contravariant functor Λsurj

∞ → A.
Remark 2.1.3. The categories Λ and Λ∞ are self-dual, that is, isomorphic to their opposite categories
[11] [21]. In fact, by introducing the additional codegeneracies 𝜎𝑛+1 = 𝜏𝑛𝜎𝑛𝜏

−1
𝑛+1 : 〈𝑛 + 1〉 → 〈𝑛〉, one

can write their presentations in a manifestly self-dual way, so that cofaces and codegeneracies will be
dual to each other.

A partial interpretation via the Ran space
We recall the topological version of the Ran space construction [4]. As pointed out in [4], this version
goes back to Borsuk and Ulam [7].

Let M be a 𝐶∞-manifold. The Ran space of M is the set Ran(𝑀) of all finite nonempty subsets
𝐼 ⊂ 𝑀 equipped with a natural (Vietoris) topology. If we choose a metric on M inducing the topology,
then Ran(𝑀) can be metrized using the corresponding Hausdorff distance. The space Ran(𝑀) has a
filtration by closed subspaces Ran≤𝑑 (𝑀) = {𝐼 ⊂ 𝑀 : |𝐼 | ≤ 𝑑}, and the complement

Ran≤𝑑 (𝑀)\Ran≤𝑑−1 (𝑀) � Sym𝑑
≠ (𝑀)
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Figure 3. An exit path in Ran(𝑀).

is the configuration space of unordered d-tuples of distinct points in M. In this way, each Ran≤𝑑 (𝑀)
becomes a Whitney stratified space, and Ran(𝑀) can be considered as a (infinite-dimensional) space
with a conical stratification; see §1.1. In particular, we can speak about the category of exit paths
Exit(Ran(𝑀)) and, for a Grothendieck abelian category A, about A-valued constructible sheaves on
Ran(𝑀) (with respect to the stratification by the Sym𝑑

≠ (𝑀)).

Remarks 2.1.4.
(a) An exit path in Ran(𝑀) can be seen as a history of a colony of bacteria living in M which can move

and multiply (by splitting) but not merge together, and cannot die; see Figure 3.
(b) A constructible sheaf F on Ran(𝑀) assigns to any finite nonempty 𝐼 ⊂ 𝑀 an object F𝐼 ∈ A

(the stalk). When I ‘evolves’ into J by moving and splitting, we have a morphism F𝐼 → F𝐽 (the
generalization map).

Let us focus, in particular, on the Ran spaces of the real line R and the circle 𝑆1.

Example 2.1.5. It goes back to Bott [8] that Ran≤3(𝑆1) is homeomorphic to the 3-sphere 𝑆3. Further,
inside this sphere Ran≤1(𝑆1) = 𝑆1 is embedded as a trefoil knot, and Ran≤2 (𝑆1) is a Moebius band
bounding this knot. See [41] for a beautiful treatment using elliptic functions. The topology and
homotopy type of Ran≤𝑑 (𝑆1) for higher d was studied in [46].

The following result was proven in [9]:

Proposition 2.1.6.
(a) The category Exit(Ran(R)) is equivalent to (Δsurj)op. In particular, A-valued constructible sheaves

on Ran(R) can be identified with half-simplicial objects in A.
(b) The category Exit(Ran(𝑆1)) is equivalent to (Λsurj

∞ )
op. In particular,A-valued constructible sheaves

on Ran(𝑆1) can be identified with half-paracyclic objects in A.

Proof. (a) An exit path 𝛾 in any Ran(𝑀) going from I to J gives, for any 𝑥 ∈ 𝐼, a tree of descendents
of x which terminates in a subset of J. This gives a surjection 𝑎𝛾 : 𝐽 → 𝐼 (the ‘ancestry map’). Isotopic
exit paths lead to the same surjection. If 𝑀 = R, then the order of R makes both I and J into nonempty
finite ordinals and the surjection 𝑎𝛾 is monotone.

(b) Recall from [11] Chapter III, Appendix A the geometric definition of the cyclic category Λ. For
this, we identify 〈𝑛〉 with the set of (𝑛 + 1)st roots of 1 in the standard circle 𝑆1. Then HomΛ (〈𝑚〉, 〈𝑛〉)
is the set of connected components of the space of degree 1 monotone maps 𝑓 : (𝑆1, 〈𝑚〉) → (𝑆1, 〈𝑛〉).
Each such connected component has the homotopy type of 𝑆1, and HomΛ∞ (〈𝑚〉, 〈𝑛〉) is obtained by
passing to the universal coverings of these components. That is, HomΛ∞ (〈𝑚〉, 〈𝑛〉) is the set of isotopy
classes of data ( 𝑓 , 𝑠) consisting of f as above together with a homotopy s between f and the identity (as
maps 𝑆1 → 𝑆1). Note now that for 𝑀 = 𝑆1, an exit path 𝛾 as in (a) gives not only a surjection 𝑎𝛾 but a
well-defined isotopy class of pairs ( 𝑓 , 𝑠), where 𝑓 : (𝑆1, 𝐽) → (𝑆1, 𝐼) is a monotone degree 1 map and
s is homotopy of f to the identity. �

https://doi.org/10.1017/fms.2023.84 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.84


Forum of Mathematics, Sigma 13

•

•

•

•

•

•

•

†

†

†

Figure 4. An exit path in Ran(𝑀) with deaths.

Remark 2.1.7. One would like to extend the approach with the Ran spaces so as to realize the full
categories Δ ,Λ∞ or functors out of them in terms of some categories of exit paths or constructible
sheaves. For this, in the language of Remark 2.1.4(a), we would need to modify the concept of an exit
path as a history of a colony of bacteria so as to allow the bacteria to die; see Figure 4. Then for such a
‘history with deaths’ evolving from I to J we will still have the ancestry map 𝐽 → 𝐼 but it need not be
surjective, as some lines may die out.

To account for such ‘exit paths with deaths’, one needs to consider constructible sheavesF on Ran(𝑀)
equipped with an additional monotone structure which is a system of maps F𝐽 → F𝐼 given for any
nested pair 𝐼 ⊂ 𝐽 ⊂ 𝑆1 of nonempty finite sets and transitive in nested triples.

We do not pursue this approach further but note that our point of view based on Milnor disks (𝐴, 𝐴′)
has 𝐴′, a finite union of intervals in the circle 𝜕𝐴 � 𝑆1, playing the role of a finite subset 𝐼 ∈ Ran(𝜕𝐴).

A systematic approach to the matter discussed in Remark 2.1.7 via ‘unital’ Ran spaces was developed
in [9, 10]. The author recovers the paracyclic category and Joyal’s categories Θ𝑛 as unital exit path
categories associated to the Ran spaces of 𝑆1 and R𝑛, respectively.

2.2. The paracyclic category of a stratified surface

Let (𝑋, 𝑁) be a stratified surface as defined above. Throughout this text, we will assume that, if 𝑋 � 𝑆2,
then |𝑁 | ≥ 2. In this section, we introduce the paracyclic category Λ(𝑋, 𝑁) of (𝑋, 𝑁) which can be
seen as a certain amalgamation of the copies of Λ∞ associated with the circles of directions at all the
points 𝑥 ∈ 𝑋

Pant cobordisms and the paracyclic category
We will use the notation 𝐼 = [0, 1] for the closed unit interval and, as before, D for the closed unit disk.
Definition 2.2.1. By a para-disk in (𝑋, 𝑁), we mean a pair (𝐴, 𝐴′), where 𝐴 ⊂ 𝑋 is a closed disk such
that |𝐴 ∩ 𝑁 | ≤ 1 and 𝐴′ ⊂ 𝜕𝐴 � 𝑆1 is a compact one-dimensional submanifold, that is one of the
following:

(i) the empty set,
(ii) a finite nonempty union of closed intervals,

(iii) the full boundary circle.
Thus, a Milnor disk is a particular case of a para-disk corresponding to the possibility (ii) of Definition

2.2.1. In the other two cases, a para-disk (𝐴, 𝐴′) will be called:
(a) a standard disk, if 𝐴′ = ∅,
(b) a bounded disk, if 𝐴′ = 𝜕𝐴.

We now define morphisms between para-disks. Intuitively, such a morphism should be a certain
isotopy class of paths (𝐴𝑡 , 𝐴

′
𝑡 )𝑡 ∈𝐼 in the space of para-disks. We want such paths to satisfy the following

dynamical requirements as t increases from 0 to 1:
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Figure 5. A pant cobordism.

(PD1) The components 𝐴′𝑡 can merge together and can appear ex nihilo (growing out of single points)
but cannot split.

(PD2) A special point 𝑥 ∈ 𝑁 can enter the interior of 𝐴𝑡 (i.e., 𝐴𝑡 can ‘run it over’) only through the
complement 𝐴𝑡\𝐴

′
𝑡 and exit 𝐴𝑡 only through 𝐴′𝑡 .

To implement this formally, we represent paths in the space of para-disks via maps 𝐼 × D→ 𝑋 . We
start with formalizing the merging behavior of the components 𝐴𝑡 as in (PD1).
Definition 2.2.2.
(1) Let 𝑃 ⊂ 𝐼 × 𝑆1 be a subset. For any 𝑡 ∈ 𝐼, we denote by 𝑃𝑡 = 𝑃 ∩ ({𝑡} × 𝑆1) the slice of P over t.

We can view 𝑃𝑡 as a subset in 𝑆1.
(2) By a pant cobordism, we will mean a closed two-dimensional (topological) submanifold 𝑃 ⊂ 𝐼 × 𝑆1

with boundary such that:
(2a) The slices 𝑃0, 𝑃1 ⊂ 𝑆1 are compact one-dimensional submanifolds with boundary, as in

Definition 2.2.1.
(2b) The inclusion 𝑃1 ⊂ 𝑃 is a homotopy equivalence.

An example of a pant cobordism is depicted in Figure 5.
Remarks 2.2.3. (a) Strictly speaking, a pant cobordism P is a manifold with corners, not just boundary,
the corners being the boundary points of 𝑃0 and 𝑃1, as one can see in Figure 5. Since we consider P as
a topological manifold, we ignore this subtlety.

(b) Intuitively, the slices 𝑃𝑡 ⊂ 𝑆1 correspond to the one-dimensional submanifolds 𝐴′𝑡 ⊂ 𝐴𝑡 in the
picture with paths in the space of para-disks. Of course, for some values of t such slices may not be of
the form allowed in Definition 2.2.1, in particular, they may have, as components, single points (which
can then disappear or grow to become intervals) Nevertheless, the condition (2b) of Definition 2.2.2
corresponds to the requirement (PD1) on the paths. In this way, a pant cobordism can (after time reversal
𝑡 ↦→ 1 − 𝑡) be seen as a thickened version of an ‘exit path with deaths’ from Remark 2.1.7.
Definition 2.2.4. The paracyclic category Λ(𝑋, 𝑁) of (𝑋, 𝑁) is the category with objects being para-
disks (𝐴, 𝐴′) for (𝑋, 𝑁). A morphism

𝑓 : (𝐴0, 𝐴
′
0) −→ (𝐴1, 𝐴

′
1)

in Λ(𝑋, 𝑁) consists of
◦ a pant cobordism 𝑃 ⊂ 𝐼 × 𝑆1.
◦ a continuous map 𝐻 : 𝐼 × D → 𝑋 , which we also consider as a family of maps 𝐻𝑡 : D → 𝑋 , 𝑡 ∈ 𝐼

such that
(1) H is an isotopy, that is, each 𝐻𝑡 is an embedding,
(2) for 𝑖 ∈ {0, 1}, the embedding 𝐻𝑖 induces homeomorphisms D � 𝐴𝑖 and 𝑃𝑖 � 𝐴′𝑖 ,
(3) for every 𝑡 ∈ 𝐼, we have |𝐻𝑡 (D) ∩ 𝑁 | ≤ 1,
(4) for every 𝑡0 ∈ 𝐼 and 𝑥 ∈ 𝐻𝑡0 (𝑃𝑡0 ) ∩ 𝑁 , there exists 𝜀 > 0 such, for every 𝑡0 ≤ 𝑡 ≤ 𝑡 + 𝜀,

𝑥 ∉ 𝐻𝑡 (D \ 𝑃𝑡0 ).
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◦ two such data (𝐻, 𝑃), (𝐻 ′, 𝑃′) define the same morphism if there exists a homeomorphism 𝜑 : 𝐼×D→
𝐼 × D such that 𝜑|𝑃 induces a homeomorphism with 𝑃′, together with a homotopy 𝛼 : 𝐼2 × D→ 𝑋
with 𝛼0 = 𝐻 and 𝛼1 = 𝐻 ′ such that, for every 𝑠 ∈ 𝐼, 𝛼𝑠 satisfies the above conditions.

We denote by 𝑆(𝑋, 𝑁) ⊂ Λ(𝑋, 𝑁) the full subcategory of standard disks, by 𝐵(𝑋, 𝑁) ⊂ Λ(𝑋, 𝑁)
the full subcategory of bounded disks and by 𝑀 (𝑋, 𝑁) ⊂ Λ(𝑋, 𝑁) the full subcategory of Milnor disks.
We refer to 𝑀 (𝑋, 𝑁) as the Milnor category of (𝑋, 𝑁).

Remarks 2.2.5. (a) Given a morphism f with a representative (𝑃, 𝐻), we have, for any 𝑡 ∈ 𝐼, a closed
disk 𝐴𝑡 = 𝐻𝑡 (D) ⊂ 𝑋 and a closed subset 𝐴′𝑡 = 𝐻𝑡 (𝑃𝑡 ) ⊂ 𝜕𝐴𝑡 . The pair (𝐴𝑡 , 𝐴

′
𝑡 ) depends only on f. For

generic values of t, the slice 𝑃𝑡 belongs to one of the three types described in Definition 2.2.1 and so
(𝐴𝑡 , 𝐴

′
𝑡 ) is a para-disk by the condition (2) The condition (4) corresponds to the intuitive requirement

(PD2) on paths in the space of para-disks while (PD1) corresponds, as mentioned above, to the condition
(2b) of Definition 2.2.2 of a pant cobordism.

(b) Our assumption that if 𝑋 � 𝑆2, then |𝑁 | ≥ 2 implies that the mapping spaces which appear
implicitly in our definition of Λ(𝑋, 𝑁) have contractible components so that it is justified to consider it
as an ordinary category (rather than an∞-category).

Example 2.2.6. The category 𝑀 (C, ∅) of Milnor disks in (C, 0) is equivalent to the paracyclic category
Λ∞. This is shown similarly to the proof of Proposition 2.1.6. Further, the category Λ(C, ∅) is equivalent
to the category obtained from Λ∞ by adjoining an initial and a final objects which correspond to the
objects

respectively.

The Milnor category and perverse sheaves
The role of the category 𝑀 (𝑋, 𝑁) for our purposes is explained by the following.

Proposition 2.2.7. Let F ∈ PS(𝑋, 𝑁;A) be a perverse sheaf on (𝑋, 𝑁) with values in a Grothendieck
abelian category A. Then the correspondence (𝐴, 𝐴′) ↦→ 𝐻0(𝐴, 𝐴′;F) extends to a functor ℎF :
𝑀 (𝑋, 𝑁)op → A.

Proof. Let 𝑓 : (𝐴0, 𝐴
′
0) → (𝐴1, 𝐴

′
1) be a morphism between two Milnor disks represented by a pair

(𝑃, 𝐻) as in Definition 2.2.4. Let 𝑁 = 𝐻−1 (𝑁) ⊂ 𝐼 ×D. Because of condition (1) of that definition, 𝑁 is
a one-dimensional topological submanifold with boundary, that is, a disjoint union of closed curvilinear
intervals in the cylinder 𝐼 × 𝐷, each of them projecting to I in an injective way. We orient these curves
following the increase of 𝑡 ∈ 𝐼.

Let 𝑁+ ⊂ 𝑁 be the union of components that terminate (in the sense of the above orientation) on P.
Let 𝑁− ⊂ 𝑁 be the union of components that terminate on {1} × D. Thus, 𝑁+ ∪ 𝑁− = 𝑁 and 𝑁+ ∩ 𝑁−

is the union of components that terminate on the slice 𝑃1.
Further, let F̃ = 𝐻∗(F). It is a complex of sheaves on 𝐼 × 𝐷 constructible with respect to the

stratification given by 𝑁 . By Proposition 1.2.4,

𝐻0 (𝐴𝑖 , 𝐴
′
𝑖 ;F) � 𝑅Γ({𝑖} × D, 𝑃𝑖; F̃), 𝑖 ∈ {0, 1} ⊂ 𝐼 .

Consider the diagram of restrictions

𝑅Γ({1} × D, 𝑃1; F̃)
𝜌1
←− 𝑅Γ(𝐼 × D, 𝑃; F̃)

𝜌0
−→ 𝑅Γ({0} × D, 𝑃0; F̃).
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We claim that 𝜌1 is a quasi-isomorphism (and therefore, by purity, it reduces to an isomorphism of
objects of A). Indeed, denote

𝑃+ = 𝑃 ∪ 𝑁+ ⊂ 𝐼 × D, D− = {1} × D ∪ 𝑁− ⊂ 𝐼 × D.

Because of the condition (2b) of Definition 2.2.2 and the entry–exit condition (4) of Definition 2.2.4,
the inclusion of the slice 𝑃1 ⊂ 𝑃+ is a homotopy equivalence, and the inclusion {1} × D↩→D− is a
homotopy equivalence as well. This means that each of the two restriction morphisms

𝑅Γ(𝐼 × D, 𝑃;F) −→ 𝑅Γ(𝐼 × D, 𝑃′;F) −→ 𝑅Γ({1} × D, 𝑃1;F)

whose composition is 𝜌1, is a quasi-isomorphism.
We now define the value of the functor ℎF on f, that is, the morphism ℎF ( 𝑓 ) : 𝐻0 (𝐴1, 𝐴

′
1;F) →

𝐻0 (𝐴0, 𝐴
′
0;F) to be given by 𝜌2𝜌

−1
1 . The necessary verifications are left to the reader. �

Remark 2.2.8. In a similar way, utilizing the ∞-category of spans, one can show that the association
(𝐴, 𝐴′) ↦→ 𝑅Γ(𝐴, 𝐴′;F) extends to an∞-functor from Λ(𝑋, 𝑁) to D∞(A), the∞-categorical enhance-
ment of the derived category of A; see §A.3.

Example 2.2.9. The categories 𝑆(𝑋, 𝑁) of standard disks and 𝐵(𝑋, 𝑁) of bounded disks are equivalent
to Entr(𝑋, 𝑁) and Exit(𝑋, 𝑁), the categories of entrance and exit paths of the stratified space (𝑋, 𝑁)
respectively. The first equivalence has the form

Entr(𝑋, 𝑁) → 𝑆(𝑋, 𝑁), 𝑥 ↦→ (𝐴𝑥 , ∅),

where 𝐴𝑥 ⊂ 𝑋 is a disk containing x such that 𝐴𝑥 ∩ 𝑁 = ∅ if 𝑥 ∉ 𝑁 . The second equivalence is defined
in the dual way.

The paracyclic duality
Next, we describe an identification of Λ(𝑋, 𝑁) with its opposite category Λ(𝑋, 𝑁)op which will play
an important role in interpreting the Verdier duality for perverse sheaves. We start with the following
remarks. For a closed subset Z of a topological space Y, we denote by �̊� the interior of Z. The next two
propositions are then clear.

Proposition 2.2.10.

(a) For a para-disk (𝐴, 𝐴′) ⊂ 𝑋 the pair (𝐴, 𝐴′)∗ := (𝐴, 𝜕𝐴\( �̊�′)) is again a para-disk.
(b) Let 𝜎 : 𝐼 × 𝑆1 × 𝐼 × 𝑆1 be the involution (𝑡, 𝜃) ↦→ (1 − 𝑡, 𝜃). For a pant cobordism 𝑃 ⊂ 𝐼 × 𝑆1, the

subset 𝑃∗ = 𝜎(𝐼 × 𝑆1)\�̊� is again a pant cobordism.

Proposition 2.2.11. Let 𝑖 : Λ(𝑋, 𝑁)′ ⊂ Λ(𝑋, 𝑁) denote the full subcategory consisting of those Milnor
disks (𝐴, 𝐴′) such that 𝜕𝐴 ∩ 𝑁 = ∅. Then the inclusion i is an equivalence of categories.

Proposition 2.2.12. We have a perfect duality (which we call the paracyclic duality)

𝜉 : Λ(𝑋, 𝑁) �−→ Λ(𝑋, 𝑁)op

defined on objects by the association (𝐴, 𝐴′) ↦→ (𝐴, 𝐴′)∗.

Proof. Using Proposition 2.2.11, it suffices to define a duality on the equivalent subcategories 𝜉 ′ :
Λ(𝑋, 𝑁)′

�
−→ Λ(𝑋, 𝑁)′op, which is given on objects by the desired formula (𝐴, 𝐴′) ↦→ (𝐴, 𝐴′)∗.

To do this, suppose we have a morphism f represented by (𝐻, 𝑃); note that we may assume, replacing
(𝐻, 𝑃) by an equivalent representative if needed, that special points enter in 𝐼 × 𝑆1 \ 𝑃 and exit in �̊�.
Then we define 𝜉 ( 𝑓 ) to be represented by (𝐻 (1 − 𝑡,−), 𝑃∗). It is straightforward to verify that this
association yields a well-defined functor squaring to the identity, that is, giving a perfect duality. �
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Note, that the paracyclic duality 𝜉 interchanges the subcategories 𝑆(𝑋, 𝑁) and 𝐵(𝑋, 𝑁), identifying
them as opposite to one another, and restricts to a self-duality of 𝑀 (𝑋, 𝑁).

2.3. The directed paracyclic category and its localization

Let (𝑋, 𝑁) be as before. In this section, we exhibitΛ(𝑋, 𝑁) as a localization of another category
−→
Λ(𝑋, 𝑁)

which we call the directed paracyclic category. This latter category turns out to be more suitable for the
use of Kan extensions.
Definition 2.3.1. We define the directed paracyclic category

−→
Λ(𝑋, 𝑁) exactly as in Definition 2.3.1 but

replacing condition (4) by the following:
(Ent) For every 𝑥 ∈ 𝑁 , we have

(Ent1) if 𝑥 ∈ 𝐴𝑡0 = 𝐻𝑡0 (D) for 𝑡0 ∈ 𝐼, then, for all 𝑡 ≥ 𝑡0, we have 𝑥 ∈ 𝐴𝑡 ,
(Ent2) if 𝑥 ∈ 𝐴′𝑡0 = 𝐻𝑡0 (𝑃𝑡0 ) for 𝑡0 ∈ 𝐼, then, for all 𝑡 ≥ 𝑡0, we have 𝑥 ∈ 𝐴′𝑡 .

A morphism 𝑓 : (𝐴, 𝐴′) → (𝐵, 𝐵′) in
−→
Λ(𝑋, 𝑁) is called a weak equivalence if either

(i) f is an isomorphism, or
(ii) f can be represented by a pair (𝑃, 𝐻) such that 𝐻−1

0 (𝐴
′) ⊂ 𝑃 is a homotopy equivalence and

𝐻−1(𝑁) ⊂ 𝑃.

We denote 𝑊 ⊂ Mor(
−→
Λ(𝑋, 𝑁)) the set of weak equivalences.

Remarks 2.3.2.
(a) The condition (Ent) is a two-step version of the entrance path condition: If a special point x enters

𝐴𝑡0 , then it stays in all the 𝐴𝑡 for all 𝑡 ≥ 𝑡0, and similarly for 𝐴′𝑡0 .
(b) The condition (ii) in the definition of a weak equivalence means that a special point x is allowed to

enter 𝐴′𝑡0 ⊂ 𝐴𝑡0 from the outside of 𝐴𝑡0 and stay there for all 𝑡 ≥ 𝑡0.

We also denote by
−→
𝑆 (𝑋, 𝑁),

−→
𝐵 (𝑋, 𝑁),

−→
𝑀 (𝑋, 𝑁) ⊂

−→
Λ(𝑋, 𝑁) the full subcategories of standard disks,

bounded disks and Milnor disks, respectively.
Proposition 2.3.3. The natural morphism

𝜋 :
−→
Λ(𝑋, 𝑁) −→ Λ(𝑋, 𝑁)

exhibits Λ(𝑋, 𝑁) as a localization of
−→
Λ(𝑋, 𝑁) along W.

Here, by ‘localization’ we mean
−→
Λ(𝑋, 𝑁) [𝑊−1], the Gabriel–Zisman localization in the sense of

ordinary categories [23]. In fact, one can prove stronger statements, identifying Λ(𝑋, 𝑁) with the ∞-
categorical localization or with the Dwyer–Kan simplicial localization [16] of

−→
Λ(𝑋, 𝑁) with respect to

W. This can be done by adapting our proof below by using a hammock-type model for the Dwyer–Kan
localization. We will not need this generalization for our purposes except for a very particular case in
Lemma 2.5.2 below, which is easily proved directly.

Proof. Recall that in Λ(𝑋, 𝑁) a special point x is allowed to exit 𝐴𝑡0 through 𝐴′𝑡0 . This process is inverse
to entering 𝐴𝑡0 through 𝐴′𝑡0 from the outside which is, according to Remark 2.3.2(b), a general form of
a weak equivalence (apart from an isomorphism). Indeed, the composite process (entering 𝐴𝑡0 through
𝐴′𝑡0 from the outside and then bouncing back to the original position) is connected to the identity by a
homotopy 𝛼 as in Definition 2.2.4.

Therefore, the functor 𝜋 inverts weak equivalences and we obtain an induced functor 𝜋 :
−→
Λ(𝑋, 𝑁) [𝑊−1] → Λ(𝑋, 𝑁). We claim that 𝜋 is an equivalence. To this end, we study a typical Hom-set

Hom−→
Λ(𝑋,𝑁 ) [𝑊 −1 ]

(𝐴, 𝐴′), (𝐶,𝐶 ′)). (2.3.4)
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By definition (cf. [23] §I.1), an element of this set is an equivalence class of zig-zags

(𝐴, 𝐴′) = (𝐴1, 𝐴
′
1)

𝑤1
← (𝐵1, 𝐵

′
1)

𝑓1
→ (𝐴2, 𝐴

′
2)

𝑤2
← · · ·

𝑓𝑛−1
→ (𝐴𝑛, 𝐴

′
𝑛) = (𝐶,𝐶 ′) (2.3.5)

of arbitrary length, with 𝑤𝑖 ∈ 𝑊 . The equivalence relation on the set of such zig-zags is generated by
two elementary moves:

(M1) For any factorization

(𝐴𝑖 , 𝐴
′
𝑖) (𝐵𝑖 , 𝐵

′
𝑖)

𝑤𝑖�� 𝑓𝑖+1 �� (𝐴𝑖+1, 𝐴
′
𝑖+1)

(𝐵𝑖−1, 𝐵
′
𝑖−1)

𝑓𝑖

��

𝑔

������������

we can replace the fragment
𝑓𝑖
→

𝑤𝑖
←

𝑓𝑖+1
→ with

𝑓𝑖+1𝑔
→ .

(M2) For any factorization

(𝐵𝑖−1, 𝐵
′
𝑖−1)

𝑓𝑖−1 �� (𝐴𝑖 , 𝐴
′
𝑖)

ℎ ����
���

���
��

(𝐵𝑖 , 𝐵
′
𝑖)

𝑤𝑖��

𝑓𝑖

��
(𝐴𝑖+1, 𝐴

′
𝑖1
)

we can replace the fragment
𝑓𝑖−1
→

𝑤𝑖
←

𝑓𝑖
→ with

ℎ 𝑓𝑖−1
→ .

These two moves imply the hammock move, which is at the basis of Dwyer–Kan localization theory [16]
(except that we don’t assume that the vertical morphisms are weak equvialences):

(H) Any two zig-zags connected by a hammock, that is, by a commutative diagram

(𝐵1, 𝐵
′
1)𝑤1

�����
�

��

𝑓1 �� (𝐴2, 𝐴
′
2)

��

(𝐵2, 𝐵
′
2)

𝑤2��

��

𝑓2 �� · · · (𝐵𝑛−1, 𝐵
′
𝑛−1)

𝑤𝑛−1��
𝑓𝑛

		��
���

��

(𝐴, 𝐴′) (𝐶,𝐶 ′)

(𝐵1, 𝐵
′
1)

𝑤1



����
𝑓1 �� (𝐴2, 𝐴

′
2) (𝐵2, 𝐵

′
2)

𝑤2�� 𝑓2 �� · · · (𝐵𝑛−1, 𝐵
′
𝑛−1)

𝑤𝑛−1�� 𝑓𝑛

�������

are equivalent.

We now compare this with HomΛ(𝑋,𝑁 ) ((𝐴, 𝐴
′), (𝐶,𝐶 ′)). An element f of this latter set is an

equivalence class of pairs (𝑃, 𝐻) as in Definition 2.2.4. As usual, we write 𝐴𝑡 = 𝐻𝑡 (D), 𝐴′𝑡 = 𝐻𝑡 (𝑃𝑡 ).
Without loss of generality, we can assume that:

◦ P is smooth as a manifold with corners, that is, the part of 𝜕𝑃 lying over the open interval (0, 1) ⊂ 𝐼
is smooth.

◦ The projection of this part of 𝜕𝑃 to (0, 1) is a Morse function. This implies that for all but finitely
many values of t (which we call critical values) the slice 𝑃𝑡 has one of the three forms listed in
Definition 2.2.1 and therefore (𝐴𝑡 , 𝐴

′
𝑡 ) is a para-disk.

◦ The moments 𝑡1 < · · · < 𝑡𝑛, 𝑡𝑖 ∈ 𝐼, of exit of special points 𝑥 ∈ 𝑁 out of 𝐴𝑡 (happening through 𝐴′𝑡 )
are noncritical.

Let 𝑡 ′𝑖 > 𝑡𝑖 , 𝑖 = 1, · · · , 𝑛, be sufficently close. As explained in the beginning of the proof, the restriction
of (𝑃, 𝐻) to the preimage of each interval [𝑡𝑖 , 𝑡 ′𝑖 ] can be seen as an inverse of a weak equivalence in
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−→
Λ(𝑋, 𝑁). while the restriction to each interval in the complement of the union of the [𝑡𝑖 , 𝑡 ′𝑖 ], is a
morphism in

−→
Λ(𝑋, 𝑁). Therefore, we can associate to (𝐻, 𝑃) a zig-zag (2.3.5).

We claim that different choices of (𝐻, 𝑃) representing the same morphism f, give rise to equivalent
zig-zags. Any two such different choices are, by Definition 2.2.4, related by a reparemetrization 𝜑 :
𝐼 × D→ 𝐼 × D and a homotopy 𝛼 : 𝐼2 × D→ 𝑋 . By choosing 𝛼 generic enough, we see that any two
choices are connected by a sequence of the following moves and their inverses:

(M’1) replacing a representative (𝑃, 𝐻) with a representative (𝑃, 𝐻) which, locally around 𝑡 ∈ 𝐼, avoids
the special point contained in 𝐴′𝑡 :

(2.3.6)

Denote by
𝑤𝑖
←− the slice of (𝑃, 𝐻) from the moment of exit of x until shortly afterwards and by

𝑓𝑖
−→ the slice from shortly before exit to the moment of exit; see (2.3.6). We see that we have
three morphisms 𝑔, 𝑤𝑖 , 𝑓𝑖

−→
Λ(𝑋, 𝑁) and a factorization 𝑤𝑖𝑔 = 𝑓𝑖 in

−→
Λ(𝑋, 𝑁) represented by an

appropriate homotopy 𝛼. Therefore, the move (M′1) yields two zig-zags connected by the move
(M1).

(M’2) replacing a representative (𝑃, 𝐻) with a representative (𝑃, 𝐻), where 𝑃 is obtained by deforming
P in a suitable way locally around one of the exit moments 𝑡𝑖 so that two intervals in 𝐴′𝑡𝑖 are
replaced by one:

(2.3.7)
.

Making four slices of each the two cobordisms as in (2.3.7), we get two zig-zags connected by a
hammock:

(𝐴𝑖 , 𝐴
′
𝑖)

��

(𝐵𝑖 , 𝐵
′
𝑖)

𝑤𝑖��

��

𝑓𝑖+1
�����

����

(𝐵𝑖−1, 𝐵
′
𝑖−1)

𝑓𝑖 

							

𝑓𝑖
��









(𝐴𝑖+1, 𝐴

′
𝑖+1)

(𝐴𝑖 , 𝐴
′
𝑖) (𝐵𝑖 , 𝐵

′
𝑖)𝑤𝑖

�� 𝑓𝑖+1



�������
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so they are equivalent by the hammock move. Therefore, the entire zig-zags corresponding to (𝑃, 𝐻)
and (𝑃, 𝐻) are equivalent as well.

In this way, we define a functor
−→
Λ(𝑋, 𝑁) [𝑊−1] → Λ(𝑋, 𝑁) which is easily seen to be quasi-inverse

to 𝜋. �

Corollary 2.3.8. The functor 𝜋 from Proposition 2.3.3 induces an equivalence
−→
𝑆 (𝑋, 𝑁) � 𝑆(𝑋, 𝑁) and

localizations −→𝑀 (𝑋, 𝑁) → 𝑀 (𝑋, 𝑁), −→𝐵 (𝑋, 𝑁) → 𝐵(𝑋, 𝑁).

2.4. Constructible sheaves with values in∞-categories

Let (𝑋, 𝑁) be a stratified surface, let 𝔒(𝑋) denote the poset of open subsets of X and let D be an
∞-category. The following is an∞-categorical analog of the discussion for abelian categories in §1.1.

Lemma 2.4.1. Given a functor F : N(𝔒(𝑋))op → D, an open subset 𝑈 ⊂ 𝑋 , and an open cover
U = {𝑈𝑖}𝑖∈𝐼 of U, the following conditions are equivalent:

(i) Denote by 𝔒(𝑋)/U the poset of open subsets 𝑉 ⊂ 𝑋 such that 𝑉 ⊂ 𝑈𝑖 for some 𝑖 ∈ 𝐼. Then the
canonical map

F(𝑈) −→ limF | (𝔒(𝑋)/U)op

is an equivalence in D.
(ii) Denote by P(𝐼) the poset of nonempty finite subsets of I, and consider the inclusion P(𝐼) ⊂

𝔒(𝑋)op, 𝐽 ↦→ ∩ 𝑗∈𝐽𝑈 𝑗 . Then the canonical map

F(𝑈) −→ limF |P(𝐼)

is an equivalence in D.

Proof. The inclusion P(𝐼)op ⊂ 𝔒(𝑋)/U is∞-cofinal. �

A D-valued sheaf on X is a functor

F : N(𝔒(𝑋))op → D

such that, for every open 𝑈 ⊂ 𝑋 and every open cover U of U, the equivalent conditions of Lemma
2.4.1 hold. We denote by

Sh(𝑋;D) ⊂ Fun(N(𝔒(𝑋))op,D)

the full subcategory spanned by the D-valued sheaves on X.
Let (Disk𝑜 (𝑋, 𝑁, ≤) be the poset of standard pairs (𝑈, ∅) ordered by inclusion. We will consider it as

a category. A morphism in (Disk𝑜 (𝑋, 𝑁, ≤) (i.e., an inclusion 𝑈1 ⊂ 𝑈2 of standard disks) will be called
a weak equivalence, if |𝑁 ∩𝑈1 | = |𝑁 ∩𝑈2 |. We denote by W the set of weak equivalences. The map

𝑖 : Disk𝑜 (𝑋, 𝑁) ⊂ 𝔒(𝑋), (𝑈, ∅) ↦→ 𝑈

identifies Disk𝑜 (𝑋, 𝑁) with a full subposet of 𝔒(𝑋). A sheaf F in Sh(𝑋;D) is called constructible
if its restriction F |Disk𝑜 (𝑋, 𝑁)op maps weak equivalences to equivalences in D. We denote the full
subcategory of Sh(𝑋;D) spanned by the constructible sheaves by Sh(𝑋, 𝑁;D).

Remark 2.4.2. Let A be an abelian category with enough injectives, and let D = D+(A) denote the
corresponding (left-bounded) derived ∞-category as defined in [38, 1.3.2.8]. We equip the stable ∞-
category Sh(𝑋;D) with the t-structure (Sh(𝑋;D≥0), Sh(𝑋;D≤0)), where the t-structure onD is the one
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from [38, 1.3.2.19]. The heart of this t-structure is equivalent to Sh(𝑋,A). Then, using the recognition
principle for derived∞-categories ([38, 1.3.3.7]), we obtain an equivalence of∞-categories

D+(Sh(𝑋;A)) �−→ Sh(𝑋;D+(A)).

In particular, the ∞-category Sh(𝑋;D(A)) is really an enhancement of the ordinary derived cate-
gory of complexes of A-valued sheaves. Further, this equivalence identifies our constructible category
Sh(𝑋, 𝑁;D+(A)) with the more traditional derived constructible category, defined as the full subcate-
gory of D+(Sh(𝑋;A)) spanned by objects with constructible cohomology sheaves.

We denote by Disk𝑜 (𝑋, 𝑁) [𝑊−1]∞ the ∞-categorical localization of Disk𝑜 (𝑋, 𝑁) along the weak
equivalences W. In particular, we may identify

Fun(Disk𝑜 (𝑋, 𝑁) [𝑊−1]
op
∞ ,D) ⊂ Fun(Disk𝑜 (𝑋, 𝑁)op,D)

with the full subcategory spanned by those functors that map weak equivalences in Disk𝑜 (𝑋, 𝑁) to
equivalences in D.

Proposition 2.4.3. The functor

𝑖∗ : Sh(𝑋, 𝑁;D) −→ Fun(Disk𝑜 (𝑋, 𝑁) [𝑊−1]
op
∞ ,D)

is an equivalence of∞-categories.

Proof. Let F : 𝔒(𝑋)op → D be a presheaf on X such that F |Disk𝑜 (𝑋, 𝑁)op sends weak equivalences
to equivalences in D. We claim that the following conditions are equivalent:

(1) F is a sheaf.
(2) F is a right Kan extension of F |Disk𝑜 (𝑋, 𝑁)op.

The claim immediately implies the statement of the proposition. The reason why this statement is not
completely formal is that in condition (2), we do not assume that the restriction of F to Disk𝑜 (𝑋, 𝑁)op

satisfies a descent condition. We rather need to convince ourselves that this is automatic due to the
assumption that F is constructible.

(1)⇒ (2): Suppose that F is a sheaf. We need to show that, for every open 𝑈 ⊂ 𝑋 , F(𝑈) is the limit
of the diagram F | (Disk𝑜 (𝑋, 𝑁)/𝑈)op. We interpret the set U = Disk𝑜 (𝑋, 𝑁)/𝑈 as an open cover of U
so that this statement follows immediately from the hypothesis that F is a sheaf.

(2)⇒ (1): Suppose that F is a right Kan extension of F |Disk𝑜 (𝑋, 𝑁)op. Let𝑈 ⊂ 𝑋 be an open subset,
and let U ⊂ 𝔒(𝑋) be an open cover of U. Let 𝔒(𝑋)/U (resp. Disk𝑜 (𝑋, 𝑁)/U) denote the subposet of
U consisting of those opens V (resp. 𝑉 ∈ Disk𝑜 (𝑋, 𝑁)) such that 𝑉 ⊂ 𝑈𝑖 for some 𝑈𝑖 ∈ U. We need to
show that the map

F(𝑈) → limF | (𝔒(𝑋)/U)op

is an equivalence. Since F | (𝔒(𝑋)/U)op is a right Kan extension of F | (Disk𝑜 (𝑋, 𝑁)/U)op, it suffices to
show that the composite

F(𝑈) → limF | (𝔒(𝑋)/U)op → limF | (Disk𝑜 (𝑋, 𝑁)/U)op

is an equivalence. Via the pointwise formula for F(𝑈), we deduce that it suffices to show that
F | (Disk𝑜 (𝑋, 𝑁)/𝑈)op is a right Kan extension along 𝑖op, where

𝑖 : Disk𝑜 (𝑋, 𝑁)/U ⊂ Disk𝑜 (𝑋, 𝑁)/𝑈.

To this end, let 𝐷 ∈ Disk𝑜 (𝑋, 𝑁) with 𝐷 ⊂ 𝑈. We need to show that F(𝐷) is a limit of F | (𝑖/𝐷)op.
Denote E = 𝑖/𝐷, and introduce the category L with
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◦ the set of objects of L is the set of objects of E,
◦ a morphism between objects V and 𝑉 ′ of L is a homotopy class of paths 𝛾 in Emb(𝑉, 𝐷) such that

𝛾(0) is the embedding 𝑉 ⊂ 𝐷, 𝛾(1) is a homeomorphism 𝑉 � 𝑉 ′ and, if 𝛾(𝑡) (𝑉) contains the special
point for some t, then 𝛾(𝑡 ′) (𝑉) contains the special point for all 𝑡 ′ ≥ 𝑡.

Denote by 𝜋 : E→ L the natural functor. We will show that 𝜋 is an∞-cofinal localization at the set of
weak equivalences in E.

Step 1. 𝜋 is∞-cofinal. To show this claim, we need to show that, for every 𝑉 ∈ L, the category 𝑉/𝜋
is weakly contractible. To this end, we consider the space 𝐸 = 𝑃′ Emb(𝑉, 𝐷) of paths 𝛾 in Emb(𝑉, 𝐷)
that satisfy: If 𝛼(𝑡) (𝑉) contains the special point, then 𝛼(𝑡 ′) (𝑉) contains the special point for all 𝑡 ′ ≥ 𝑡.
We then deduce that 𝑉/𝜋 is weakly contractible, by applying Lemma A.1 to the functor

𝑉/𝜋 −→ U(𝐸), (𝑉
[𝛾 ]
→ 𝑉 ′) ↦→ 𝑈 ([𝛾]),

where 𝑈 ([𝛾]) is the open subset of E consisting of paths that end in an embedding 𝑉↩→𝑉 ′ and whose
associated homotopy class, obtained by composing with any path of embeddings from𝑉↩→𝑉 ′ to𝑉 � 𝑉 ′,
agrees with 𝛾.

Step 2. For 𝑉 ∈ L, denote by 𝑗 : (𝑉/𝜋)� ⊂ 𝑉/𝜋 the inclusion of the full subcategory spanned by the
isomorphisms in L. By a similar argument as in Step 1, using Lemma A.1, it follows that j is∞-coinitial.
It is then that, for every∞-category D with limits, the unit id→ 𝜋∗𝜋

∗ is an equivalence, and the counit
𝜋∗𝜋∗ → id is an equivalence on those functors E→ D that map weak equivalences to equivalences. This
implies that 𝜋∗ is fully faithful with essential image consisting precisely of these latter functors E→ D.

Now, equipped with this statement, we show thatF(𝐷) is a limit ofF | (𝑖/𝐷)op. Namely, by assumption,
F | (𝑖/𝐷)op maps weak equivalences to equivalences so that it is equivalent to (𝜋op)∗G for some functor
G : Lop → D. Since 𝜋 is ∞-cofinal, we may compute the limit of F | (𝑖/𝐷)op as the limit of G. But now
the category Lop has an initial object given by a disk 𝐷 ′ ⊂ 𝐷 so that, if D contains a special point, then
𝐷 ′ also contains the special point. In any case, we have that 𝐷 ′ ⊂ 𝐷 is a weak equivalence. Therefore,
we obtain the desired equivalence F(𝐷) � limG � F | (𝑖/𝐷)op. �

In our treatment of Milnor sheaves, it will be important to have a good control on the boundary
of disks which is why we now switch from open disks to closed disks. Let Disk𝑜𝑐 (𝑋, 𝑁) denote
the poset of all open and closed disks in X containing at most one special point. We denote by
Disk𝑜 (𝑋, 𝑁) ⊂ Disk𝑜𝑐 (𝑋, 𝑁) and Disk𝑐 (𝑋, 𝑁) ⊂ Disk𝑜𝑐 (𝑋, 𝑁) the subsets of open and closed disks,
respectively. The poset Disk𝑜𝑐 (𝑋, 𝑁) comes equipped with a set of weak equivalences W given by those
inclusions of disks that preserve the number of special points.

Proposition 2.4.4. Let (𝑋, 𝑁) be a stratified surface, and letD be an∞-category. There are equivalences
of∞-categories

Fun(Disk𝑐 (𝑋, 𝑁) [𝑊−1]∞,D) ←− Fun(Disk𝑜𝑐 (𝑋, 𝑁) [𝑊−1]∞,D) −→ Fun(Disk𝑜 (𝑋, 𝑁) [𝑊−1]∞,D).

Proof. We claim that the subcategory

Fun(Disk𝑜𝑐 (𝑋, 𝑁) [𝑊−1]∞,D) ⊂ Fun(Disk𝑜𝑐 (𝑋, 𝑁)D)

can be identified with the subcategory of left Kan extensions along 𝑖 : Disk𝑐 (𝑋, 𝑁) ⊂ Disk𝑜𝑐 (𝑋, 𝑁)
and the subcategory of right Kan extensions along 𝑗 : Disk𝑜 (𝑋, 𝑁) ⊂ Disk𝑜𝑐 (𝑋, 𝑁). To verify the first
claim, suppose that F : Disk𝑜𝑐 (𝑋, 𝑁) → D is functor sending weak equivalences in Disk𝑐 (𝑋, 𝑁) to
equivalences in D. The pointwise Kan extension formula at 𝑈 ∈ Disk𝑜 (𝑋, 𝑁) exhibits F(𝑈) as the
colimit over 𝑖/𝑈. If U contains a special point, then we may replace the category 𝑖/𝑈 by the cofinal
subcategory (𝑖/𝑈)′ consisting of those closed disks that contain the special point (otherwise, we set
(𝑖/𝑈)′ = 𝑖/𝑈). The category (𝑖/𝑈)′ is filtered and hence contractible and the diagram F | (𝑖/𝑈)′ consists
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of equivalences. Hence, by Lemma A.4, F is a left Kan extension of F |Disk𝑜 (𝑋, 𝑁) if and only if, for
every 𝐴 ∈ (𝑖/𝑈)′, the map 𝐹 (𝐴) → F(𝑈) is an equivalence. It is now an immediate consequence of the
two-out-of-three property of equivalences that F is a left Kan extension of F |Disk𝑜 (𝑋, 𝑁) if and only if
F sends all weak equivalences to equivalences in D. The second claim regarding right Kan extensions
along j follows from an essentially identical argument. �

Finally, we would like to provide an explicit description of the localization Disk𝑐 (𝑋, 𝑁) [𝑊−1]∞
which will provide the starting point for our discussion of Milnor disks.

Proposition 2.4.5. The functor

𝜋 : Disk𝑐 (𝑋, 𝑁) −→ 𝑆(𝑋, 𝑁), 𝐴 ↦→ (𝐴, ∅) (2.4.6)

exhibits the ordinary category 𝑆(𝑋, 𝑁) as an ∞-categorical localization along the weak equivalences
of Disk𝑐 (𝑋, 𝑁), that is, identifies it with Disk𝑐 (𝑋, 𝑁) [𝑊−1]∞ as an∞-category. In particular, for every
∞-category D, the functor

𝜋∗ : Fun(𝑆(𝑋, 𝑁),D) −→ Fun(Disk𝑐 (𝑋, 𝑁),D)

is fully faithful with essential image consisting of those functors that send weak equivalences in
Disk𝑐 (𝑋, 𝑁) to equivalences in D.

Proof. Let (𝐴, ∅) ∈ 𝑆(𝑋, 𝑁). Suppose first that A does not contain a special point. Then we have

(𝜋/(𝐴, ∅))� = 𝜋/(𝐴, ∅).

Further, we claim that 𝜋/(𝐴, ∅) is contractible. To this end, consider the topological space P of continuous
paths [0, 1] → �̊� \ 𝑁 ending in �̊�. To an object (𝐵, 𝛼 : (𝐵, ∅) → (𝐴, ∅)), we associate the open subset
of P consisting of those paths that start in �̊� and lie in the same homotopy class as the class of paths
that arises from the isotopy comprising 𝛼. This association defines a functor

𝜋/(𝐴, ∅) −→ U(𝑃)

which satisfies the hypothesis of Lemma A.1 thus proving the contractibility of 𝜋/(𝐴, ∅).
Now, suppose that A does contain a special point 𝑥 ∈ 𝑁 . Then we first claim that the inclusion

𝑗 : (𝜋/(𝐴, ∅))� ⊂ 𝜋/(𝐴, ∅)

is cofinal. To this end, we need to show that, given an object 𝑏 = (𝐵, 𝛼 : (𝐵, ∅) → (𝐴, ∅)) of 𝜋/(𝐴, ∅),
the category 𝑏/ 𝑗 is contractible. We consider the space Q of paths in �̊� \ (𝑁 \ 𝑥) starting in �̊� and ending
in x. To an object 𝑏′ = (𝐵′, 𝛼 : (𝐵′, ∅) → (𝐴, ∅)) of 𝑏/ 𝑗 , we associate the open subset of Q consisting
of paths that lie in 𝐵′. An application of Lemma A.1 proves the claim. Finally, an argument similar to
the above shows that (𝜋/(𝐴, ∅))� is contractible so that the result follows from Proposition A.4. �

As a consequence of the results of this section, we thus obtain the following:

Corollary 2.4.7. Let (𝑋, 𝑁) be a stratified surface, and let D be an ∞-category. Then there is an
equivalence

Sh(𝑋, 𝑁;D) � Fun(𝑆(𝑋, 𝑁)op,D)

of∞-categories.

Remark 2.4.8. In view of Example 2.2.9, Corollary 2.4.7 recovers the presentation of the constructible
derived category in terms of the exit path category. Nevertheless, the description in terms of 𝑆(𝑋, 𝑁)
will be more convenient in what follows.
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2.5. Verdier duality

In this section, we assume that D is a stable∞-category.
Recall that, in Corollary 2.4.7, we have identified the∞-category of constructible sheaves on (𝑋, 𝑁)

with values in any∞-category D with the∞-category Fun(𝑆(𝑋, 𝑁)op,D) of presheaves on the category
𝑆(𝑋, 𝑁) ⊂

−→
Λ(𝑋, 𝑁). In this section, under the assumption that D is stable, we illustrate the use of Kan

extensions among subcategories of
−→
Λ(𝑋, 𝑁) to provide a proof of Verdier duality. This treatment can be

regarded as an introduction to the techniques to be used in §3 to establish our description of Sh(𝑋, 𝑁;D)
as Milnor sheaves.

Along with 𝑆 =
−→
𝑆 =

−→
𝑆 (𝑋, 𝑁) and −→𝐵 =

−→
𝐵 (𝑋, 𝑁) defined earlier, we consider the following full

subcategories of
−→
Λ(𝑋, 𝑁) consisting, respectively, of the following disks:

◦ −→𝐷 : disks (𝐴, 𝐴′) of the form

where 𝐴′ ⊂ 𝜕𝐴 is a single closed interval and 𝐴 ∩ 𝑁 ⊂ 𝐴′,
◦ −→𝑉 : disks (𝐴, 𝐴′) of the form

where 𝐴′ ⊂ 𝜕𝐴 is a single closed interval and (𝐴 \ 𝐴′) ∩ 𝑁 is a singleton.

The category S is equivalent to the entrance path category of (𝑋, 𝑁) so that, for any stable ∞-category
D, the ∞-category Fun(𝑆op,D) can be identified with the category of constructible sheaves on (𝑋, 𝑁)
valued in D (Corollary 2.4.7). We set

−→
𝑄 := 𝑆 ∪

−→
𝐵 ∪
−→
𝐷 ∪
−→
𝑉 .

Theorem 2.5.1. Let D be a stable∞-category. And let

F :
−→
𝑄 −→ D

be a functor. Then the following are equivalent:

(i) F satisfies the following conditions:
(1) F |𝑆 ∪

−→
𝐷 is a right Kan extension of F |𝑆, and

(2) F is a left Kan extension of F |𝑆 ∪ −→𝐷 .
(ii) (1) F |

−→
𝐵 maps weak equivalences in −→𝐵 to equivalences in D,

(2) F |
−→
𝐵 ∪
−→
𝐷 is a left Kan extension of F |−→𝐵 , and

(a) F is a right Kan extension of F |−→𝐵 ∪ −→𝐷 .

Before we provide a proof of the theorem, we explain its implications. The following lemma gener-
alizes one of the statements of Corollary 2.3.8.

Lemma 2.5.2. Let 𝐵 ⊂ Λ(𝑋, 𝑁) denote the full subcategory spanned by the bounded disks. Then the
restriction −→𝐵 → 𝐵 of the canonical functor

−→
Λ(𝑋, 𝑁) → Λ(𝑋, 𝑁) exhibits B as an ∞-categorical

localization of −→𝐵 along the weak equivalences.

Proof. This follows immediately from Proposition A.4. �
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Corollary 2.5.3. There is a canonical equivalence of stable∞-categories

𝛿 : Fun(𝑆op,D) � Fun(𝑆,D)

identifying constructible sheaves and constructible cosheaves valued in D.

Proof. Let Fun(
−→
𝑄,D)′, Fun(

−→
𝑄,D)′′ ⊂ Fun(

−→
𝑄,D) be the full (∞-)subcategories consisting of functors

satisfying the conditions (i) and (ii) of Theorem 2.5.1, respectively. By Proposition A.3, the restriction
functor

𝑝 : Fun(
−→
𝑄,D)′ −→ Fun(𝑆,D)

is an equivalence. For the same reason, the restriction functor

𝑞 : Fun(
−→
𝑄,D)′′ −→ Fun(−→𝐵 [𝑊−1]∞,D)

is an equivalence. Since (i) and (ii) are equivalent, and −→𝐵 [𝑊−1]∞ � 𝐵 by Lemma 2.5.2, we obtain an
equivalence

Fun(𝑆,D) � Fun(𝐵,D)

by composing an inverse of p with q. The equivalence 𝐵 � 𝑆op induced by the duality 𝜉 then yields the
desired result. �

Proof of Theorem 2.5.1. Let F :
−→
𝑄 −→ D be a functor.

We will provide concrete interpretations of the Kan extension conditions in (i) and (ii) so as the
claimed equivalence will become an apparent consequence of the stability of the∞-category D.

We begin with (i): For every (𝐴, 𝐴′) ∈ −→𝐷 , the category (𝐴, 𝐴′)/𝑆 is empty so that F |𝑆 ∪−→𝐷 is a right
Kan extension of F |𝑆 if and only if, for every (𝐴, 𝐴′) ∈ −→𝐷 , we have F(𝐴, 𝐴′) � 0.

Suppose now that F is a left Kan extension of F |𝑆 ∪ −→𝐷 . We first determine the value of F at

as determined by the pointwise formula (A.2). The overcategory 𝑆 ∪
−→
𝐷/(𝐴, 𝐴′) admits an ∞-cofinal

subcategory depicted by

(2.5.4)

https://doi.org/10.1017/fms.2023.84 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.84


26 T. Dyckerhoff et al.

where the morphisms around the boundary of the 2-simplex are given by rotation by the smallest possible
angle so that a full turn is obtained by traversing the boundary once. Thus, the value of F at (𝐴, 𝐴′) is
determined by the colimit cone (i.e., biCartesian cube)

(2.5.5)

In particular, since F |
−→
𝐷 � 0, this biCartesian cube induces an equivalence

Similarly, for a disk of the form

the overcategory 𝑆 ∪
−→
𝐷/(𝐴, 𝐴′) admits an∞-cofinal subcategory depicted by

(2.5.6)

again exhibiting an equivalence More precisely, we observe that any weak

https://doi.org/10.1017/fms.2023.84 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.84


Forum of Mathematics, Sigma 27

equivalence

in −→𝐵 induces an equivalence in D since the induced map relating the above

∞-cofinal subcategories (2.5.6) and (2.5.4) becomes a pointwise equivalence upon applying F.
We next describe the value of F at

To this end, we argue that the overcategory (𝑆 ∪ −→𝐷)/(𝐴, 𝐴′) contains an ∞-cofinal subcategory of the
form

In particular, the value of F at (𝐴, 𝐴′) is determined by the colimit cone (i.e., biCartesian square)

(2.5.7)

Since the top-right object is a zero object, this diagram exhibits F(𝐴, 𝐴′) as a cofiber (cone) of the
morphism

Finally, it remains to characterize the value of F at
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Similarly, as in Step 1, the overcategory 𝑆∪
−→
𝐷∪
−→
𝑉 /(𝐴, 𝐴′) admits an∞-cofinal subcategory depicted by

where the morphisms around the boundary of the 2-simplex are given by rotation by the smallest possible
angle. Thus, the value of F at (𝐴, 𝐴′) is determined by the colimit cone (i.e., biCartesian cube)

(2.5.8)

In conclusion, we may characterize the functors F :
−→
𝑄 −→ D satisfying the Kan extension conditions

of (i) as those functors for which F |
−→
𝐷 � 0 and further the square (2.5.7) as well as the cubes (2.5.5) and

(2.5.8) are biCartesian.
We now discuss the Kan extension conditions of (ii). A similar argumentation as the one for (i) show

that a functor F satisfies the conditions of (ii)(2) and (ii)(3) if and only if

(1) F |
−→
𝐷 � 0,

(2) the cubes (2.5.5) and (2.5.8) are limit cones, and hence biCartesian,
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(3) the square

(2.5.9)

is biCartesian.

Thus, to finish the proof, we have to argue why, assuming further (ii)(1), equation (2.5.7) being biCarte-
sian is equivalent to equation (2.5.9) being biCartesian (in the presence of the remaining conditions).
To show this, consider the commutative diagram in

−→
𝑄 depicted by

(2.5.10)

consisting of three stacked cubes, and further, the diagram in D obtained by applying F. The middle
cube is identical to equation (2.5.8) which is biCartesian. Furthermore, the cube given by the composite
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of the three cubes coincides may be decomposed as

(2.5.11)

where the top cube coincides with equation (2.5.5) and the bottom cube is biCartesian since all vertical
maps are weak equivalences which, by (ii)(1), are mapped to equivalences by F. Thus, the composite
cube is biCartesian as well. The front face of the top cube in equation (2.5.10) is biCartesian since
it contains two parallel arrows that are equivalences. Proposition A.4 implies that the top cube is
biCartesian if and only if its back face, which coincides with equation (2.5.7), is biCartesian. By the
same argument, the bottom cube will be biCartesian if and only if its front face, which coincides with
equation (2.5.9), is biCartesian. As a consequence, the two-out-of-three property for the pasting of
biCartesian cubes (Proposition A.6) implies that equation (2.5.7) is biCartesian if and only if equation
(2.5.9) is biCartesian, concluding our argument. �

3. Milnor sheaves

By Corollary 2.4.7, the ∞-category of constructible sheaves Sh(𝑋, 𝑁;D) with values in a stable ∞-
category D may be parametrized in terms of standard disks: There is an equivalence

Sh(𝑋, 𝑁;D) � Fun(𝑆(𝑋, 𝑁)op,D). (3.0.1)

If D is the derived category of an abelian category A, then this equivalence restricts to an equivalence

Sh(𝑋, 𝑁;A) � Fun(𝑆(𝑋, 𝑁)op,A).

In other words, the equivalence (3.0.1) is compatible with the standard t-structure on Sh(𝑋, 𝑁;D). In
this section, we provide yet another parametrization of Sh(𝑋, 𝑁;D), in terms of Milnor disks, which
is in the same sense compatible with the perverse t-structure. In particular, it provides an intrinsically
abelian description of the category of perverse sheaves.
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3.1. Constructible sheaves as Milnor sheaves

Let (𝑋, 𝑁) be a stratified surface, and let
−→
Λ(𝑋, 𝑁) denote its directed paracyclic category. A collared

cut of an object (𝐴, 𝐴′) ∈
−→
Λ(𝑋, 𝑁) consists of

◦ a cut 𝛼, by which we mean an embedding 𝛼 : 𝐼 → 𝐴 with 𝛼−1(𝜕𝐴) = {0, 1}. We denote the two
connected components of the complement if 𝛼(𝐼) in A by 𝑈1 and 𝑈2.

◦ a collar for 𝛼, by which we mean a continuous map 𝐺 : [−1, 1] × 𝐼 → 𝐴 such that
– 𝐺 (0, 𝑡) = 𝛼(𝑡),
– for every 𝑠 ∈ [−1, 1], the map 𝐺 (𝑠,−) is a cut,
– 𝐺 ([−1, 1] × 𝐼) ∩ 𝜕𝐴′ = ∅,
– 𝐺 ({−1, 1} × 𝐼) ∩ 𝑁 = ∅.
We denote 𝐶 = 𝐺 ([−1, 1] × 𝐼) and 𝐴1 = 𝑈1 ∪ 𝐶 and 𝐴2 = 𝑈2 ∪ 𝐶.

Associated to a collared cut, there is a commutative square

(𝐶,𝐶 ∩ 𝐴′) (𝐴1, 𝐴1 ∩ 𝐴′)

(𝐴2, 𝐴2 ∩ 𝐴′) (𝐴, 𝐴′)

(3.1.1)

in
−→
Λ(𝑋, 𝑁).

Definition 3.1.2. Let D be a pointed ∞-category. A functor F : −→𝑀 (𝑋, 𝑁) → D is called a Milnor
cosheaf if

(1) F maps weak equivalences in −→𝑀 (𝑋, 𝑁) to equivalences in D,
(2) F maps objects of the form

to a zero object,
(3) for every object (𝐴, 𝐴′) of −→𝑀 (𝑋, 𝑁) and for every collared cut of (𝐴, 𝐴′), such that the associated

diagram (3.1.1) takes values in −→𝑀 (𝑋, 𝑁), F maps equation (3.1.1) to a coCartesian square in D.

Dually, F : −→𝑀 (𝑋, 𝑁)op → D is called a Milnor sheaf if Fop is a Milnor cosheaf. We denote by
Fun♯ (−→𝑀 (𝑋, 𝑁),D) the ∞-category of Milnor cosheaves and by Fun♯ (−→𝑀 (𝑋, 𝑁)op,D) the ∞-category
of Milnor sheaves defined as full subcategories of the respective functor categories.

Definition 3.1.3. Let (𝐴, ∅) be an object of 𝑆(𝑋, 𝑁). We denote by Λ𝐴 the subcategory of −→𝑀 (𝑋, 𝑁)
with objects (𝐴, 𝐴′) and morphisms, represented by an isotopy 𝐻 : 𝐼×D→ 𝑋 such that, for every 𝑡 ∈ 𝐼,
𝐻𝑡 (D) = 𝐴. We further denote by Λ+𝐴 = Λ𝐴 ∪ (𝐴, ∅) obtained by adjoining the initial object (𝐴, ∅).

Remark 3.1.4. For every (𝐴, ∅), the category Λ𝐴 is equivalent to the paracyclic category Λ∞.

We say that a functor F : −→𝑀 (𝑋, 𝑁) −→ D is locally Segal if, for every (𝐴, ∅) ∈ 𝑆(𝑋, 𝑁), with
𝜕𝐴 ∩ 𝑁 = ∅, the object F |Λ𝐴 is a Segal object, that is, the restriction along an embedding Δ → Λ𝐴 is
Segal.

Proposition 3.1.5. Let D be a stable∞-category, and let F : −→𝑀 (𝑋, 𝑁) → D be a functor. Then F is a
Milnor cosheaf if and only if the following hold:
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(1) F maps weak equivalences to equivalences in D.
(2) F is locally Segal.
(3) For every 𝑥 ∈ 𝑁 , F maps any square of the form

to a coCartesian square in D.
Proof. Condition (1) appears directly in the definition of a Milnor cosheaf.

Every Milnor cosheaf satisfies the conditions (2) and (3) since, using the version (3.3.2) of the Segal
conditions, the respective coCartesian squares all arise from collared cuts.

Suppose now that F satisfies (2) and (3). Let (𝐴, ∅) ∈ −→𝑀 (𝑋, 𝑁) with 𝐴 ∩ 𝑁 = ∅. Then the local
Segal conditions imply that equation (3.1.1) is coCartesian for every cut which only intersects one of the
boundary intervals. If the cut 𝛼 intersects two boundary intervals, then it is straightforward to deduce
that equation (3.1.1) is coCartesian by considering cuts 𝛼1 of (𝐴1, 𝐴1 ∩ 𝐴′) and 𝛼2 of (𝐴2, 𝐴2 ∩ 𝐴′)
which are obtained by sliding the endpoint of 𝛼 out of the boundary interval towards the two possible
directions (In the language of [20], this amounts to the statement that every 1-Segal object is 2-Segal).

By the exact same argumentation, we deduce that equation (3.1.1) is coCartesian for (𝐴, ∅) ∈
−→
𝑀 (𝑋, 𝑁) with 𝐴∩𝑁 = {𝑥} as long as the cut 𝛼 runs through the special point x. It remains to verify the
coCartesianess of equation (3.1.1) for a cut 𝛼 which does not run through x. But this case can be reduced
to equation (3) by induction on the number of boundary intervals: The induction step is obtained by
introducing one additional cut which runs either through the special point x or lies completely in the
component of 𝐴 \ 𝛼(𝐼) which does not contain x. �

We denote by

−→
𝑀+(𝑋, 𝑁) ⊂

−→
Λ(𝑋, 𝑁)

the full subcategory spanned by the standard and Milnor disks and by

−→
Λ(𝑋, 𝑁)≤𝑛 ⊂

−→
𝑀+(𝑋, 𝑁)

the full subcategory consisting of objects (𝐴, 𝐴′) such that 𝐴′ has at most n connected components.
Further, we denote by

−→
𝐷 (𝑋, 𝑁) ⊂

−→
Λ(𝑋, 𝑁)

the full subcategory of objects (𝐴, 𝐴′) ∈
−→
Λ(𝑋, 𝑁) of the form

Theorem 3.1.6. Let F : −→𝑀+(𝑋, 𝑁) −→ D be a functor. Then the following are equivalent:

(1) F |
−→
𝐷 (𝑋, 𝑁) � 0 and F is a left Kan extension of F |𝑆(𝑋, 𝑁) ∪ −→𝐷 (𝑋, 𝑁).

(2) F |
−→
𝑀 (𝑋, 𝑁) is a Milnor cosheaf and F is a right Kan extension of F |−→𝑀 (𝑋, 𝑁).
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Proof. Suppose that F is a left Kan extension of F |𝑆(𝑋, 𝑁) ∪ −→𝐷 (𝑋, 𝑁). To show that F |−→𝑀 (𝑋, 𝑁) is
a Milnor cosheaf, we verify conditions (2) and (3) of Proposition 3.1.5. Let (𝐴, 𝐴′) ∈ −→𝑀 (𝑋, 𝑁) with
𝐴 ∩ 𝑁 empty. Then the inclusion

Λ+𝐴,≤1/(𝐴, 𝐴
′) ⊂ (𝑆(𝑋, 𝑁) ∪

−→
𝐷 (𝑋, 𝑁))/(𝐴, 𝐴′)

is an equivalence of categories and hence∞-cofinal. In particular, by Proposition 3.3.3, F |Λ𝐴 is a Segal
object.

Now, let

such that 𝐴 ∩ 𝑁 = {𝑥} ⊂ 𝐴 \ 𝐴′ is a singleton. Then the inclusion

(𝑆(𝐴, {𝑥}) ∪
−→
𝐷 (𝐴, {𝑥})/(𝐴, 𝐴′) ⊂ (𝑆(𝑋, 𝑁) ∪

−→
𝐷 (𝑋, 𝑁))/(𝐴, 𝐴′),

where the first undercategory is taken in −→𝑀 (𝑈, {𝑥}), is an equivalence, in particular ∞-cofinal. Now,
the category (𝑆(𝐴, {𝑥}) ∪ 𝐷 (𝐴, {𝑥})/(𝐴, 𝜑) is equivalent to the category depicted by

where the automorphisms Z correspond to the disk moving around the special point x so that it is
equivalent to the category depicted by

• •

•.

Z
Z

This latter category contains the∞-cofinal subcategory

• •

•

so that the pointwise left Kan extension condition for F(𝐴, 𝐴′) is thus equivalent to the square

(3.1.7)

https://doi.org/10.1017/fms.2023.84 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.84


34 T. Dyckerhoff et al.

being coCartesian. For a more general (𝐴, 𝐴′) ∈ 𝑀 (𝑋, 𝑁) with 𝐴 ∩ 𝑁 = {𝑥} ⊂ 𝐴 \ 𝐴′, by a similar
argument, the category (𝑆(𝑋, 𝑁) ∪ 𝐷 (𝑋, 𝑁))/(𝐴, 𝐴′) contains a cofinal subcategory C of the form

(3.1.8)

where

is given by the constant isotopy and the morphisms

enter the special point and map the unique interval to the ith interval of A (with respect to some chosen
order). We have a functor from the category

0

1 2 . . . 𝑛

to Cat/𝐶 by associating to 0 the subcategory

of C and to 𝑖 > 0 the subcategory

An application of [37, 4.2.3.10], using that equation (3.1.7) is a pushout, implies that the pointwise left
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Kan condition for (𝐴, 𝐴′) is equivalent to the diagram

being a colimit cone. Here, the maps are morphisms in Λ𝐴 which move the

interval into the various intervals comprising 𝐴′. In particular, this implies that the diagram F |Λ+𝐴 is a
left Kan extension of its restriction to F |Λ+𝐴,≤1 so that F |Λ𝐴 satisfies the Segal conditions by Proposition
3.3.3. We have thus shown that F is locally Segal.

A similar argument shows that the value of F at a disk (𝐴, 𝐴′) with 𝐴′ ∩ 𝑁 = {𝑥} is determined by
the colimit cone

(3.1.9)

Further, the Segal conditions for F at a disk (𝐴0, 𝐴
′
0), obtained by moving (𝐴, 𝐴′) away from the special

point x so that 𝐴0 ∩ 𝑁 = ∅, imply that the diagram

(3.1.10)
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is a colimit cone. Since the map

is, as a map between zero objects, an equivalence, we deduce from the induced map on colimit cones
that the map F(𝐴0, 𝐴

′
0) → F(𝐴, 𝐴′) is an equivalence as well. In particular, F maps weak equivalences

to equivalences in D.
Condition (3) follows by applying [37, 4.2.3.10] to equation (3.1.8) for 𝑛 = 2 with respect to the

functor from the category

0 2

1

into Cat/𝐶 which associates to 0 the subcategory

to 1 the subcategory

and to 2 the subcategory

The above statements imply that F |−→𝑀 (𝑋, 𝑁) is a Milnor sheaf. It remains to show that F is a right
Kan extension of F |−→𝑀 (𝑋, 𝑁). To this end, let

with 𝐴 ∩ 𝑁 = {𝑥} a singleton. Then it is easily seen that the inclusion

(𝐴, ∅)/Λ𝐴 ⊂ (𝐴, ∅)/
−→
𝑀 (𝑋, 𝑁),
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where the left-hand overcategory is taken in the category Λ+𝐴, is∞-coinitial. Thus, by Proposition 3.3.3
below, the value of F at (𝐴, ∅) is given by right Kan extension of F |−→𝑀 (𝑋, 𝑁).

Finally, consider

with 𝐴 ∩ 𝑁 empty. Again, we consider the inclusion

𝑗 : (𝐴, ∅)/Λ𝐴 ⊂ (𝐴, ∅)/
−→
𝑀 (𝑋, 𝑁).

We claim that j is ∞-coinitial. To this end, we have to verify, for every 𝑓 : (𝐴, ∅) → (𝐴1, 𝐴
′
1) ∈

(𝐴, ∅)/𝑀 (𝑋, 𝑁), that 𝑗/ 𝑓 is contractible. This statement is clear if 𝐴1 ∩ 𝑁 = ∅. Suppose now that
𝐴1 ∩ 𝑁 = {𝑥} ⊂ 𝐴1 \ 𝐴

′
1. In this case, we proceed by exhibiting a contractible ∞-cofinal subcategory

of 𝑗/ 𝑓 : Fix an object 𝑎0 of 𝑗/ 𝑓 whose underlying disk (𝐵, 𝐵′) has |𝜋0 (𝐵
′) | = |𝜋0 (𝐴

′
1) | + 1 boundary

components and such that the map (𝐵, 𝐵′) → (𝐴1, 𝐴
′
1) includes |𝜋0 (𝐴

′
1) | − 1 intervals of 𝐵′ into

respective intervals of 𝐴′1 and includes the two intervals adjacent to the entry location of x into the
remaining interval of 𝐴′1. There are objects {𝑎𝑖 |𝑖 ∈ Z} of 𝑗/ 𝑓 which differ from 𝑎0 in that the entry
point of x lies i segments in 𝑆1 \ 𝐵′ away from the entry point of x for 𝑎0. For 𝑖 ∈ Z, we denote by 𝑎+𝑖
and 𝑎−𝑖 the two objects of 𝑗/ 𝑓 obtained by omitting one of the intervals of 𝐵′ adjacent to the entry point
of x. The full subcategory of 𝑗/ 𝑓 spanned by these objects has the form:

. . . 𝑎−1 𝑎+
−1 = 𝑎−0 𝑎0 𝑎+0 = 𝑎−1 𝑎1 . . . .

It is now straightforward to verify that this subcategory is cofinal in 𝑗/ 𝑓 and, since it is further
contractible, the claim follows. Finally, the contractibility of 𝑗/ 𝑓 in the remaining case where 𝑥 ∈ 𝐴′1∩𝑁
is immediate.

Therefore, by Proposition 3.3.3, the value of F at (𝐴, ∅) is also given by right Kan extension of
F |
−→
𝑀 (𝑋, 𝑁) so that, in conclusion, F is a right Kan extension of F |−→𝑀 (𝑋, 𝑁).
The converse implication (2)⇒ (1) is a consequence of the above argumentation and the converse

implication (2) ⇒ (1) of Proposition 3.3.3. �

Remark 3.1.11. In the context of Theorem 3.1.6, let

Fun♯ (−→𝑀+(𝑋, 𝑁),D) ⊂ Fun(−→𝑀+(𝑋, 𝑁),D)

denote the full subcategory consisting of those functors that satisfy the equivalent conditions (1) and (2).
By arguments analogous to the ones in the proof of Proposition 3.1.5, it can be shown that the objects of
Fun♯ (−→𝑀+(𝑋, 𝑁),D) are precisely the cyclic cosheaves, namely functors F : −→𝑀+(𝑋, 𝑁) → D such that

(1) F maps objects of the form

to zero objects in D,
(2) for every object (𝐴, 𝐴′) and for every collared cut of (𝐴, 𝐴′), F maps the associated square (3.1.1)

to a coCartesian square in D.
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Corollary 3.1.12. Let (𝑋, 𝑁) be a stratified surface and D a stable ∞-category. Then there are equiv-
alences of stable∞-categories

Fun♯ (−→𝑀+(𝑋, 𝑁),D)

Fun♯ (−→𝑀 (𝑋, 𝑁),D) Fun(𝑆(𝑋, 𝑁),D)

𝜌1 𝜌2

given by restriction along −→𝑀 (𝑋, 𝑁) ⊂ −→𝑀+(𝑋, 𝑁) and 𝑆(𝑋, 𝑁) ⊂
−→
𝑀+(𝑋, 𝑁), respectively. In particular,

via the equivalence Sh(𝑋, 𝑁;D) � Fun(𝑆(𝑋, 𝑁)op,D) from Corollary 2.4.7, there is a canonical
equivalence

Sh(𝑋, 𝑁;D) � Fun♯ (−→𝑀 (𝑋, 𝑁)op,D).

Proof. We apply Theorem 4.3.2.15 of [37]. The fact that 𝜌1 is an equivalence is then an immediate
consequence of the equivalence Theorem 3.1.6. The functor 𝜌2 is an equivalence by Theorem 3.1.6
combined with the observation that a functor 𝑆(𝑋, 𝑁) ∪ −→𝐷 (𝑋, 𝑁) → D is a right Kan extension of its
restriction to 𝑆(𝑋, 𝑁) if and only if F |−→𝐷 (𝑋, 𝑁) � 0, that is, two successive applications of loc. cit. �

Theorem 3.1.13. Let D = D(A) be the derived ∞-category of an abelian category A. Then the
equivalence

Sh(𝑋, 𝑁;D) � Fun♯ (−→𝑀 (𝑋, 𝑁)op,D)

from Corollary 3.1.12 restricts to an equivalence

PS(𝑋, 𝑁;A) � Fun♯ (−→𝑀 (𝑋, 𝑁)op,A)

identifying perverse sheaves on (𝑋, 𝑁) with Milnor sheaves valued in A.

Proof. Under the equivalence

𝜌 : Sh(𝑋, 𝑁;D) � Fun♯ (−→𝑀 (𝑋, 𝑁)op,D),

the value of a Milnor sheaf 𝜌(F) on a Milnor disk (𝐴, 𝐴′) ∈ −→𝑀 (𝑋, 𝑁) is equivalent to the value of
the corresponding constructible sheaf F on a Milnor pair (𝑈,𝑈 ′), where U is a sufficiently small open
disk containing the closed disk A and 𝑈 ′ is a union of open disks where each disk contains one of the
intervals comprising 𝐴′. Thus, by Proposition 1.2.4, a constructible sheaf F ∈ Sh(𝑋, 𝑁;D) is perverse
if and only if 𝜌(F) takes values in A. Further, since all horizontal morphisms that arise in the Milnor
sheaf conditions admit sections, they are Cartesian in A if and only if they are Cartesian in D(A). This
proves the claim. �

Corollary 3.1.14. Let A be an abelian category. Then we have an natural equivalence

Fun♯ (−→𝑀 (𝑋, 𝑁)op,A) � Fun♯ (𝑀 (𝑋, 𝑁)op,A)

where 𝑀 (𝑋, 𝑁) ⊂ Λ(𝑋, 𝑁) is the full subcategory of the (undirected) paracyclic category of (𝑋, 𝑁)
spanned by the Milnor disks.

Proof. This follows from the observation that −→𝑀 (𝑋, 𝑁) → 𝑀 (𝑋, 𝑁) is a localization along the weak
equivalences (Corollary 2.3.8). �
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3.2. Verdier duality for perverse sheaves

Proposition 3.2.1. Let A be an abelian category. Then the self-duality

𝜉 : Λ(𝑋, 𝑁) −→ Λ(𝑋, 𝑁)op

induces an equivalence

𝜉∗ : Fun♯ (𝑀 (𝑋, 𝑁)op,A)
�
−→ Fun♯ (𝑀 (𝑋, 𝑁),A)

between Milnor sheaves and cosheaves.

Proof. The Milnor sheaf conditions (in terms of face maps) get swapped with the dual conditions (in
terms of degeneracy maps); cf. the proof of Proposition 3.3.4. �

Remark 3.2.2. SupposeA is an abelian category with exact duality 𝛿. Then the resulting antiequivalence
𝛿 ◦ 𝜉∗ of Fun♯ (𝑀 (𝑋, 𝑁)op,A) can be identified with the Verdier self-duality of PS(𝑋, 𝑁;A). Note that,
even more classically, we may understand the perfect pairing between RΓ(𝐴, 𝐴′;F) and RΓ(𝐴, 𝜕𝐴 \
�̊�′;F∨) as an elementary instance of Lefschetz duality for manifolds with boundary.

3.3. Paracyclic Segal objects

Let D be an∞-category with finite colimits. A cosimplicial object 𝑋 : Δ → D is called a Segal object,
if it satisfies the Segal conditions: for every 𝑛 ≥ 1, the map

𝑋1 �𝑋0 · · · �𝑋0 𝑋1 −→ 𝑋𝑛 (3.3.1)

induced by the inclusions [1] � {𝑖, 𝑖 + 1} ⊂ [𝑛] is an equivalence. Equivalently, X is a Segal object if,
for every 1 ≤ 𝑚 < 𝑛, the square

𝑋0 𝑋𝑚

𝑋𝑛−𝑚 𝑋𝑛

(3.3.2)

induced by the diagram

{𝑚} {0, 1, . . . , 𝑚}

{𝑚, 𝑚 + 1, . . . , 𝑛} {0, 1, . . . , 𝑛}

is a pushout square in D.

Proposition 3.3.3. Let D be a stable ∞-category, and let Λ+ be the augmented paracyclic category
obtained from Λ by adjoining an initial object ∅. Let J ⊂ Λ+ denote the full subcategory spanned by ∅
and 〈0〉. Then for a functor

F : Λ+ −→ D,

the following conditions are equivalent:

(1) F is a left Kan extension of F |J.
(2) F |Δ satisfies the Segal conditions and F is a right Kan extension of F |Λ.
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Proof. We make two observations:

◦ The inclusion

Δ ⊂ Λ

is coinitial: The categoryΔ/〈𝑛〉 is the category of simplices of the simplicial object HomΛ (−, 〈𝑛〉) |Δop

whose geometric realization is homeomorphic to |Δ𝑛 | × R.
◦ The inclusion

(Δ+)≤1/[𝑛] ⊂ (Λ
+)≤1/〈𝑛〉

is an equivalence and hence cofinal.

Therefore, we have reduced the proof of Proposition 3.3.3 to the statement of Proposition 3.3.4 below. �

Proposition 3.3.4. Let D be a stable ∞-category, and let Δ+ be the augmented simplex category
obtained from Δ by adjoining an initial object ∅. Let J ⊂ Δ+ denote the full subcategory spanned by ∅
and [0]. Let

𝑋 : Δ+ −→ D

be an augmented cosimplicial object in D. Then the following conditions are equivalent:

(1) X is a left Kan extension of 𝑋 |J.
(2) 𝑋 |Δ satisfies the Segal conditions and X is a right Kan extension of 𝑋 |Δ .

Proof. (1) ⇒ (2): Suppose that X is a left Kan extension of 𝑋 |J. The pointwise formula for Kan
extensions implies that, for every 𝑛 ≥ 1, 𝑋𝑛 is a colimit of the restriction of X to J/[𝑛]. We define a
functor f from the poset

I = {0, 1} ← {1} → {1, 2} ← {2} → · · · ← {𝑛 − 1} → {𝑛 − 1, 𝑛}

to (SetΔ )/N(J/[𝑛]) sending a set I to the nerve of the subposet of J/[𝑛] consisting of those maps with
image contained in I. By [37, 4.2.3.10], we may compute the colimit of 𝑋 | (J/[𝑛]) as the colimit of the
diagram

I → D, 𝐼 ↦→ colimF | 𝑓 (𝐼)

yielding the nth Segal condition.
To show that X is a right Kan extension of 𝑋 |Δ , first note that, since 𝑋 |Δ is Segal, by Lemma 3.3.5

below, it is a right Kan extension of 𝑋 | (Δ ≤1). Therefore, it suffices to show that X is a right Kan extension
of 𝑋 | (Δ ≤1). By the pointwise criterion, this is equivalent to the statement that X maps the diagram

∅ {0}

{1} {0, 1}

in Δ+ to a pullback square in D. But, since X is a left Kan extension of J, it maps the square to a pushout
square in D so that the statement follows since D is stable.
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(2)⇒ (1): Suppose that 𝑋 |Δ satisfies the Segal conditions. Then, by the above arguments, X is left
Kan extension of 𝑋 |J if and only if it maps the square

∅ {0}

{1} {0, 1}

to a pushout square. But, by the last part of the argument of (1)⇒ (2), this is equivalent to X being a
right Kan extension of 𝑋 |Δ , concluding the argument. �

Lemma 3.3.5. Let D be a stable ∞-category, and let 𝑌 : Δ → D be a cosimplicial object in D. Let
Δ ≤1 ⊂ Δ denote the full subcategory spanned by the objects [0] and [1]. Then Y is a Segal object if
and only if Y is a right Kan extension of its restriction 𝑌 | (Δ ≤1).

Proof. Suppose Y satisfies the Segal conditions. We need to verify that, for every 𝑛 ≥ 2, 𝑌𝑛 is a limit of
𝑌 | ( [𝑛]/Δ ≤1). We prove the statement by induction on n starting with 𝑛 = 2. Consider the commutative
diagram in Δ depicted by

{1} {0, 1} {1}

{1, 2} {0, 1, 2} {1, 2}

{1} {0, 1} {1}.

Since all horizontal and vertical composites yields the identity on the respective object, Y maps all
2𝑥1 and 1𝑥2 rectangles to biCartesian squares in D. The Segal condition for 𝑛 = 2 is equivalent to Y
mapping the top-left square to a pushout, and hence biCartesian, square. The pointwise condition on
Y being a right Kan extension is equivalent to Y mapping the bottom-right square to a pullback, hence
biCartesian, square. But, by the two-out-of-three property for biCartesian squares ([37, 4.4.2.1]), the
top-left square is biCartesian if and only if the bottom-right square is biCartesian. Therefore, for 𝑛 = 2,
the Segal condition is equivalent to the corresponding pointwise Kan extension criterion for 𝑌2.

Assume that the nth Segal condition is equivalent to the pointwise Kan extension formula for 𝑌𝑛.
Consider the diagram

{𝑛} {0, 1, . . . , 𝑛} {𝑛}

{𝑛, 𝑛 + 1} {0, 1, . . . , 𝑛 + 1} {𝑛, 𝑛 + 1}

{𝑛} {0, 1, . . . , 𝑛} {𝑛}

in Δ . A similar argument to the case 𝑛 = 2 implies the equivalence of the (𝑛 + 1)st Segal condition and
the pointwise Kan extension formula for 𝑌𝑛+1, concluding the argument. �

4. Perverse sheaves on (C, {0})

In this chapter, we consider the classical case when 𝑋 = C is the complex plane and 𝑁 = {0}. The
corresponding category of perverse sheaves is well known, but our approach provides a new point of
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view on it which will be crucial in the further work on categorical generalization to perverse schobers.
In what follows, we compare the two approaches and discuss the concepts they lead to.

4.1. The classical (Φ,Ψ)-description

Let A be a Grothendieck abelian category. The following result goes back to the early days of the theory
of perverse sheaves [2, 24]. It was originally formulated for perverse sheaves of vector spaces, but the
proof given in [24] generalizes easily to the A-valued case.

Proposition 4.1.1. The category PS(C, {0};A) is equivalent to the category of data (Φ,Ψ, 𝑎, 𝑏), where
Φ and Ψ are objects of A and

Φ Ψ
𝑎

𝑏

(4.1.2)

are morphisms such that the monodromy transformations

𝑇Ψ := IdΨ −𝑎𝑏 and 𝑇Φ : IdΦ −𝑏𝑎 (4.1.3)

are isomorphisms. In fact, 𝑇Ψ being an isomorphism is equivalent to 𝑇Φ being an isomorphism.

For a given perverse sheaf 𝐹 ∈ PS(C, {0};A), the corresponding objects Φ = Φ(𝐹) and Ψ = Ψ(𝐹)
are called the objects of vanishing and nearby cycles of F. We will now describe the relationship between
the classification data in Proposition 4.1.1 and our description of perverse sheaves as Milnor sheaves
from Corollary 3.1.14.

4.2. From a Milnor sheaf to vanishing and nearby cycles

Let F : 𝑀 (C, {0})op → A be a Milnor sheaf. We will explain how to most directly extract from F the
classification data (4.1.2) and verify conditions (4.1.3). First, we define

is any disk that does not contain the origin 0. Further, we set

is any disk containing 0 in its interior. The descent conditions force rotation of (𝐴, 𝐴′) by 𝜋 to be
multiplication by −1: In the local model explained in §3.3, this automorphism corresponds to the
paracyclic shift on the Čech nerve of 0 → Ψ[1]. The monodromy transformation 𝑇Ψ is obtained by
moving (𝐴, 𝐴′) as a rigid body (parallel to itself) in a circle around the origin 0 ∈ C. The monodromy
𝑇Φ is induced by rotating (𝐵, 𝐵′) by an angle of 2𝜋 around the center of the disk B. The map

𝑎 : Φ −→ Ψ
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is obtained from the morphism in 𝑀 (C, {0}) that is represented by a bordism of the form

(4.2.1)

while the morphism b corresponds to the dual of equation (4.2.1):

(4.2.2)

To obtain the relations (4.1.3), we investigate the descent condition for

Namely, introducing the depicted cut, the corresponding descent condition (3.1.1) provides a direct sum
decomposition F(𝐶,𝐶 ′) � Φ⊕Ψ. We then directly observe that, with respect to that decomposition, the
transformation induced on F(𝐶,𝐶 ′) by rotating (𝐶,𝐶 ′) around its center by 2𝜋, is given by the matrix

𝑄 =

(
𝑇Φ 0

0 𝑇Ψ

)
. (4.2.3)

On the other hand, this transformation comes equipped with a square root, induced by rotating (𝐶,𝐶 ′)
around its center by 𝜋. A somewhat more careful analysis shows that, in terms of the above direct sum
decomposition, this transformation can be described by the matrix

𝑃 =

(
− id 𝑏
−𝑎 id

)
. (4.2.4)

Now, the relation 𝑃2 = 𝑄 implies the desired relations (4.1.3). Note that, in order to extract the above
data, various choices have to be made – the advantage of the description of F lies in the intrinsic nature
of the parametrizing category 𝑀 (C, {0}) of Milnor disks.

4.3. The equivalence of classical and Milnor sheaf descriptions

In this section, we elaborate on the discussion in §4.2 to provide a direct argument for why these
descriptions are equivalent. This can, of course, also be indirectly deduced by combining our Corollary
3.1.14 and [24], but it is nevertheless interesting to provide an explicit dictionary.
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The Milnor sheaf description
Proposition 4.3.1. Let A be an abelian category. Let D ⊂ C be the unit disk. Then the restriction along
ΛD ⊂ 𝑀+(C, {0}) induces a fully faithful functor

Fun♯ (𝑀+(C, {0})op,A)
�
−→ Fun(Λop

D
,A)

with essential image given by those paracyclic objects whose underlying simplicial object satisfies the
Segal conditions.

Proof. For notational convenience, we replace A by Aop and prove the cosheaf version of the statement.
By Corollary 2.3.8, the category 𝑀+ may be described as the localization of its directed variant −→𝑀+.
In the statement of the proposition, we may therefore replace the category Fun♯ (𝑀+(C, {0}),A) by the
equivalent category Fun♯ (−→𝑀+(C, {0}),A), where here, the superscript ♯ also contains the requirement
that weak equivalences be sent to isomorphisms in A. We now focus on the following collections of
objects of −→𝑀+ (and the subcategories they span):

◦ −→𝑀0: all objects (𝐴, 𝐴′), where 0 ∈ 𝐴 \ 𝐴′,
◦ −→𝑀1: −→𝑀0 together with all objects of the form

◦ −→𝑀2: −→𝑀1 together with all objects (𝐴, 𝐴′) such that 0 ∈ 𝐴′,
◦ −→𝑀3: −→𝑀2 together with all objects of the form

The fact that the restriction functor of the proposition is an equivalence now follows from the statement
that the functors F ∈ Fun♯ (−→𝑀+(C, {0}),A) can be characterized by the following conditions:

(1) The paracyclic object F |−→𝑀0 � ΛD satisfies the Segal conditions.
(2) F is obtained from its restriction to −→𝑀0 via a sequence of left (resp. right) Kan extensions as

indicated in

−→
𝑀0

−→
𝑀1

−→
𝑀2

−→
𝑀3

−→
𝑀+(C, {0}).

right left left right

The details are left to the reader. �

Corollary 4.3.2. The category of Milnor sheaves on (C, {0}) with values in A, and therefore the
category of perverse sheaves on (C, {0}), is equivalent to the category A

Seg
Λ∞

of paracyclic objects in A

whose underlying simplicial object satisfies the Segal conditions.

In what follows, we provide the relation to the more traditional classification of Proposition 4.1.1 by
means of a paracyclic nerve construction which can also be regarded as a special instance of a duplicial
variant of the Dold–Kan correspondence established in [17].

Paracyclic structures on the nerve of a Picard groupoid
To compare Propositions 4.1.1 and 4.3.1 in a direct way, we assume for simplicity that A = A𝑏 is the
category of abelian groups. It is classical that a simplicial set is Segal if and only if it is isomorphic to
the nerve of a small category. The categories relevant for us are are Picard groupoids of a particular type.
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We recall (cf. [12]) that a Picard groupoid is a symmetric monoidal category (P, ⊗, 1) in which each
object is invertible with respect to ⊗ and each morphism is invertible with respect to the composition.

Example 4.3.3. Let 𝐸• be a two-term complex of abelian groups situated in degrees [−1, 0]. It will be
suggestive for us to write 𝐸• as {Ψ 𝑏

→ Φ} with Φ in degree 0 and Ψ in degree (−1). To such a datum,
one associates a Picard groupoid [𝐸•] = [Ψ 𝑏

→ Φ] with

Ob [Ψ 𝑏
→ Φ] = Φ;

Hom(𝜑′, 𝜑) =
{
𝜓 ∈ Ψ



 𝑏(𝜓) = 𝜑 − 𝜑′
}
.

Composition of morphisms is given by addition of the 𝜓. The tensor product of objects is given by
addition of the 𝜑. We note that the set of all morphisms in [Ψ 𝑏

→ Φ] (i.e., the disjoint union of all the
Hom(𝜑, 𝜑′)) can be described as

Mor [Ψ 𝑏
→ Φ] = Ψ ⊕ Φ,

with the source and target maps 𝑠, 𝑡 : Mor→ Ob given by

𝑠(𝜓, 𝜑) = 𝜑 − 𝑏(𝜓), 𝑡 (𝜓, 𝜑) = 𝜑. (4.3.4)

See [12] for more details.

The nerve 𝑁 [Ψ
𝑏
→ Φ] is a simplicial abelian group with n-simplices

𝑁𝑛 [Ψ
𝑏
→ Φ] = Ψ⊕𝑛 ⊕ Φ. (4.3.5)

Passing from a two-term complex {Ψ 𝑏
→ Φ} to the simplicial object 𝑁 [Ψ 𝑏

→ Φ] is a particular case of
the Dold–Kan correspondence between nonpositively graded cochain complexes of abelian groups and
simplicial abelian groups; see §4.4 below.

Proposition 4.3.6. Let 𝑏 : Ψ→ Φ be a morphism of abelian groups. Then the following are in bijection:

(i) Morphisms 𝑎 : Φ → Ψ such that the data (Φ,Ψ, 𝑎, 𝑏) satisfy the conditions of Proposition 4.1.1,
that is, define a perverse sheaf 𝐹 ∈ PS(𝐷, 0;A𝑏).

(ii) Extensions of the structure of a simplicial abelian on 𝑁 [Ψ
𝑏
→ Φ] to that of a paracyclic abelian

group, that is, systems of automorphisms 𝑡𝑛 ∈ Aut
(
𝑁𝑛 [Ψ

𝑏
→ Φ]

)
(actions of the 𝜏𝑛 ∈ AutΛ∞ 〈𝑛〉)

satisfying the relations dual to those imposed in Definition 2.1.1(a).

Under this bijection, the automorphism 𝑡𝑛+1𝑛 corresponds, via the identification (4.3.5), to the direct sum
𝑇 ⊕𝑛Ψ ⊕ 𝑇Φ of the monodromies.

Proof. Explicitly, the convention (4.3.4) on labelling the source and target of a morphism implies that
the simplicial face and degeneracy operators on 𝑁𝑛 [Ψ

𝑏
→ Φ] are given by

𝜕𝑖 : Ψ⊕𝑛 ⊕ Φ→ Ψ⊕(𝑛−1) ⊕ Φ, (𝜓1, · · · , 𝜓𝑛; 𝜑) ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝜓2, · · · , 𝜓𝑛; 𝜑), 𝑖 = 0,
(𝜓1, · · · , 𝜓𝑖 + 𝜓𝑖+1, · · ·𝜓𝑛; 𝜑), 1 ≤ 𝑖 < 𝑛;
(𝜓1, · · · , 𝜓𝑛−1; 𝜑 − 𝑏(𝜓𝑛)), 𝑖 = 𝑛;

𝑠 𝑗 : Ψ⊕𝑛 ⊕ Φ→ Ψ⊕(𝑛+1) ⊕ Φ, (𝜓1, · · · , 𝜓𝑛; 𝜑) ↦→ (𝜓1, · · · , 𝜓 𝑗−1, 0, 𝜓 𝑗+1, · · ·𝜓𝑛; 𝜑), 𝑗 = 0, · · · , 𝑛.
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Now, let 𝑎 : Φ→ Ψ be as in (a). For each 𝑛 ≥ 0, define an endomorphism 𝑡𝑛 of Ψ⊕𝑛 ⊕ Φ by

𝑡𝑛 (𝜓1, · · · , 𝜓𝑛, 𝜑) =
(
−𝜓1 − · · · − 𝜓𝑛 + 𝑎(𝜑), 𝜓2, · · · , 𝜓𝑛−1; 𝜑 − 𝑏(𝜓𝑛)

)
. (4.3.7)

We then check directly that the relations dual to those of Definition 2.1.1(a) are satisfied. We also check
that 𝑡𝑛+1𝑛 = 𝑇 ⊕𝑛Ψ ⊕ 𝑇Φ which implies that 𝑡𝑛 is invertible.

Conversely, suppose we have automorphisms 𝑡𝑛 as in (b). The relation 𝜕0𝑡𝑛 = 𝜕𝑛 implies that 𝑡𝑛 has
the form

𝑡𝑛 (𝜓𝑛, · · · , 𝜓𝑛; 𝜑) =

(
−

𝑛∑
𝑖=1

𝑥 (𝑛)𝑖 (𝜓𝑖) + 𝑎𝑛 (𝜑); 𝜓2, · · · , 𝜓𝑛−1, 𝜑 − 𝑏(𝜓𝑛)

)

for some linear maps 𝑥 (𝑛)𝑖 : Ψ→ Ψ and 𝑎𝑛 : Φ→ Ψ. We denote 𝑎1 = 𝑎 and will prove that

𝑥 (𝑛)𝑖 = Id, 𝑎𝑛 = 𝑎, ∀ 𝑛, 𝑖 = 1, · · · , 𝑛, (4.3.8)

that is, that all the 𝑡𝑛 are given by the formula (4.3.7). This will imply the invertibility of 𝑇Ψ = Id−𝑎𝑏
and 𝑇Φ = Id−𝑏𝑎 by identifying 𝑡𝑛+1𝑛 as above.

The equalities (4.3.8) are proved recursively, using the relations ofΛ∞. To start, the relation 𝜕1𝑡2 = 𝑡1𝜕0
implies that

𝜕1𝑡2(𝜓1, 𝜓2; 𝜑) = (−𝑥 (2)1 𝜓1 − 𝑥 (2)2 𝜓2 + 𝑎2𝜑 + 𝜓1; 𝜑 − 𝑏𝜓2)

is equal to

𝑡1𝜕0 (𝜓1, 𝜓2; 𝜑) = (−𝑥 (1)1 𝜓2 + 𝑎𝜑; 𝜑 − 𝑏𝜓2),

which entails

𝑥 (2)2 = 𝑥 (1)1 , 𝑥 (2)1 = Id .

The relation 𝜕2𝑡2 = 𝑡1𝜕1 then implies that

𝜕1𝑡2(𝜓1, 𝜓2;𝜓) = (−𝑥 (2)1 𝜓1 − 𝑥 (2)2 𝜓2 + 𝑎2𝜑; 𝜑 − 𝑏𝜓2 − 𝑏𝜓1)

is equal to

𝑡1𝜕1(𝜓1, 𝜓2;𝜓) = (−𝑥 (1)1 𝜓1 − 𝑥 (1)1 𝜓2 + 𝑎(𝜑); 𝜑 − 𝑏𝜓2 − 𝑏𝜓1),

which entails

𝑥 (2)1 = 𝑥 (2)2 = 𝑥 (1)1 , 𝑎2 = 𝑎.

Since we already know that 𝑥 (2)1 = Id, we see that 𝑥 (2)2 = 𝑥 (1)1 = Id. Continuing like this, we prove
equation (4.3.8). �

Remark 4.3.9. One can consider paracyclic structures on the nerves of more general Picard groupoids,
not necessarily those corresponding to two-term complexes. It would be interesting to understand the
relation of such structures to perverse sheaflike objects. We recall [30] that Picard groupoids correspond
to spectra (stable homotopy types in the sense of homotopy topology) which have only two nontrivial
homotopy groups in adjacent degrees, say only 𝜋0 and 𝜋1 or only 𝜋1 and 𝜋2.
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More generally, unstable homotopy types with only 𝜋1 and 𝜋2 nontrivial, are described by crossed
modules (see, e.g., [42]), which are two-term complexes of possibly nonabelian groups

𝐺• =
{
𝐺−1 𝜕
−→ 𝐺0}

with a compatible action of 𝐺0 on 𝐺−1. A crossed module 𝐺• gives rise to a non-abelian Picard groupoid
(also known as a 2-group) [𝐺•], defined similarly to Example 4.3.3. One can ask about the meaning of
paracyclic structures on the nerve of [𝐺•] and the possibility of defining perverse sheaves of nonabelian
groups in one complex dimension.

4.4. Relation to the duplicial Dold–Kan correspondence

The classical Dold–Kan
LetA be an abelian category and C≤0 (A) be the (abelian) category of cochain complexes overA situated
in degrees ≤ 0. As usual, by AΔ we denote the category of simplicial objects of A. The Dold–Kan
correspondence (see, e.g., [25]) is the pair of mutually quasi-inverse (in particular, adjoint) equivalences
of categories

𝐶DK : AΔ
∼
←→ C≤0(A) : NDK,

defined as follows. The functor 𝐶DK, called the normalized chain complex functor, takes 𝐴• ∈ AΔ to
the complex 𝐶DK (𝐴•) with

𝐶DK
−𝑛 (𝐴•) =

𝑛⋂
𝑖=1

Ker{𝜕𝑖 : 𝐴𝑛 −→ 𝐴𝑛−1}, 𝑛 ≥ 0,

with the differential given by the remaining face map 𝜕0.
The functor NDK, called the Dold–Kan nerve, takes a complex (𝐸•, 𝑑𝐸 ) ∈ C≤0(A) into the simplicial

object NDK (𝐸
•) with

NDK (𝐸
•)𝑛 = 𝑍0 (Δ𝑛, 𝐸•),

the object of degree 0 simplicial (hyper)cocycles on Δ𝑛 with values in 𝐸•. That is, denoting Δ𝑛
𝑚 the set

of m-simplices of Δ𝑛,

𝑍0 (Δ𝑛, 𝐸•) ⊂
∏
𝑚≥0
(𝐸−𝑚)Δ

𝑛
𝑚

is given by the following ‘end’ condition: The action of the morphism induced by each 𝑑𝐸 : 𝐸−𝑚 →
𝐸−𝑚+1 is equal to the action of the morphism induced by

∑
(−1)𝑖𝜕𝑖 : Δ𝑛

𝑚+1 → Δ𝑛
𝑚.

Examples 4.4.1.

(a) Let A = A𝑏. An element of 𝑍0 (Δ𝑛, 𝐸•) is in this case a rule 𝛾 associating:
(0) To each vertex 𝑒𝑖 , 0 ≤ 𝑖 ≤ 𝑛, of Δ𝑛, an element 𝛾𝑖 ∈ 𝐸0.
(1) To each edge (possibly degenerate) 𝑒𝑖 𝑗 , 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, of Δ𝑛, an element 𝛾𝑖 𝑗 ∈ 𝐸−1 so that

𝑑𝐸 (𝛾𝑖 𝑗 ) = 𝑒 𝑗 − 𝑒𝑖 .
(2) To each two-face (possibly degenerate) 𝑒𝑖 𝑗𝑘 , 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛, of Δ𝑛, an element 𝛾𝑖 𝑗𝑘 ∈ 𝐸−2

so that 𝑑𝐸 (𝛾𝑖 𝑗𝑘 ) = 𝛾 𝑗𝑘 − 𝛾𝑖𝑘 + 𝛾𝑖 𝑗 .
(· · · ) And so on.

(b) In particular, if 𝐸• = {𝐸−1 → 𝐸0} is a two-term complex of abelian groups, then NDK (𝐸
•) = N[𝐸•]

is the usual nerve of the Picard groupoid [𝐸•].

Proposition 4.3.6 extends verbatim to the following.
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Proposition 4.4.2. Let A be any abelian category and 𝑏 : Ψ → Φ be a morphism in A. Then the
following are in bijection:

(i) Morphisms 𝑎 : Φ → Ψ such that the data (Φ,Ψ, 𝑎, 𝑏) satisfy the conditions of Proposition 4.1.1,
that is, define a perverse sheaf 𝐹 ∈ PS(𝐷, 0;A).

(ii) Extensions of the simplicial object structure on NDK{Ψ
𝑏
→ Φ} to a structure of a paracyclic object.

The duplicial Dwyer–Kan correspodence
Let A be an abelian category and 𝐸• ∈ C≤0(A). Proposition 4.4.2 leads to the following question:
What is the meaning of a paracyclic structure on NDK (𝐸

•) extending the given simplicial structure? An
answer to that can be given by the results of Dwyer–Kan [17] which we recall.

We define the duplex category Ξ to have objects 〈𝑛〉, 𝑛 ∈ N := Z≥0. A morphism from 〈𝑚〉 to 〈𝑛〉
consists of a weakly monotone map 𝑓 : N → N satisfying the following periodicity condition: For all
𝑖 ∈ N, we have 𝑓 (𝑖 + 𝑚 + 1) = 𝑓 (𝑖) + 𝑛 + 1. The simplex category Δ is naturally a subcategory of Ξ
obtained by restricting to those morphisms between 〈𝑚〉 and 〈𝑛〉 that map the interval [0, 𝑚] to [0, 𝑛].
A duplicial object in a category C is a functor Ξop → C.

We recall [21] that the paracyclic categoryΛ∞ can be defined in a very similar way, except we consider
weakly mononote maps 𝑓 : Z → Z (instead of N → N) satisfying the same periodicity condition. In
particular, the shift map

𝜏𝑛 : 〈𝑛〉 −→ 〈𝑛〉, 𝑖 ↦→ 𝑖 + 1

is invertible as en element of HomΛ∞ (〈𝑛〉, 〈𝑛〉) (with i running in Z) but is not invertible as an element
of HomΞ(〈𝑛〉, 〈𝑛〉) (with i running in N). In fact, comparing [17] and [21] leads to the following.

Proposition 4.4.3. Λ∞ � Ξ[𝜏−1
𝑛 | 𝑛 ≥ 0] is identified with the localization of Ξ with respect to the

morphisms 𝜏𝑛, 𝑛 ≥ 0.

In fact, the powers 𝜏𝑛+1𝑛 forming a central system (a natural transformation from IdΞ to itself), it is
easy to see that the ∞-categorical localization Ξ[𝜏−1

𝑛 | 𝑛 ≥ 0]∞ is also identified with Λ∞. In particular,
Ξ, like Λ∞, is generated by the coface and codegeneracy morphisms

𝛿 (𝑛)𝑖 : 〈𝑛 − 1〉 → 〈𝑛〉, (𝑛 ≥ 1, 0 ≤ 𝑖 ≤ 𝑛),

𝜎 (𝑛)𝑖 : 〈𝑛〉 → 〈𝑛 − 1〉, (𝑛 ≥ 1, 0 ≤ 𝑖 ≤ 𝑛),

satisfying the same quadratic relations as in Λ∞. The morphisms

𝛿 (𝑛)𝑖 , 0 ≤ 𝑖 ≤ 𝑛, 𝜎 (𝑛)𝑖 , 0 ≤ 𝑖 ≤ 𝑛 − 1

generate the simplex category Δ ⊂ Ξ. The shift map is expressed as 𝜏𝑛 = 𝛿 (𝑛−1
0 𝜎 (𝑛)𝑛−1. Accordingly, a

duplicial object 𝑌• in a category C can be identified with a sequence of objects 𝑋0, 𝑋1, . . . equipped
with face and degeneracy maps

𝜕𝑖 : 𝑋𝑛 −→ 𝑋𝑛−1 (𝑛 ≥ 1, 0 ≤ 𝑖 ≤ 𝑛),

𝑠𝑖 : 𝑋𝑛−1 −→ 𝑋𝑛 (𝑛 ≥ 1, 0 ≤ 𝑖 ≤ 𝑛),

subject to relations dual to those among the 𝛿 (𝑛)𝑖 , 𝜎 (𝑛)𝑖 . The action of 𝜏𝑛 is then 𝑡𝑛 = 𝑠𝑛+1𝜕0 : 𝑌𝑛 → 𝑌𝑛.
A paracyclic object is a duplicial object such that all the 𝑡𝑛 are isomorphisms.

Following Dwyer–Kan, we call a connective ducomplex in A a diagram

· · ·
𝛿 ��

𝐵−2

𝑑

��
𝛿 ��

𝐵−1

𝑑

��
𝛿 ��

𝐵0

𝑑
��
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satisfying 𝑑2 = 0, 𝛿2 = 0 and no further relations. We denote DC≤0(A) the category of connective
ducoplexes in A.

Theorem 4.4.4 (Dwyer–Kan). (a) There is an equivalence of categories

AΞ
�
−→ DC≤0(A)

given by associating to a duplicial abelian group 𝐴• the ducomplex 𝐵• with

𝐵−𝑛 =
𝑛⋂
𝑖=1

Ker{𝜕𝑖 : 𝐴𝑛 → 𝐴𝑛−1}, 𝑛 ≥ 0,

𝑑 = 𝜕0 : 𝐵−𝑛 → 𝐵−𝑛+1,

𝛿 =
𝑛∑
𝑖=0
(−1)𝑖𝑠𝑖 : 𝐵−𝑛+1 → 𝐵−𝑛.

(b) Under this equivalence, paracyclic objects correspond to ducomplexes satisfying

Id𝐵−𝑛 +(−1)𝑛 (𝑑𝛿 − 𝛿𝑑) : 𝐵−𝑛 −→ 𝐵−𝑛 is invertible for any 𝑛 ≥ 0.

Proof. Part (a) is Theorem 3.5 of [17]. Part (b) follows from the interpretation of 𝑡𝑛+1𝑛 in terms of
ducomplexes given in Proposition 6.5 of [17]. �

The equivalence between the descriptions of the category of perverse sheaves on (C, {0}) from
Proposition 4.3.1 and Proposition 4.1.1, respectively, is then a consequence of restricting the equivalence
from Theorem 4.4.4 to paracyclic Segal objects.

Appendix A. ∞-categorical preliminaries

Appendix A.1. Generalities on∞-categories

In the rest of the paper, we will use freely the language of∞-categories [37]. The following is intended
to fix the terminology and notation and to recall the main tools that will be used.

We denote by SetΔ the category of simplicial sets. For a simplicial set 𝑆 = (𝑆𝑛)𝑛≥0, we denote

𝜕𝑖 : 𝑆𝑛 → 𝑆𝑛−1, 0 ≤ 𝑖 ≤ 𝑛

the simplicial face maps. By Δ𝑛 ∈ SetΔ , we denote the standard n-simplex.
Following [37], we will use the term ∞-category for a weak Kan complex. Thus, an ∞-category C

is a simplicial set (C𝑛)𝑛≥0 satisfying the lifting condition for intermediate horns Λ𝑛
𝑖 ⊂ Δ𝑛, 0 < 𝑖 < 𝑛.

Any ordinary category can be considered as an∞-category by passing to the nerve.
Each∞-category C contains the maximal Kan subcomplex CKan ⊂ C, which is can be interpreted as

‘the∞-groupoid of equivalences in C’.
We follow the usual notation and terminology: 0-simplices of C are called objects, and we denote

Ob(C) = C0, while 1-simplices are called morphisms and we denote Mor(C) = C1. For any two
𝑥, 𝑦 ∈ Ob(C), we denote HomC(𝑥, 𝑦) ⊂ Mor(C) the set of 1-simplices f such that 𝜕1( 𝑓 ) = 𝑥 and
𝜕0 ( 𝑓 ) = 𝑦.

To any∞-category C, one associates its homotopy category Ho(C) which is an ordinary category with
the set of objects Ob(C) and HomHo(C) (𝑥, 𝑦) defined as the quotient of HomC(𝑥, 𝑦) by the homotopy
relation: 𝑓 ∼ 𝑔 if there is 𝜎 ∈ C2 with 𝜕1(𝜎) = 𝑓 and 𝜕2(𝜎) = 𝑔. An equivalence in C is a morphism
which becomes an isomorphism in Ho(C).
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For an ∞-category C and any 𝑥, 𝑦 ∈ Ob(C), the set HomC(𝑥, 𝑦) can be upgraded to a simplicial set
MapC(𝑥, 𝑦) (the mapping space), in such a way as to make out of C a category enriched in simplicial
sets. See [37] §1.2.2 for details.

This leads to another point of view on∞-categories: as categories enriched in topological spaces (or
simplicial sets). Several ∞-categorical concepts can be formulated in this language. For example, an
initial object of an ∞-category C is an object 0 such that, for each 𝑥 ∈ Ob(C), the space MapC(0, 𝑥) is
contractible.

Example A.1 (Kan simplicial sets as an ∞-category). Any Kan simplicial set is an ∞-category. The
∞-category Sp of spaces is defined as the simplicial nerve of the category of Kan simplicial sets [37,
§1.2.16].

Appendix A.2. Dg-categories

We denote by A𝑏 the category of abelian groups and by 𝐶 (A𝑏) the category of cochain complexes of
abelian groups, with its standard symmetric monoidal structure. By a dg-category, we mean a category
A enriched in𝐶 (A𝑏). For such A, we have the ordinary categories 𝑍0 (A), 𝐻0(A) with the same objects
as A and

Hom𝑍 0 (A) (𝑥, 𝑦) = 𝑍0 Hom•A (𝑥, 𝑦), Hom𝐻 0 (A) (𝑥, 𝑦) = 𝐻0 Hom•A(𝑥, 𝑦).

Here, 𝑍0 is the subgroup of 0-cocycles in the Hom-complex.
A dg-category A gives an ∞-category 𝑁dg (A) known as the dg-nerve of A. As a simplicial set,

𝑁dg (A) was introduced in [28]. For a given 𝑛 ≥ 0, the set 𝑁dg (A)𝑛 consists of weakly commutative
n-simplices in A (called Sugawara simplices in [28]), which are data of:

𝑥0, · · · , 𝑥𝑛 ∈ Ob(A);
𝑢𝑖 𝑗 ∈ Hom0

A (𝑥𝑖 , 𝑥𝑖), 𝑑 (𝑢𝑖 𝑗 ) = 0, 𝑖 < 𝑗 ;
𝑢𝑖 𝑗𝑘 ∈ Hom−1

A (𝑥𝑖 , 𝑥𝑘 ), 𝑑 (𝑢𝑖 𝑗𝑘 ) = 𝑢 𝑗𝑘𝑢𝑖 𝑗 − 𝑢𝑖𝑘 , 𝑖 < 𝑗 < 𝑘;
and so on.

It was shown in [38] that 𝑁dg (A) is in fact a∞-category. By construction, we have

Ho(𝑁dg (A)) � 𝐻0(A).

Appendix A.3. The derived∞-category of an abelian category

Let A be a Grothendieck abelian category. In particular, A has enough injectives. Denote by C(A) the
dg-category of all cochain complexes over A. Thus, 𝑍0 (C(A)) is the ‘usual’ category of complexes
(morphsims = morphisms of complexes) and 𝐻0(C(A)) is the homotopy category. The classical (un-
bounded) derived category of A, denoted D(A), is defined as the categorical localization of 𝐻0(C(A))
by the class of quasi-isomorphisms. It is a triangulated category.

The (unbounded) derived ∞-category of A, denoted D(A), can be defined in one of two equivalent
ways; see [38] §1.3.5, especially Proposition 1.3.5.16 and before.

(i) As the ∞-categorical localization of the usual (abelian) category 𝑍0 (𝐶 (A)) by the class of quasi-
isomorphisms.

(ii) As the full ∞-subcategory in 𝑁dg (C(A)) spanned by fibrant complexes. A fibrant complex is a
possibly unbounded complex of injective objects with some additional properties; see [38] §1.3.5
and [44].
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We have

Ho(D∞(A)) � D(A).

Appendix A.4. Stable∞-categories

The derived∞-categories from §A.3 are examples of stable∞-categories. Here, we recall the definition
of a stable ∞-category from [38] and discuss some basic results that we will use. Let D be a pointed
∞-category, and consider a square

𝑋 𝑌

0 𝑍

𝑓

𝑔 (A.1)

in D where 0 is a zero object. The square is called a fiber sequence if it is a pullback square. In this case,
the morphism f is called a fiber of g. Dually, the square is called a cofiber sequence if it is a pushout
square. In this case, we say that g is a cofiber of f. The category D is called stable if

1. every morphism admits a fiber and a cofiber,
2. a square of the form (A.1) is a fiber sequence if and only if it is a cofiber sequence.

We collect some basic results about stable∞-categories (cf. [38]):

Proposition A.2. Let D be a stable∞-category. Then:

(1) D admits finite limits and colimits.
(2) The homotopy category of D admits a triangulated structure.
(3) A square

𝑋 𝑌

𝑋 ′ 𝑌 ′

in D is Cartesian if and only if it is coCartesian.

Cartesian squares in a stable∞-category (which are hence also coCartesian) will be called biCartesian
squares. The statement of Proposition A.2 (3) has a useful generalization to higher-dimensional cubes:
Let D be a stable ∞-category, 𝑛 ≥ 1, and let P({1, . . . , 𝑛}) be the poset of all subsets of the set
{1, . . . , 𝑛}. Consider a diagram

𝑞 : N(P({1, . . . , 𝑛})) −→ D

which, due to the apparent isomorphism N(P({1, . . . , 𝑛})) � (Δ1)𝑛, has the shape of an n-dimensional
cube. Note that, we may either interpret q as

1. a cone over the diagram 𝑞 |N(P({1, . . . , 𝑛}) \ {∅}), or
2. a cone under the diagram 𝑞 |N(P({1, . . . , 𝑛}) \ {{1, . . . , 𝑛}}).

If the first cone is a limit cone, then we call q Cartesian; if the second cone is a colimit cone, then we
call q coCartesian. We recall some results from [38]:

Proposition A.3. A cube q is Cartesian if and only if it is coCartesian.

Proof [38, 1.2.4.13]. �
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We will refer to cubes in a stable ∞-category which are Cartesian (and hence coCartesian) as
biCartesian, generalizing the above terminology in the case 𝑛 = 2. We further recall:

Proposition A.4. An n-cube is biCartesian if and only if the (𝑛 − 1)-cube, obtained by passing to
cofibers along all morphisms parallel to one coordinate axis, is biCartesian.

Proof [38, 1.2.4.15]. �

We also note the following immediate consequences of Proposition A.4.

Proposition A.5. Suppose we are given an n-cube q with one face f biCartesian. Then q is biCartesian
if and only if the face parallel to f is also biCartesian.

Proposition A.6. The property for cubes being biCartesian satisfies the two-out-of-three property with
respect to pasting of cubes.

Appendix A.5. Limits and Kan extensions

Let C be an ∞-category. As usual, a (∞-) functor 𝐹 : 𝐼 → C, where I is a (small) ∞-category, will
be called a diagram in C. We will also use the notation (𝐹𝑖)𝑖∈𝐼 for such a diagram, with 𝐹𝑖 = 𝐹 (𝑖),
𝑖 ∈ Ob(𝐼). The∞-categorical limit and colimit of (𝐹𝑖)𝑖∈𝐼 (when they exist) will be denoted by

lim
𝑖∈𝐼

C 𝐹𝑖 , colim
𝑖∈𝐼

C 𝐹𝑖 ,

or, in the functor notation, simply lim 𝐹, colim 𝐹.
Let 𝛼 : 𝐼 → 𝐽 be a functor of small∞-categories and 𝐹 : 𝐼 → C be another functor. In this case, we

can speak about the left and right Kan extensions which are functors

𝛼!𝐹, 𝛼∗𝐹 : 𝐽 −→ C

characterized by universal properties. More precisely, the functors (when they exist)

𝛼! : Fun(𝐼,C) → Fun(𝐽,C), 𝐹 ↦→ 𝛼!𝐹, 𝛼∗ : Fun(𝐼,C) → Fun(𝐽,C), 𝐹 ↦→ 𝛼∗𝐹

are, respectively, left and right adjoints to the pullback functor

𝛼∗ : Fun(𝐽,C) −→ Fun(𝐼,C), 𝐺 ↦→ 𝛼∗𝐺 := 𝐺 ◦ 𝛼.

See [37] §4.3. While the general concept of adjunction in the∞-categorical context is somewhat subtle
(see [37] §5.2), it implies identifications (weak equivalences) of mapping spaces having the familiar
shape, which in our case read

MapFun(𝐽 ,C) (𝐺, 𝛼∗𝐹) � MapFun(𝐼 ,C) (𝛼
∗𝐺, 𝐹), Map(𝛼!𝐹, 𝐺) � Map(𝐹, 𝛼∗𝐺) (A.1)

for any 𝐹 ∈ Fun(𝐼,C), 𝐺 ∈ Fun(𝐽,C).
We recall the pointwise formulas for Kan extensions which describe their values on an object 𝑗 ∈ 𝐽.

More precisely, assuming the existence of all the relevant (co)limits, we have

(𝛼!𝐹) ( 𝑗) = colim C
𝑖∈𝛼/ 𝑗 𝐹 ( 𝑗), (𝛼∗(𝐹) 𝑗 = lim C

𝑖∈ 𝑗/𝛼 𝐹 (𝑖), (A.2)

where 𝛼/ 𝑗 resp. 𝑗/𝛼 are the overcategory and undercategory, whose objects are pairs(
𝑖 ∈ Ob(𝐼), 𝑎 : 𝛼(𝑖) → 𝑗

)
, resp.

(
𝑖 ∈ Ob(𝐼), 𝑏 : 𝑗 → 𝛼(𝑖)

)
;

see [37] §1.2.9.
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Recall, further, that 𝛼 is called∞-cofinal, resp.∞-coinitial, if any 𝑗/𝛼, resp. 𝛼/ 𝑗 is contractible, (i.e.,
its nerve is a contractible simplicial set). If this is the case, then for any 𝐺; 𝐽 → C we have equivalences

colim𝛼∗𝐺 � colim 𝐺, resp. lim𝛼∗𝐺 � lim 𝐺

in C.
The following result [37, 4.3.2.15] will be a fundamental tool for us to establish equivalences of

∞-categories.

Proposition A.3. Let J be an ∞-category and 𝐼 ⊂ 𝐽 a full subcategory. Let C be an ∞-category with
colimits let E ⊂ Fun(𝐼,C) be a full subcategory and let E ! be the full subcategory in Fun(𝐽,C) spanned
by functors of the form 𝛼!𝐹 for F in E . Then the restriction functor E ! → E is an equivalence. The
analogous statement holds for right Kan extensions if C has limits.

We also note, for future use, the following fact [37, 4.4.4.10].

Lemma A.4. Let K be a weakly contractible simplicial set, and let C be an∞-category. Let

𝐹 : 𝐾 → C

be a diagram sending every edge of K to an equivalence in C. Then a cone

𝐹+ : 𝐾⊲ −→ C

is a colimit cone if and only if every edge from a vertex in K to the cone vertex ∗ is mapped to an
equivalence in C. In particular, for every vertex k of K, the value 𝐹 (𝑘) is a colimit of F.

Appendix A.6. ∞-categorical localization

Let C be an∞-category and 𝑊 ⊂ Mor(C) be a set of 1-morphisms. For any∞-category E, we denote

Fun(C,E)[𝑊→Eq] ⊂ Fun(C,E)

the full∞-subcategory spanned by (∞-)functors that take elements of W to equivalences in E.

Definition A.1. Let 𝜋 : C → D be an ∞-functor. We say that 𝜋 exhibits D an an ∞-categorical
localization of C by W, or, simply, that 𝜋 is an∞-localization of C by W, if:

(1) 𝜋 ∈ Fun(C,D)[𝑊→Eq] .
(2) For any∞-category E, composition with 𝜋 gives an equivalence

𝜋∗ : Fun(D,E) −→ Fun(C,E)[𝑊→Eq] .

Given C and W, the datum (D, 𝜋) as above is known to exist and be unique up to a contractible space
of choices; see [38], §5.2.7. We will therefore denote such D by C[𝑊−1]∞.

We will be particularly interested in the case when C is a usual category. In this case, C[𝑊−1]∞ is the
∞-categorical analog of the Dwyer–Kan simplicial localization [16, 15]. In particular,

Ho C[𝑊−1]∞ = C[𝑊−1]

is the usual categorical localization of C by W.
We will be further interested in the cases when C[𝑊−1]∞ is equivalent to a usual category, that is,

reduces to C[𝑊−1].
Given a functor 𝜋 : C→ D of usual categories and an object 𝑑 ∈ D, we denote by

𝑗𝑑 : (𝑑/𝜋)iso ↩→ 𝑑/𝜋
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the embedding of the full subcategory spanned by pairs (𝑐 ∈ C, 𝑎 : 𝑑 → 𝜋(𝑐)) for which a is an
isomorphism in D. Then we have (cf. [47]):

Proposition A.2. Let 𝜋 : C→ D be a functor of usual categories and 𝑊 ⊂ Mor(C). Suppose that:

(1) Elements of W are precisely the morphisms of C sent by 𝜋 into isomorphisms.
(2) For any 𝑑 ∈ D, the category (𝑑/𝜋)iso is contractible.
(3) For any 𝑑 ∈ D, the functor 𝑗𝑑 is∞-coinitial.

Then 𝜋 exhibits D as the∞-categorical localization of C by W.

Proof. Step 1. Let E be any∞-category with limits and 𝐺 : D→ E be an∞-functor. Then the natural
transformation 𝐺 → 𝜋∗𝜋

∗𝐺 is an equivalence. Indeed, by the pointwise formula for Kan extensions and
∞-coinitiality of 𝑗𝑑 , we have

(𝜋∗𝜋
∗𝐺) (𝑑) = lim

𝑐∈𝑑/𝜋
𝐺 (𝜋(𝑐)) = lim

𝑐∈(𝑑/𝑝𝑖) iso
𝐺 (𝜋(𝑐)).

But (𝑑/𝜋)iso consists of isomorphisms 𝑑 → 𝜋(𝑐), so by inverting them, we can say that it consists of
isomorphisms 𝜋(𝑐)

�
→ 𝑑. So we have

(𝜋∗𝜋
∗𝐺) (𝑑) = lim

{𝜋 (𝑐)
�
→𝑑 }

𝐺 (𝜋(𝑐)) = 𝐺 (𝑑)

since the last limit is taken over a cone-shaped diagram (one with an initial object).
Step 2. Further, let 𝐹 : C→ E be any∞-functor which takes elements of W into equivalences. Then

the natural transformation 𝜋∗𝜋∗𝐹 → 𝐹 is an equivalence. Indeed, as above, for any 𝑐 ∈ C,

(𝜋∗𝜋∗𝐹) (𝑐) = lim
𝑐′ ∈𝜋 (𝑐)/𝜋

𝐹 (𝑐′) = lim
𝑐′ ∈(𝜋 (𝑐)/𝜋) iso

𝐹 (𝑐′). (A.3)

But (𝜋(𝑐)/𝜋)iso has, as objects, isomorphisms 𝜋(𝑐)
𝑏
→ 𝜋(𝑐′), while a morphism

[𝜋(𝑐)
𝑏
→ 𝜋(𝑐′1)] −→ [𝜋(𝑐)

𝑏
→ 𝜋(𝑐′2)]

between two such objects is a morphism 𝑢 : 𝑐′1 → 𝑐′2 in C such that the diagram

𝜋(𝑐′1)

𝜋 (𝑢)

��
𝜋(𝑐)

𝑏2
��

𝑏1
����������
𝜋(𝑐′2)

commutes. This means that 𝜋(𝑢) is an isomorphism and so 𝑢 ∈ 𝑊 by the assumption (1). Thus, 𝐹 (𝑢) is an
equivalence. So the limit in (A.3) is a limit of a diagram of equivalences parametrized by a category that
is contractible by assumption (3). So (e.g., by Lemma A.4 for limits instead of colimits) it is identified
with any term of the diagram, in particular, the natural map from this limit to 𝐹 (𝑐) is an equivalence.

Step 3. Now, consider the pullback functor

𝜋∗ : Fun(D,E) −→ Fun(C,E).

Step 1 implies that 𝜋∗ is fully faithful (the embedding of a full ∞-subcategory). Step 2 means that the
essential image of F is Fun(C,E)[𝑊→Eq] . This means that 𝜋 satisfies the condition (2) of Definition A.1
for any E with limits.

Finally, we note that in the above reasoning it is not necessary to require that E has all limits as all
the limits we need, automatically exist and are explicitly identified. This proves Proposition A.2. �
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For future use, we note a dual version of Proposition A.2. For a functor 𝜋 : C→ D of usual categories
and an object 𝑑 ∈ D, we consider the embedding

𝑗𝑑 : (𝜋/𝑑)iso ↩→ 𝜋/𝑑,

where (𝜋/𝑑)iso is the full subcategory of 𝜋/𝑑 formed by pairs (𝑐 ∈ C, 𝑏 : 𝜋(𝑐) → 𝑑) for which b is an
isomorphism.
Proposition A.4. Let 𝜋 : C→ D be a functor of usual categories. Suppose that:
(1) Elements of W are precisely the morphisms of C sent by 𝜋 into isomorphisms.
(2) For any 𝑑 ∈ D the category (𝜋/𝑑𝑖)iso is contractible.
(3) For any 𝑑 ∈ D the functor 𝑗𝑑 is∞-cofinal.
Then:
(a) 𝜋 exhibits D as the∞-categorical localization of C by W.
(b) For any ∞-category E with colimits and any functor 𝐺 : D → E, the natural transformation

𝜋!𝜋
∗𝐺 → G is an equivalence.

(c) For any functor 𝐹 : C → E sending elements of W to equivalences, the natural transformation
𝐹 → 𝜋∗𝜋!𝐹 is an equivalence.

Proof. Obtained from that of Proposition A.2 by dualization. �

Appendix A.7. A covering lemma

We recall the following lemma which generalizes various classical statements of the kind that a space
is homotopy equivalent to the nerve of its sufficiently fine open covering.
Lemma A.1. Let T be a small category. Let E be a topological space, and let 𝔒(𝐸) denote the poset of
open subsets of E. Let

𝜒 : 𝑇 −→ 𝔒(𝐸))

be a functor. For any 𝑒 ∈ 𝐸 , let 𝜒−1 (𝑒) ⊂ 𝑇 be the full subcategory spanned by t such that 𝑒 ∈ 𝜒(𝑡).
Suppose that:
(1) for every 𝑡 ∈ 𝑇 , the open set 𝜒(𝑡) is contractible,
(2) for every 𝑒 ∈ 𝐸 , the category 𝜒−1 (𝑒) is contractible.
Then there is a weak homotopy equivalence |N(𝑇) | � 𝐸 .

Note that the assumption (2) implies, in particular, that the 𝜒(𝑡) form an open covering of E, as a
contractible category is nonempty.

Proof. Let 𝜋 : 𝐾 → N(𝑇) be the relative nerve ([37, 3.2.5]) associated to the functor
N(𝑇) → Sp, 𝑡 ↦→ Sing(𝜒(𝑡)).

Then 𝜋 is a left fibration whose fibers are, by assumption, contractible Kan complexes. By [37, 2.1.3.4],
it is a trivial Kan fibration so that |𝐾 | � |𝑁 (𝑇) |. On the other hand, Sing(|𝐾 |) is a model for the colimit
of 𝜋 ([37, 3.3.4.6]) which by Lurie’s Seifert-van Kampen theorem [38, A.3.1] is weakly equivalent to
Sing(𝐸). �
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