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Abstract

We show that if A ⊆ {1, . . . , N } does not contain any nontrivial solutions to the equation
x + y + z = 3w, then

|A| 6 N
exp(c(log N )1/7)

,

where c > 0 is some absolute constant. In view of Behrend’s construction, this bound is of the right
shape: the exponent 1/7 cannot be replaced by any constant larger than 1/2. We also establish
a related result, which says that sumsets A + A + A contain long arithmetic progressions if
A ⊆ {1, . . . , N }, or high-dimensional affine subspaces if A ⊆ Fn

q , even if A has density of the
shape above.

2010 Mathematics Subject Classification: 11B30 (primary); 11B25, 11K70 (secondary)

1. Introduction

This paper is concerned with two types of problems in additive combinatorics,
namely solving linear equations in subsets of abelian groups and finding additive
structures in sumsets, with a focus on being able to deal with relatively sparse
sets. We discuss these in turn, focusing on the historically most important case of
sets of integers.

c©The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction
in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of
Cambridge University Press must be obtained for commercial re-use.

https://doi.org/10.1017/fms.2016.2 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:schoen@amu.edu.pl
mailto:sisask@kth.se
https://doi.org/10.1017/fms.2016.2


T. Schoen and O. Sisask 2

Roth-type results. Roth’s well-known theorem on arithmetic progressions says
that if a set A ⊆ [N ] := {1, . . . , N } does not contain any nontrivial three-term
arithmetic progressions, that is solutions to the equation x + z = 2y with x, y, z
not equal, then |A| cannot be very large:

THEOREM 1.1 (Roth’s theorem [20]). Let r3(N ) denote the largest size of a
subset of [N ] with no nontrivial three-term progressions. Then, for N large
enough,

r3(N ) 6
C N

log log N
.

(Here and throughout the paper, we use the letters C and c to denote positive
absolute constants whose values need not be the same at different occurrences.)
This theorem has been central to additive combinatorics, and improving the above
bound has been the object of much research and has led to a wealth of interesting
techniques being developed; see for example [4–6, 18, 23, 24, 27], to which we
also refer for more history on the problem. However, it is not yet known whether
r3(N ) 6 C N/log N for some constant C ; the current best upper bounds, due to
Sanders [23] and Bloom [4], are of the form

r3(N ) 6
C(log log N )C

log N
N .

By contrast, the best lower bounds on r3(N ), coming from constructions of
large subsets of [N ] with no nontrivial progressions, give

r3(N ) >
N

exp(C(log N )1/2)
,

as proved by Behrend [2] (but see also [12, 17]).
Now, most proofs of Roth’s theorem easily extend to provide similar upper

bounds for any translation invariant equation

c1x1 + · · · + ck xk = 0 where k > 3, c j ∈ Z \ {0}, and c1 + · · · + ck = 0,
(1.1)

the last condition being the translation invariance property. Behrend’s argument
also extends directly to any such equation with one negative coefficient and the
rest positive, that is of the form a1x1+· · ·+al xl = by with the a j positive integers
summing to b. Furthermore, a somewhat folklore philosophy was that whatever
techniques worked for additive combinatorial problems involving three variables
would also work for those involving four or more, and vice versa, with the bounds
being similar. The work [25] of Sanders led to this being questioned in the context
of sumsets, however, and the first-named author and Shkredov [26] subsequently
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showed that much stronger bounds than those given above for r3(N ) hold for
equations in six or more variables. A representative example:

THEOREM 1.2 [26]. Suppose A ⊆ [N ] does not contain any solutions to
x1 + · · · + x5 = 5y in distinct integers. Then

|A| 6 N
exp(c(log N )1/7)

.

Here, one has an almost matching lower bound: Behrend’s construction gives
sets A of size at least exp(−C(log N )1/2)N that do not contain any solutions to
this equation.

Around the same time, Bloom [3] established improved bounds for four- and
five-variable equations, inspired by Sanders’s technique from [23]:

THEOREM 1.3 [3]. Suppose A ⊆ [N ] does not contain any nontrivial solutions
to the equation in (1.1). Then

|A| 6 N
(log N )k−2−oc(1)

.

(A solution (x1, . . . , xk) to (1.1) is called trivial if one can partition the index
set [k] into parts on which the variables x j are constant and the coefficients c j sum
to 0. For example (x, . . . , x). See the next section for a definition of the little-o()
notation.) There thus remained an almost exponential gap between the lower and
upper bounds for four- and five-variable equations. In this paper, we show that
one indeed has Behrend-shape upper bounds for these. For example:

THEOREM 1.4. Suppose A ⊆ [N ] does not contain any nontrivial solutions to
the equation x + y + z = 3w. Then

|A| 6 N
exp(c(log N )1/7)

.

In the much-studied finite field setting, where [N ] is replaced by a vector space
over a finite field, we establish the following slightly stronger result.

THEOREM 1.5. Let q be a prime power and let A ⊆ Fn
q be a set of size αqn . If A

does not contain any nontrivial solutions to x + y + z = 3w, then

α 6 exp(−c(n1/5)).

By contrast, the best bound known for three-term progressions in this setting
comes from the intricate work of Bateman and Katz [1], who showed that
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if A ⊆ Fn
3 is free of nontrivial three-term progressions, then |A| 6 3n/n1+ε , where

ε is some strictly positive constant.
Before we move on, let us make a quick remark about our arguments. These are

somewhat different to those of [26], which used the bounds of Sanders [25] for a
result known as the Bogolyubov–Ruzsa lemma. However, the proof of this lemma
used in turn an almost-periodicity result of Croot and the second-named author
[10], and this will together with an insight from [25] be of key importance in our
proofs. This is actually part of the motivation behind this paper: while one aim
is to prove strong bounds for as close a problem as possible to Roth’s theorem,
another is to attempt to illustrate the natural limitations of the ideas of [10, 25]. We
thus give two different proofs of Theorem 1.5 that demonstrate different aspects
of the results; see Section 3.

Structures in sumsets. Another big direction of additive combinatorics is to study
the structure of sumsets A + B = {a + b : a ∈ A, b ∈ B} for various types of
sets A and B in an abelian group. Here we focus on the case of three-fold sumsets
3A := A+ A+ A, where A is a large subset of [N ] or a finite abelian group G, as
was first tackled by Freiman, Halberstam and Ruzsa [13]. Suppose A ⊆ [N ] has
size at least αN , α > 0. The following lower bounds for the length of a longest
arithmetic progression in 3A are known.

Density range Length of AP in 3A

α > (log N )−1/3+o(1) N cα3 F–H–R [13]
α > (log N )−1/2+o(1) N cα2+o(1) Green [14]
α > (log N )−1/2+o(1) N cα Sanders [21]
α > (log N )−1+o(1) N cα1+o(1) Henriot [19]
α > (log N )−2+o(1) exp((α1/2+o(1) log N )1/2) Henriot [19]

Henriot [19] gives a useful and clear summary of the history of the problem,
and we refer there for more information. Let us also mention that Henriot’s results
are actually more powerful in the asymmetric case of sumsets A + B + C : in
this set-up [19] allows B and C to be much sparser, namely of densities around
exp(−C(log N )c), as long as the density of A is more or less as above.

Here we prove the following, which is nontrivial in the range

α > exp(−c(log N )1/5).

THEOREM 1.6. Let A ⊆ [N ] have size at least αN. Then 3A contains an
arithmetic progression of length at least

α exp
((

c log N
log3(2/α)

)1/2)
.
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The length of the progression here is of course much smaller than in previous
results for large densities, being on par with what is known for just A + A in this
case, but when α gets small enough this theorem applies whereas those above do
not. However, let us mention that there is a combinatorial argument due to Croot,
Ruzsa and the first-named author [8] that guarantees arithmetic progressions in
2A := A + A of length around c log N/log(2/α), which certainly extends the
nontrivial density range further albeit with fairly short progressions. We thus
know of quite different behaviours for different densities, but a lack of examples
pervades. The best example we know of comes from [13]: there it is shown that,
for any α < c, there is a set A ⊆ [N ] of size at least αN for which 3A does not
contain an arithmetic progression of length

N 2/log(1/α). (1.2)

Theorem 1.6 thus gives an answer of the right shape exp((log N )c) for
α = exp(−(log N )c), but with a gap in the exponent on the log N compared
to (1.2).

These questions are also studied for subsets of vector spaces Fn
q over finite

fields Fq , where q is considered fixed, but in this setting one generally looks
at the dimensions of (affine) subspaces found in sumsets rather than lengths of
arithmetic progressions, for obvious reasons. See for example [7, 15, 21, 22] for
more background. From the perspective of the present paper it is illuminating to
consider what is known in this setting for 2A, 3A and 4A, for which the best
bounds known for large densities are all due to Sanders. For 2A, it is shown in
[22] that 2A contains an affine subspace of dimension at least cαn for α > C/n.
Sumsets 3A are known [21] to contain affine subspaces of dimension at least
n−C/α, and sumsets 4A are known [25] to contain affine subspaces of dimension
at least n − C log4(2/α). Here we prove a result somewhat intermediate between
the latter two:

THEOREM 1.7. Let A ⊆ Fn
5 be a set of size at least α · 5n . Then 3A contains an

affine subspace of dimension at least cn/log(2/α)3 − log(1/α).

We actually show somewhat more, namely that these three-fold sumsets
contain lots of translates of the respective arithmetic progression or subspace;
see Section 8 for further statements, and see also Section 9 for some further
comparisons of 2A, 3A and 4A.

The rest of this paper is structured as follows. In the next section, we
set up some notation and describe some preliminaries on density increments,
convolutions and almost-periodicity. In Section 3, we prove Theorem 1.5; indeed,
we give two proofs as already mentioned. We then proceed to a proof of the
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general case, starting with a review of Bohr sets in Section 4 and the development
of the appropriate almost-periodicity results in Section 5, and wrapping up with
the density increment and iterative arguments in Sections 6 and 7. We then turn
to structures in 3A in Section 8, and conclude with some remarks in Section 9.

2. Notation and preliminaries

If A is a subset of a finite set X , we refer to µ(A) := µX (A) := |A|/|X | as the
density of A (in X ).

The density increment strategy. In proving the Roth-type theorems outlined above,
we shall employ a so-called density increment strategy, as have most proofs of
Roth’s theorem resulting in good bounds. This operates roughly as follows. Let
G be [N ] or Fn

q . If A ⊆ G has density α but contains no nontrivial solutions to
x + y + z = 3w, then one shows that A has increased density (1 + c(α))α on a
translate of some ‘large substructure’ V of G – say a long progression in the case
of [N ] or a large subspace in the case of Fn

q . Thus |A∩(x+V )|> (1+c)α|V |. One
then looks at (A−x)∩V , which is still solution-free by translation invariance, and
tries to repeat the argument. One thus produces denser and denser solution-free
sets on smaller and smaller substructures, but since a density can never increase
beyond 1, the iteration must at some point terminate (provided the function c(α) is
nice enough). Generally this means that the substructures on which one is iterating
must have become trivial, so as long as the original density is large enough for
the increased densities to reach 1 before the substructures become trivial, one has
shown that the set must contain a solution to the equation.

Of course, all this is saying roughly that we shall prove the result by induction;
the whole game is to find arguments to make the substructures V and the
increments c(α) as large as possible, while keeping V nice enough to iterate.
For many proofs of Roth’s theorem, the substructures on which one increments
are directly related to the large Fourier coefficients of A; for us this is not quite
the case, the substructures being uncovered instead by the probabilistic almost-
periodicity results of [10]. To state one of these results in detail, let us introduce
some further notation.

Normalizations, L p-norms, convolutions. Now, we have talked about densities
above, and it is relatively standard practice in additive combinatorics these days
to work with these rather than cardinalities of sets. An associated trend has been
to furthermore use normalized convolutions and L p norms. In this paper, we shall
find it useful to work with both densities and cardinalities, as we shall operate
relatively ‘locally’ later on. We thus speak of densities, but write, for an abelian
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group G, a subset X ⊆ G, a function f : G → C and a real number p > 1,

µX := 1X/|X |, ‖ f ‖p
p :=

∑
x∈G

| f (x)|p, f ∗ g(x) :=
∑
y∈G

f (y)g(x − y).

Here and throughout, 1X denotes the indicator function of X , taking the value 1 if
its input lies in X and 0 otherwise.

Convolutions really are central objects for us when pursuing a density
increment strategy as outlined above. Indeed, the quantity 1A ∗µV (x) is precisely
|A∩ (x−V )|/|V |, which is the relative density of A on x−V , and the number of
solutions to our equation is precisely 1A ∗ 1A ∗ 1A ∗ 1−3·A(0). Crucially, however,
we shall not prove our results by studying this function directly, as did most
previous proofs, but we shall nevertheless deal with similar convolutions, and for
this the key tools will be certain almost-periodicity results.

Almost-periodicity. Our main tool for showing properties of convolutions is the
following L p-almost-periodicity result, which is a version of the main theorem
of [10], but with somewhat less detailed moment estimates in the probabilistic
arguments; see for example [7, 25] for a proof.

THEOREM 2.1. Let p > 2, ε ∈ (0, 1) and k ∈ N be parameters. Let A, L , S be
finite subsets of an abelian group. Suppose |A + S| 6 K |A|. Then there is a set
T ⊆ S with |T | > 0.99K−Cpk2/ε2 |S| such that

‖1A ∗ 1L(· + t)− 1A ∗ 1L‖p 6 ε|A||L|1/p for all t ∈ kT − kT .

The result thus says that, for two sets A and L , provided A is structured in the
sense of not growing much under addition with some set S, one can find lots of
L p-almost-periods of the convolution 1A ∗ 1L , these being elements t for which
this function does not change by much (in L p) upon translation by t .

We shall bootstrap this to other variants later on. In the model setting, we can
simply quote such a bootstrapped result; we turn to this in the next section, after
one further note on notation.

Asymptotic notation. For a real-valued function g defined on a subset of the reals,
we use the notation o(g) to refer to a function f for which f (x)/g(x)→ 0 either
as x →∞ or as x → 0, the context determining which of these is the case. Thus,
an example of a function that is (log N )1−o(1) as N →∞ is log N/log log N , and
an example of one that is α1+o(1) as α → 0 is α/log(1/α). A subscript on the
o refers to a parameter on which the function may depend. If f is another real-
valued function similarly defined, then we write f � g to mean that there is some
constant C for which | f (x)| 6 C |g(x)| for all x , and f � g to mean that g � f .
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3. Two proofs in the finite field setting

Here we shall prove Theorem 1.5, which said that if a subset A ⊆ Fn
q of density

α does not contain any nontrivial solutions to the equation

x + y + z = 3w (3.1)

then α 6 exp(−cn1/5). Note that, for this equation, a solution is trivial if and only
if x = y = z = w, and that the result is trivial if q is divisible by 2 or 3, so we
assume throughout that it is not. We shall actually give two different proofs of
this result, one more analytic and one more combinatorial – but both following
the density increment strategy outlined in the previous section. It turns out that
the former proof extends more easily to the setting of more general finite abelian
groups, from which one can deduce Theorem 1.4, whereas the latter serves as
inspiration for the later proofs finding structures in sumsets.

In both proofs, we shall use the following bootstrapped version of Theorem 2.1,
which is a specialization of [7, Theorem 7.4].

THEOREM 3.1. Let p > 2 and ε ∈ (0, 1). Let G = Fn
q be a vector space over a

finite field and suppose A, L ⊆ G have µ(A) > α. Then there is a subspace V of
codimension

d 6 Cpε−2 log(2/εα)2 log(2/α)

such that, for each t ∈ V ,

‖1A ∗ 1L(· + t)− 1A ∗ 1L‖L p 6 ε|A||L|1/p.

First proof: via L∞-almost-periodicity of three-fold convolutions. This proof is
based on the fact that if A does not contain any nontrivial solutions to (3.1), then
1−3·A ∗ 1A ∗ 1A+A(0) = |A|, which is very small. Three-fold convolutions like this
are, however, fairly continuous functions: we shall deduce from a certain almost-
periodicity result that 1−3·A ∗ 1A ∗ 1A+A ∗ µV (0) is then also small for some large
subspace V . If |A + A| is large, a simple averaging then implies that A has a
density increment on a translate of V . If, on the other hand, |A+ A| is small, then
one is done by a similar, if slightly simpler, argument.

The relevant almost-periodicity result is the following, but note that this will be
superseded by a slightly more efficient and general version in Section 5.

THEOREM 3.2. Let ε ∈ (0, 1) and let A,M, L ⊆ Fn
q have µ(A), µ(M) > α.

Then there is a subspace V of codimension at most Cε−2 log(2/εα)2 log(2/α)2

such that
|1A ∗ 1M ∗ 1L(x + t)− 1A ∗ 1M ∗ 1L(x)| 6 ε|A||M |
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for all x ∈ G and t ∈ V . In particular,

|1A ∗ 1M ∗ 1L(0)− 1A ∗ 1M ∗ 1L ∗ µV (0)| 6 ε|A||M |.

Proof. Apply Theorem 3.1 with p = C log(2/α) and ε/2 to get a subspace V of
the required codimension such that

‖1A ∗ 1L(· + t)− 1A ∗ 1L‖p 6 1
2ε|A||L|1/p.

Then, for r with 1/r + 1/p = 1, Hölder’s inequality gives

‖1A ∗ 1M ∗ 1L(· + t)− 1A ∗ 1M ∗ 1L‖∞ 6 ‖1M‖r‖1A ∗ 1L(· + t)− 1A ∗ 1L‖p

6 1
2ε|A||M |(|L|/|M |)1/p,

whence the first claim is proved. The second follows from the triangle
inequality.

We now split into two cases, depending on whether the sumset A + A is large
or not.

Large sumset. In the large-sumset case, where µ(A+ A) > 1
2 , we shall make use

of the fact that 1−3·A ∗ 1A ∗ 1A+A(0) = |A| if A is free from solutions to (3.1),
which means that the convolution 1−3·A ∗ 1A ∗ 1(A+A)c takes a really large value.
Though perhaps not clear in this formulation, this argument was inspired by those
of [9, 11].

PROPOSITION 3.3. Let A ⊆ Fn
q have density α and size at least 8. Suppose

µ(A + A) > 1
2 and that A does not contain any nontrivial solutions to (3.1).

Then there is a subspace V of codimension at most C log(2/α)4 such that
1A ∗ µV (x) > 3

2α for some x.

Recall that 1A ∗µV (x) = |A∩ (x − V )|/|V |, and so the conclusion says that A
has massively increased density on some affine subspace of low codimension.

Proof. Apply Theorem 3.2 with M = −3 · A, L = A + A and ε = 1/8 to get a
subspace V of the required codimension such that

1−3·A ∗ 1A ∗ 1A+A ∗ µV (0) 6 1−3·A ∗ 1A ∗ 1A+A(0)+ 1
8 |A|2.

Since 1−3·A ∗ 1A ∗ 1A+A(0) = |A| 6 |A|2/8, we thus have

1−3·A ∗ 1A ∗ 1A+A ∗ µV (0) 6 1
4 |A|2,
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and so
1−3·A ∗ 1A ∗ 1(A+A)c ∗ µV (0) > 3

4 |A|2.
The left-hand side here is at most |A||(A+ A)c|‖1A ∗µV‖∞, and so we are done.

Small sumset. That one can obtain a good density increment for A when A+ A is
small is well known, and a result almost sufficing for our purposes is contained in
[25]; see, for example, Theorem 9.1 there. We shall however use the following.

PROPOSITION 3.4. Suppose A ⊆ Fn
q has density α and µ(A+A) 6 1

2 . Then there
is a subspace V of codimension at most C(log 2/α)4 such that 1A ∗ µV (x) > 3

2α

for some x.

Proof. Apply Theorem 3.2 with M = A, L = −(A + A) and ε = 1/4 to get a
subspace V of the required codimension such that

|1A ∗ 1A ∗ 1−(A+A)(0)− 1A ∗ 1A ∗ 1−(A+A) ∗ µV (0)| 6 1
4 |A|2.

But 1A ∗ 1A ∗ 1−(A+A)(0) = |A|2 since 1A ∗ 1A is supported on A + A, and so

1A ∗ 1A ∗ 1−(A+A) ∗ µV (0) > 3
4 |A|2.

Since the left-hand side here is at most |A||A+ A|‖1A ∗µV‖∞, the result follows.

Note that we did not need to assume that A was free of solutions to any
equations here.

Completing the proof: iterating. Combining these propositions, one immediately
obtains the following corollary.

COROLLARY 3.5. Let A ⊆ Fn
q have density α and size at least 8. Suppose A

does not contain any nontrivial solutions to (3.1). Then there is a subspace of
codimension at most C log(2/α)4 such that 1A ∗ µV (x) > 3

2α for some x.

We now simply iterate this corollary to complete the proof.

Proof of Theorem 1.5. If A ⊆ G := Fn
q has density α, size at least 8 and is free

of nontrivial solutions to (3.1), then Corollary 3.5 gives us a subspace V 6 G of
codimension at most C log(2/α)4 and an element x ∈ G for which

|(A − x) ∩ V | > 3
2α|V |,
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that is, a subspace in which A − x has density at least 3
2α. Note that A − x is

still free of nontrivial solutions to (3.1) by translation invariance. We then repeat
this argument with G replaced by V , and so on, obtaining solution-free sets of
increasing densities α j in spaces of lowering dimension n j , with α1 = α and
n1 = n. Assuming α j > 8q−n j at each stage, we thus have

n j+1 > n j − C log(2/α)4 > n − C j log(2/α)4,

and
α j+1 >

3
2α j > ( 3

2 )
jα.

Since the density cannot increase beyond 1, this process must terminate with some
j 6 C log(2/α). If the claimed bound α 6 exp(−cn1/5) does not hold then we
have n j > n − C j log(2/α)4 > n/2 by the time of termination, and so running
out of dimensions is not a reason for the process to terminate. Thus, we must have
α j < 8q−n j . But this is easily seen to imply the claimed bound anyway, and we
are done.

Before we go on to give our second proof, let us make a quick remark about the
types of solutions we have considered.

REMARK 3.6. In the statement of Theorem 1.5, we forbade all nontrivial
solutions to (3.1) in A, these being any nonconstant quadruples (x, y, z, w) for
which x + y + z = 3w. This has the effect of forbidding A from containing
solutions to certain other equations as well, such as nontrivial three-term
arithmetic progressions – if x, y, z are distinct and lie in arithmetic progression,
then the quadruple (x, y, z, y) solves our equation. Though we did not pursue this
issue above for the sake of clarity of exposition, let us mention that incorporating
a short additional argument in fact shows that the same bound holds if one
only disallows solutions where all the variables are distinct, so that one is only
disallowing solutions to this equation and not any ‘subequations’.

Second proof: via properties of three-fold sumsets. The following property of
three-fold sumsets encodes the key to this proof.

PROPOSITION 3.7. Let η ∈ (0, 1) and let A, B ⊆ Fn
q be sets of densities

α, β respectively. Then there is a subspace V of codimension at most
C log(2/ηβ) log(2/α)3 and a set X ⊆ B with |X | > 0.99|B| such that

|(x + V ) ∩ (B + A − A)| > (1− η)|V |
for every x ∈ X.
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Another way of putting the conclusion is that 1B+A−A ∗µV (x) > 1−η for each
x ∈ X .

Proof. Apply Theorem 3.1 with p = C log(2/ηβ), ε = 1/2 and L = B − A to
get a subspace V of the required codimension such that

‖1A ∗ 1B−A(· + t)− 1A ∗ 1B−A‖p 6 1
2 |A||B − A|1/p

for each t ∈ V .
Let X consist of all x ∈ B such that |(x + V )∩ (B + A− A)| > (1− η)|V |, so

that if x /∈ X then 1A ∗ 1B−A(x + t) = 0 for more than η|V | elements t ∈ V . Then

η|V |
∑

x∈B\X
1A∗1B−A(x)p <

∑
t∈V

‖1A∗1B−A(·+t)−1A∗1B−A‖p
p 6

1
2p |A|p|B−A||V |.

But 1A ∗ 1B−A(x) = |A| for each x ∈ B, and so this implies that

|B \ X | < 1
2p η
−1|B − A| 6 0.01|B|,

which completes the proof.

COROLLARY 3.8. Let η ∈ (0, 1) and let A, B,C ⊆ Fn
q have µ(A), µ(C) > α

and µ(B) > β. Then there is a subspace V of codimension at most
C log(2/ηβ) log(2/α)3, an element t ∈ Fn

q and a set X ⊆ B+t with |X |> 0.99|B|
such that

|(x + V ) ∩ (A + B + C)| > (1− η)|V |
for every x ∈ X.

Proof. Since
∑

t 1A ∗ 1C(t) = |A||C |, there is some t such that µ(A ∩ (t − C))
> α2. Applying Proposition 3.7 with this intersection instead of A completes the
proof.

Using this, we give a second proof of Corollary 3.5, finding a good density
increment.

Second proof of Corollary 3.5. Partition A = A1 ∪ A2 with |A1| = d 4
5 |A|e and

apply Corollary 3.8 with η := α/2, B := C := −A1 and 3 · A2 in place of A. This
gives us a subspace V of codimension at most C log(2/α)4, an element t and a set
X ⊆ t − A with |X | > 3

4 |A| such that

|(x + V ) ∩ (3 · A2 − A1 − A1)| > (1− η)|V | for each x ∈ X .
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Since A does not contain any nontrivial solutions to (3.1), A and 3 · A2− A1− A1

are disjoint, whence

|(x + V ) ∩ A| 6 1
2α|V | for each x ∈ X . (3.2)

Since V is a subspace, this in fact holds for all x ∈ X + V . How large is this
sumset? Well, if 1X ∗ µV (x) > 3

2α for some x , then we would have a density
increment of the kind we are after, so let us assume that 1X ∗ µV (x) < 3

2α for
all x . Then

|X | =
∑

x∈X+V

1X ∗ µV (x) < 3
2α|X + V |,

and so (3.2) holds for at least |X + V | > 1
2 |G| elements x . In other words,

1A ∗ µV (x) 6 1
2α for at least half of the elements of the group. Since the average

of this function over the whole group is α, we must have 1A ∗ µV (x) > 3
2α for

some x , and so we are done.

Since Theorem 1.5 followed directly from Corollary 3.5, this completes the
proof.

Extending the arguments. Both of these proofs of Theorem 1.5 can be extended
to handle the case of sets of integers using the machinery of regular Bohr sets
pioneered by Bourgain [5], each with their own sets of difficulties. However, it
turns out this process is more straightforward for the first proof, and so it is this
that we shall present, starting in the next section with a review of the basic theory
surrounding Bohr sets. The second proof is however very much related to the
proofs we shall give for the results on structures in sums of sparse sets, as should
become apparent.

4. Bohr sets and their elementary properties

When one wants to perform a density increment argument of the type we
have just used in groups without a rich subgroup structure, it is by now a rather
established practice to turn to Bohr sets as a natural substitute for subspaces. In
an abelian group G, we define these in terms of the dual group Ĝ of characters,
consisting of homomorphisms from G to C× with the group operation given by
pointwise multiplication.

DEFINITION 4.1. Let Γ ⊆ Ĝ and let ρ > 0. We define the Bohr set on these
data by

Bohr(Γ, ρ) = {x ∈ G : |γ (x)− 1| 6 ρ for all γ ∈ Γ }.
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We refer to |Γ | as the rank of the Bohr set, and ρ as its radius. (Note that
these quantities are not well defined in terms of just the set itself, but we think
of these data as being included in the definition of the Bohr set.) We say that
Bohr(Γ ′, ρ ′) 6 Bohr(Γ, ρ) is a sub-Bohr set if Γ ′ ⊇ Γ and ρ ′ 6 ρ; note,
in particular, that this implies containment as sets. We shall frequently need to
scale the radii of our Bohr sets: if B = Bohr(Γ, ρ) and δ > 0, then we write
Bδ = Bohr(Γ, δρ).

We refer the reader to Section 4.4 in the book [28] of Tao and Vu for the proofs
of the following lemmas and for more background. (The constants appearing here
are somewhat different to those in [28], as we have defined Bohr sets in terms of
quantities of the form |z − 1| rather than arg(z).)

LEMMA 4.2. Let Γ ⊆ Ĝ be a set of d characters, let ρ ∈ [0, 2], and let
B = Bohr(Γ, ρ). Then we have the size estimate

|B| > (ρ/2π)d |G|,

the doubling estimate
|B2| 6 6d |B|,

and, for δ ∈ [0, 1], the decay estimate

|Bδ| > (δ/2)3d |B|.

In particular, |B+ B| 6 6d |B|, since Bδ+ Bε ⊆ Bδ+ε by the triangle inequality.
Thus, Bohr sets have fairly small doubling if d is small. Subspaces, however,
enjoy the stronger property that |V + V | = |V | regardless of dimension, and
this discrepancy in doubling constants reflects an underlying issue that means our
argument becomes terribly inefficient if we simply try to replace subspaces with
Bohr sets. In giving a proof of Roth’s theorem with strong bounds, Bourgain [5]
showed how to work around this issue, namely by working with pairs of Bohr sets
(B, Bδ) with δ small, for which |B+ Bδ| 6 |B1+δ|. A priori this need not be close
to |B|, but the following property ensures this.

DEFINITION 4.3 (Regularity). We say that a Bohr set B of rank d is regular if

1− 12d|δ| 6 |B1+δ|
|B| 6 1+ 12d|δ|

whenever |δ| 6 1/12d .
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The constant 12 here is of course not particularly important, but we include it
for definiteness. Now, not all Bohr sets are regular, but it is a consequence of the
doubling estimate |B| 6 6d |B1/2| that growth must be somewhat limited around
some slight rescaling of B:

LEMMA 4.4. If B is a Bohr set, then there is a δ ∈ [ 12 , 1] for which Bδ is regular.

If B is regular of rank d we have the useful property that |B + Bδ| 6 2|B|
whenever δ 6 1/12d . We also have the following useful consequence of
regularity, resting simply on an application of the triangle inequality.

LEMMA 4.5. If B is a regular Bohr set of rank d and B ′ ⊆ Bδ with δ 6 ε/24d,
then

‖µB ∗ µB ′ − µB‖L1(G) 6 ε.

We finally require an arithmetic property of Bohr sets, which follows from the
size estimate in Lemma 4.2 and the inclusion k B1/k = B1/k + · · · + B1/k ⊆ B.

LEMMA 4.6. Let N be a prime and let B ⊆ ZN be a Bohr set of rank d > 1
and radius ρ ∈ [0, 2]. Then B contains an arithmetic progression of size at least
(1/2π)ρN 1/d .

5. L∞-almost-periodicity relative to Bohr sets

To carry out the strategy of Section 3 with Bohr sets in place of groups, the first
thing we need to do is prove an appropriate analogue of Theorem 3.2. Of course,
not only do we need to replace the subspace V in the conclusion with a Bohr set –
which is entirely straightforward – but we are only allowed to assume density in a
Bohr set rather than in a group. It turns out that this is also fairly straightforwardly
achievable.

Almost-periodicity with dense sets. Recall Theorem 2.1, the L p-almost-
periodicity result for two-fold convolutions. From this we argue straightforwardly
as with Theorem 3.2 to obtain the following L∞-almost-periodicity result for
three-fold convolutions.

THEOREM 5.1. Let ε ∈ (0, 1) and k ∈ N be parameters. Let A,M, L , S be finite
subsets of an abelian group. Suppose |A+S|6 K |A| and η := |M |/|L|6 1. Then
there is a set T ⊆ S with |T | > exp(−Ck2ε−2 log(2/η) log(2K ))|S| such that

‖1A ∗ 1M ∗ 1L(· + t)− 1A ∗ 1M ∗ 1L‖∞ 6 ε|A||M | for all t ∈ kT − kT .
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Proof. Apply Theorem 2.1 with parameters ε/2 and p to be specified to obtain
a set T of almost-periods for 1A ∗ 1L . By Hölder’s inequality we then have, for
1/p + 1/q = 1 and any t ∈ kT − kT ,

‖1A ∗ 1M ∗ 1L(· + t)− 1A ∗ 1M ∗ 1L‖∞ 6 ‖1M‖q‖1A ∗ 1L(· + t)− 1A ∗ 1L‖p

6 1
2ε|A||M |(|L|/|M |)1/p.

Picking p = 3 log(2|L|/|M |) yields the result.

REMARK 5.2. Note that the set T one obtains does not in fact depend on M but
only on |M |/|L|. Also, since the methods of [10] worked for nonabelian groups, a
version of the above result holds for arbitrary groups, and one could also replace
1M and 1L by functions more general than indicator functions, but we shall only
apply it in the above case.

Finally, we shall bootstrap this to find not only a large set of translates, but a
structured set: a Bohr set of translates. The price we shall pay is that we shall need
to assume that the set A interacts nicely with a Bohr set and not just an arbitrary
set S. The main idea of the proof is to couple Theorem 5.1 with Chang’s theorem
on the structure of large spectra, which was one of the main insights that led to the
powerful results [25] of Sanders. To state this properly we shall need the Fourier
transform; the results of the following subsection are the only ones in this paper
that appeal to Fourier analysis.

Almost-periodicity with Bohr sets. For a function f : G → C on a finite abelian
group G, we define the Fourier transform f̂ : Ĝ → C on the dual group Ĝ by

f̂ (γ ) :=
∑
x∈G

f (x)γ (x).

Writing Ex∈X = |X |−1 ∑
x∈X , the Fourier inversion formula, Parseval’s identity

and the convolution identity then take the form

f (x) = Eγ∈Ĝ f̂ (γ )γ (x),∑
x∈G | f (x)|2 = Eγ∈Ĝ | f̂ (γ )|2, and

f̂ ∗ g(γ ) = f̂ (γ )ĝ(γ ).

Finally, for a set X ⊆ G, write

Specδ(µX ) := {γ ∈ Ĝ : |µ̂X (γ )| > δ}
for the δ-large spectrum of µX = 1X/|X |. See [28] for more on all of this.
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Chang’s theorem [28, Lemma 4.36] says that the large spectrum Specδ(µX )

is ‘low-dimensional’: it is contained in the {−1, 0, 1}-span of a set of at most
Cδ−2 log(1/µG(X)) characters. An immediate and useful consequence is that all
the characters in Specδ(µX ) can be approximately annihilated by a low-rank Bohr
set if X is relatively dense in G. Sanders proved an efficient version of such a
consequence when X is a dense subset of a Bohr set rather than the group; the
following is [21, Proposition 4.2].

PROPOSITION 5.3 (Chang–Sanders). Let δ, ν ∈ (0, 1]. Let G be a finite abelian
group, let B = Bohr(Γ, ρ) ⊆ G be a regular Bohr set of rank d and let X ⊆ B.
Then there is a set of characters Λ ∈ Ĝ and a radius ρ ′ with

|Λ| � δ−2 log(2/µB(X)) and ρ ′ � ρνδ2/d2 log(2/µB(X))

such that

|1− γ (t)| 6 ν for all γ ∈ Specδ(µX ) and t ∈ Bohr(Γ ∪Λ, ρ ′).

The aforementioned bootstrapping can now take place via a standard argument.

THEOREM 5.4 (L∞-almost-periodicity with Bohr sets). Let ε ∈ (0, 1). Let A,
M, L be subsets of a finite abelian group G, and let B ⊆ G be a regular Bohr
set of rank d and radius ρ. Suppose |A + S| 6 K |A| for a subset S ⊆ B with
µB(S) > σ > 0, and assume η := |M |/|L| 6 1. Then there is a regular Bohr set
B ′ 6 B of rank at most d + d ′ and radius at least ρεη1/2/d2d ′, where

d ′ � ε−2 log2(2/εη) log(2/η) log(2K )+ log(1/σ),

such that

‖1A ∗ 1M ∗ 1L(· + t)− 1A ∗ 1M ∗ 1L‖∞ 6 ε|A||M | for all t ∈ B ′.

In particular,

‖1A ∗ 1M ∗ 1L ∗ µB ′ − 1A ∗ 1M ∗ 1L‖∞ 6 ε|A||M |.

Proof. Begin by applying Theorem 5.1 to 1A ∗ 1M ∗ 1L with parameters ε and
k := dC log(2/εη)e to obtain a set T ⊆ S with

µB(T ) > exp(−Cε−2k2 log(2/η) log(2K ))σ

such that

‖1A ∗ 1M ∗ 1L(· + t)− 1A ∗ 1M ∗ 1L‖∞ 6 ε|A||M | for all t ∈ kT − kT .
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Fix some z ∈ T and set X = T − z, so that the above inequality holds for all
t ∈ k X . Thus, by the triangle inequality,

‖1A ∗ 1M ∗ 1L ∗ µ(k)X − 1A ∗ 1M ∗ 1L‖∞ 6 ε|A||M |,

where µ(k)X := µX ∗ · · · ∗ µX with k copies of µX . It thus suffices to establish the
theorem with 1A ∗ 1M ∗ 1L ∗ µ(k)X in place of 1A ∗ 1M ∗ 1L , and so we switch now
to this.

Noting that translating X does not affect the conclusion of Proposition 5.3,
apply this proposition to T = X + z with parameters δ = 1/2 and ν = εη1/2

together with Lemma 4.4 to get a regular Bohr set B ′ 6 B of the required rank
and radius such that

|1− γ (t)| 6 εη1/2 for all γ ∈ Spec1/2(µX ) and t ∈ B ′.

For any x ∈ G and t ∈ B ′ we then have, by the Fourier inversion formula, triangle
inequality and convolution identity,

|1A ∗ 1M ∗ 1L ∗ µ(k)X (x + t)− 1A ∗ 1M ∗ 1L ∗ µ(k)X (x)|
6 Eγ∈Ĝ |1̂A(γ )||1̂M(γ )||1̂L(γ )||µ̂X (γ )|k |γ (t)− 1|. (5.1)

For each term in this average, consider whether γ ∈ Spec1/2(µX ) or not. If
γ ∈ Spec1/2(µX ) we have |γ (t) − 1| 6 εη1/2, and if not then |µ̂X (γ )|k 6 1/2k

6 εη1/2. Thus (5.1) is at most twice

εη1/2 Eγ∈Ĝ |1̂A(γ )||1̂M(γ )||1̂L(γ )|.

Using the trivial inequality |1̂A(γ )| 6 |A| and Cauchy–Schwarz plus Parseval à
la

Eγ∈Ĝ |1̂M(γ )||1̂L(γ )| 6 (Eγ∈Ĝ |1̂M(γ )|2)1/2(Eγ∈Ĝ |1̂L(γ )|2)1/2 = |M |1/2|L|1/2

finishes the proof, after replacing ε with ε/4.

REMARK 5.5. The regime in which the above argument is set up to be efficient
is one in which A is thought of as extremely small, but structured in the sense of
not expanding much under addition to a Bohr set, M as being of ‘medium’ size
and L as being large. The main utility of this result over previous Fourier-analytic
ones of this sort, then, stems from the fact that the dependence on |L|/|M | in the
rank of B ′ is only polylogarithmic rather than polynomial.
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6. Obtaining density increments on Bohr sets

The following proposition drives the density increment argument.

PROPOSITION 6.1. Let G be a finite abelian group of order not divisible by 3,
let B ⊆ G be a regular Bohr set of rank d and radius ρ, and let A ⊆ B have
relative density µB(A) > α. Assume that |B| > (Cd/α)3d . If A does not contain
any nontrivial solutions to x + y + z = 3w, then A has relative density at least
5
4α on a translate of a Bohr set B ′ 6 B of rank at most d + d ′ and radius at least
ρα3/2/d5d ′, where d ′ � log(2/α)4.

As in the model case, we prove this differently in two cases depending on
whether a particular sumset is large or not. In each case, we make the further
assumption that our given set A is dense also in a narrower sub-Bohr set.

The large-sumset, solution-free case.

LEMMA 6.2. Let G be a finite abelian group of order not divisible by 3, let B ⊆ G
be a regular Bohr set of rank d and radius ρ, and let A ⊆ B have relative density
µB(A) > α. Let B ′ := Bδ be a regular sub-Bohr set with δ := 1/Cd such that
|B1+3δ| 6 1.01|B|, and assume that A′ := A ∩ B ′ satisfies µB ′(A′) > α and
|A + A′| > |A|/2α. If |A| > C and A does not contain any nontrivial solutions
to x + y + z = 3w, then ‖1A ∗µT‖∞ > 1.8α for some Bohr set T 6 B of rank at
most d + d ′ and radius at least ρα1/2/d4d ′, where d ′ � log4(2/α).

Proof. Define S := 3·B ′ν where ν := 1/Cd , so that (using the assumption on |G|)
S is a Bohr set of rank d and radius at least ρ/Cd2, and note that, by regularity,

|3 · A′ + S| 6 |B ′(1+ν)| 6 2|B ′| 6 2
α
|3 · A′|. (6.1)

Apply Theorem 5.4 with −3 · A′ in place of A, S as defined above in place of
both B and S, M := A, L := B1+3δ \ (A + A′) and ε := 1

40 . Our assumption
|A + A′| > |A|/2α implies that

|L| 6 1.01|B| − 1
2α
|A| 6 0.501

α
|A|, (6.2)

and so the parameter η of that theorem is certainly at least α. We may further take
K = 2/α by (6.1), and so we get a Bohr set T 6 S of rank at most d + d ′ and
radius at least ρα1/2/d4d ′, where d ′ 6 C log4(2/α), such that

‖1−3·A′ ∗ 1A ∗ 1L ∗ µT − 1−3·A′ ∗ 1A ∗ 1L‖∞ 6 1
40 |A′||A|.
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Now, since A does not contain any nontrivial solutions to x+ y+z = 3w, we have

1−3·A′ ∗ 1A ∗ 1A+A′(0) = |A′|.
Thus

1−3·A′ ∗ 1A ∗ 1L ∗ µT (0) > 1−3·A′ ∗ 1A ∗ (1B1+3δ − 1A+A′)(0)− 1
40 |A′||A|

= 39
40 |A′||A| − |A′|

> 19
20 |A′||A|,

provided |A| > 40. By the pigeonhole principle, then, there must be some element
x for which

1A ∗ µT (x) > 19
20 |A|/|L| > 1.8α,

by (6.2).

The small-sumset case. Again, the case in which A + A′ is small can be handled
in a slightly simpler fashion.

LEMMA 6.3. Let A ⊆ G, let B ⊆ G be a regular Bohr set of rank d and radius ρ,
and let A′ ⊆ B have relative density µB(A′) > α. If |A + A′| 6 |A|/2α, then
‖1A ∗ µT‖∞ > 1.8α for some Bohr set T 6 B of rank at most d + d ′ and radius
at least ρα1/2/d3d ′, where d ′ � log4(2/α).

Proof. Let S = Bν where ν := 1/Cd, so that

|A′ + S| 6 |B1+ν | 6 2
α
|A′|.

Applying Theorem 5.4 with A′ in place of A, this set S, M := A, L := −A − A′

and ε := 1
10 , we may take η > 2α and K = 2/α to get a Bohr set T 6 S of rank

at most d + d ′ and radius at least ρα1/2/d3d ′ where d ′ 6 C log4(2/α) such that

‖1A′ ∗ 1A ∗ 1−A−A′ ∗ µT − 1A′ ∗ 1A ∗ 1−A−A′‖∞ 6 1
10 |A′||A|.

Now, 1A′ ∗ 1A ∗ 1−A−A′(0) = |A′||A| since 1A′ ∗ 1A is supported on A′+ A, and so

1A′ ∗ 1A ∗ 1−A−A′ ∗ µT (0) > 9
10 |A′||A|.

Pigeonholing and using the assumption on |A+A′|, there is thus some x for which

1A ∗ µT (x) > 9
10 |A|/|A + A′| > 1.8α.
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Rescaling and putting the cases together. We need one final tool in order to put
the previous two lemmas together to prove Proposition 6.1, namely a simple
averaging argument due to Bourgain [5] that, in practice, allows us to assume
that a dense subset A of a Bohr set B is also large on a sub-Bohr set Bδ for some
not-too-small δ.

LEMMA 6.4. Let B be a regular Bohr set of rank d, let A ⊆ B have relative
density α, and let B ′, B ′′ ⊆ Bδ where δ 6 α/Cd. Then either:

(i) there is an x ∈ B such that 1A ∗ µB ′(x) > 7
10α and 1A ∗ µB ′′(x) > 7

10α; or

(ii) ‖1A ∗ µB ′‖∞ > 5
4α or ‖1A ∗ µB ′′‖∞ > 5

4α.

Proof. Since B is regular, picking the constant C large enough yields

|1A ∗ µB ∗ µB ′(0)− 1A ∗ µB(0)| 6 ‖µB ∗ µB ′ − µB‖1 6
1

40α

by Lemma 4.5, and similarly for B ′′. Since 1A ∗µB(0) = µB(A) = α, this implies
that

Ex∈B (1A ∗ µB ′(x)+ 1A ∗ µB ′′(x)) > (2− 1
20 )α,

and so there exists x ∈ B such that 1A ∗ µB ′(x) + 1A ∗ µB ′′(x) > (2 − 1
20 )α. Fix

such an x . If we are not in the second case of the conclusion, we then have

1A ∗ µB ′(x) > (2− 1
20 )α − 5

4α = 7
10α,

and similarly for B ′′, and so we are done.

Proof of Proposition 6.1. We start by rescaling our Bohr set so that A is large
at two scales simultaneously: apply Lemma 6.4 with δ := α/Cd picked so that
B ′ := Bδ is regular, and with B ′′ := B ′δ′ where δ′ := 1/Cd is picked so that this is
regular and |B ′1+3δ′ | 6 1.01|B ′|. If we are in the second case of the conclusion of
that lemma, then we have a density increment on a translate of a Bohr set of rank
d and radius at least ρα/Cd2, in which case we are done. So assume instead that
we get an element x ∈ B such that

1A ∗ µB ′(x), 1A ∗ µB ′′(x) > 7
10α,

and let A′ := (A − x) ∩ B ′, A′′ := (A − x) ∩ B ′′; these sets thus have relative
densities at least α′ := 7

10α in their respective Bohr sets. Note by translation
invariance that A′ also does not contain any nontrivial solutions to our equation.

Now, if |A′ + A′′| 6 |A′|/2α′, then we apply Lemma 6.3 with (A′, A′′, B ′′) in
place of (A, A′, B) to get that

‖1A ∗ µT‖∞ > ‖1A′ ∗ µT‖∞ > 1.8α′ > 5
4α,

https://doi.org/10.1017/fms.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.2


T. Schoen and O. Sisask 22

where T is a Bohr set of rank at most d + d ′ and radius at least ρα3/2/d5d ′, with
d ′ � log4(2/α), and so we are done.

If, on the other hand, |A′ + A′′| > |A′|/2α′, then we apply Lemma 6.2 with
(A′, A′′, B ′) in place of (A, A′, B) to get precisely the same conclusion, provided
that |A′| > C . A quick computation using Lemma 4.2 shows that this is ensured
by our assumption that |B| > (Cd/α)3d , and so we are done.

7. The iterative argument

We now iterate the density increment result of the preceding section to prove
our theorem.

THEOREM 7.1. Let G be a finite abelian group of order N not
divisible by 3. If A ⊆ G does not contain any nontrivial solutions to
x + y + z = 3w, then

|A| 6 N
exp(c(log N )1/7)

.

Proof. Initialize A1 = A, B(1) = Bohr({1}, 2) = G, d1 = 1, ρ1 = 2 and α1 =
α = |A|/|G|. We run the following iterative scheme until the condition required
for doing so fails.

If |B( j)| > (Cd j/α j)
3d j , then we apply Proposition 6.1 to our sets and

parameters to produce a new Bohr set B( j+1) 6 B( j) of rank d j and radius ρ j

satisfying

d j+1 6 d j + C log4(2/α j) 6 C j log4(2/α),

ρ j+1 > ρ jα
3/2
j /Cd5

j log4(2/α)

and a set A j+1 = (A j − x j) ∩ B( j+1) ⊆ B( j+1) (for some x j ) of relative density

α j+1 >
5
4α j > ( 5

4 )
jα.

Note that A j+1 has no nontrivial solutions to our equation by translation
invariance.

Since the density of a set can never increase beyond 1, the growth of the α j

implies that we must no longer be able to iterate this process when j = s for
some s 6 C log(2/α). Thus, we must have |B(s)| < (Cds/αs)

3ds . On the other
hand, by Lemma 4.2 we have |B(s)| > (ρs/2π)ds |G|. Putting these together we
certainly have

|G| < (Cds/ρsαs)
3ds .
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Now ds 6 C log5(2/α), ρs > (cα)Cs and αs > α; putting these bounds in gives

|G| < exp(C log7(2/α)),

which yields the bound of the theorem upon rearranging.

REMARK 7.2. With minor modifications, one can of course also prove a version
of this theorem with A simply being dense in a Bohr set rather than the full group;
we omit the details.

8. Additive structures in sums of sparse sets

We turn now to the questions of structures in sumsets, proving Theorems 1.6
and 1.7. This will be somewhat easier work than in the previous few sections as
the arguments are iteration-free and so do not require the machinery associated
with regular Bohr sets. However, we do require the analogue of Theorem
3.1 for arbitrary finite abelian groups, this being another specialization of
[7, Theorem 7.4]:

THEOREM 8.1. Let p > 2 and ε ∈ (0, 1). Let G be a finite abelian group and let
A, L ⊆ G be sets with µ(A) > α. Then there is a Bohr set T of rank at most

d := Cpε−2 log(2/εα)2 log(2/α)

and radius at least εα1/2/d such that, for each t ∈ T ,

‖1A ∗ 1L(· + t)− 1A ∗ 1L‖p 6 ε|A||L|1/p.

Using this in place of Theorem 3.1, the following can be proved in precisely
the same way as Corollary 3.8.

PROPOSITION 8.2. Let η ∈ (0, 1) and let A, B,C ⊆ G have densities α,
β, γ respectively. Then there is a Bohr set T ⊆ G of rank at most d :=
C log(2/ηβ) log(2/αγ )3 and radius at least (αγ )1/2/d, and an element t ∈ G,
such that for any V ⊆ T there is a set X ⊆ B + t with |X | > 0.99|B| such that

|(x + V ) ∩ (A + B + C)| > (1− η)|V | for every x ∈ X.

Note that if C = −A then we can reduce the radius to α1/2/d and take t = 0.

PROPOSITION 8.3. Let A, B,C be sets of densities α, β, γ respectively in a finite
abelian group G, and let p > 1. Then there is a Bohr set T ⊆ G of rank at
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most d := Cp(log 2/αγ )3 and radius at least (αγ )1/2/d such that, for any subset
V ⊆ T of size at most β · 2p, there is a set X ⊆ B of size |X | > 0.99|B| such that
a translate of X + V is contained in A + B + C.

Proof. This follows immediately from the preceding proposition on taking
η = 1/(β 2p+1), so that (1− η)|V | > |V | − 1.

One can also prove this directly from Theorem 8.1 following the proof of
[7, Theorem 1.4] but taking into account the very large ‘higher energy’ of
1A ∗ 1B−A; this is, of course, very much related to the proof of Proposition 3.7.

We now have some easy corollaries. Theorem 1.6 follows immediately from:

THEOREM 8.4. Let A, B,C ⊆ [N ] be sets of densities α, β, γ . Then A+ B + C
contains X + P where X ⊆ B has |X | > 0.99|B| and P is an arithmetic
progression of length at least

exp
(

c
(

log N
log3(2/αγ )

)1/2

− log(1/αβγ )
)
.

Proof. By the standard trick of embedding [N ] into ZN ′ for N ′ a prime between
6N and 12N , it suffices to prove the statement with [N ] replaced by ZN for N a
prime, so we assume this set-up instead.

Now, apply Proposition 8.3 with p := C((log N )/(log3(2/αγ )))1/2 to obtain a
set X ⊆ B and a Bohr set T of rank d 6 Cp log3(2/αγ ) and radius at least cαγ/d
satisfying that theorem’s conclusion. By Lemma 4.6, T contains an arithmetic
progression of length at least (cαγ/d)N 1/d . A quick calculation shows that the
claimed arithmetic progression has length shorter than both this and β ·2p, whence
we are done.

Note that this result can be nontrivial for α and γ as small as exp(−c(log N )1/5)
and for β even as small as exp(−c(log N )1/2). Also, since Bohr sets are extremely
rich in additive structure, one can of course replace P in the conclusion by other
kinds of sets, such as generalized arithmetic progressions, which can then be
much larger. Just measuring the length of a single progression, as we have done
above, is nevertheless a simple and useful measure of the strength of the method.

In the finite field world we obtain the following generalization of Theorem 1.7.

THEOREM 8.5. Let A, B,C ⊆ Fn
q be sets of densities α, β, γ . Then A + B + C

contains X + V where X ⊆ B has |X | > 0.99|B| and V is an affine subspace of
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dimension at least (
cn

log3(2/αγ )
− log(1/β)

)
/log q.

Proof. This follows just as before: applying Proposition 8.3 with p :=
cn/log3(2/αγ ), we obtain a large set X ⊆ B and a subspace T 6 Fn

q of
dimension at least n − Cp log3(2/αγ ) such that A + B + C contains a translate
of X + V for any subset V ⊆ T of size less than β · 2p. Noting that this is less
than |T | and letting V be a subspace of T of size between β · 2p/q and β · 2p then
does the job.

Note that if q = 5, say, this can be nontrivial for α, γ as small as exp(−cn1/3)

and for β as small as 5−cn – in other words, |B| can be as small as a power of |G|
in this set-up. One can also reach such densities in the [N ] world; see the next
section.

REMARK 8.6. In the case that A or C has very large density, the above results
follow from those known for two-fold sumsets, with X being the whole of B even.
The point here is thus that one can deal with much sparser sets, and the cost is
only that one gets slightly fewer translates of the structure in A + B + C .

9. Concluding remarks

Other equations. We only dealt with the equation x+ y+z = 3w in this paper, but
it should be clear that one can deal with a general translation invariant equation
c1x + c2 y + c3z + c4w = 0 in precisely the same way, at least in the finite field
setting. In the more general setting, one needs to make some small alterations
related to the radii of the Bohr sets involved, but as in the former case the main
difficulty is notational. A similar remark applies to equations in five variables,
where precisely the same bounds hold.

Lower bounds in finite fields. What is the largest size of a subset of Fn
5 with no

nontrivial solutions to x + y + z = 3w? Just as for three-term progressions, we
do not know of a Behrend-type example in this setting; indeed the best we know
of comes from taking products of examples for small n, resulting in sets of size
around θ n for some θ < 5.

Small doubling instead of density. Clearly, one could work with small-sumset
conditions instead of density conditions in many of the proofs in this paper, but
there is not much incentive to do so in view of the nature of the bounds and
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the presence of effective ‘modelling lemmas’ in the settings of interest; see for
example [16, Section 6].

Lower densities for the A + B + C problem in the integers. Theorem 8.4 found
arithmetic progressions in A + B + C where one of the sets could have density
as low as exp(−c(log N )1/2). To reach even lower densities, one can use the
argument underlying [10, Theorem 1.9], again adding the idea of exploiting the
higher energy of 1A ∗ 1B−A:

THEOREM 9.1. Let A, B,C ⊆ [N ] be sets of densities α, β, γ . Then A+ B + C
contains an arithmetic progression of length at least

exp
(

c
(

log N
log(2/αγ )

)1/4

− log(1/β)
)
.

This is worse than the bound in Theorem 8.4 for α = β = γ , but for certain
density combinations it actually wins out. For example, it allows one to take α
and γ to be as small as N−c provided β is a constant. (Note, however, that in
this particular range one is guaranteed constant-length progressions already in
A + C , as follows from [8].) An answer to the following question would thus be
interesting.

QUESTION 9.2. Suppose A, B ⊆ [N ] have densities N−c and C ⊆ [N ] has
density exp(−C(log N )2/3). Must A + B + C contain an arithmetic progression
of length tending to infinity with N?

Correlations for 2A, 3A and 4A. Following on from the discussion of subspaces
in sumsets in the introduction, let us offer this perhaps illustrative comparison
of results on correlations of 2A, 3A and 4A with subspaces, where A ⊆ Fn

q has
density α.

• 2A contains 1 − ε of an affine subspace of codimension at most
Cε−2−o(1) log(1/α)4.

• 3A contains 1 − ε of an affine subspace of codimension at most
C log(1/εα) log(1/α)3.

• 4A contains all of an affine subspace of codimension at most C log(1/α)4.

The first and last bullets follow from Sanders’s work [25] (and directly from
Theorem 3.2), and the middle one from Proposition 3.7. (Note also that the last
bullet follows from either of the other two by inclusion–exclusion.) These results
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focus on the small density case: when α is large some prior results can offer better
bounds; for example, for Fn

2 Sanders showed in [21] that 2A contains 1− ε of an
affine subspace of codimension at most Cα−2 log(1/ε), and codimension at most
Cα−1 log(1/ε) in [22].

However, it is far from clear where the truth lies for these results – not only
in terms of the exponents on the logarithms but also in the qualitative differences
between 3A and 4A. It may very well be that the result for 4A actually holds for
3A, as would have been expected prior to [25], and any proof of this is likely to be
useful in proving Behrend-shape bounds for Roth’s theorem itself. On the other
hand, any demonstrations of a genuine difference between 3A and 4A, or three-
and four-variable equations, say, would also be very interesting.
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