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Abstract. We show that the spherical subalgebra Uk,c of the rational Cherednik
algebra associated to Sn � C�, the wreath product of the symmetric group and the
cyclic group of order �, is isomorphic to a quotient of the ring of invariant differential
operators on a space of representations of the cyclic quiver of size �. This confirms
a version of [5, Conjecture 11.22] in the case of cyclic groups. The proof is a
straightforward application of work of Oblomkov [12] on the deformed Harish–
Chandra homomorphism, and of Crawley–Boevey, [3] and [4], and Gan and Ginzburg
[7] on preprojective algebras.
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1. Introduction.

1.1. The representation theory of symplectic reflection algebras has links with
a number of subjects including algebraic combinatorics, resolutions of singularities,
Lie theory and integrable systems. There is a family of symplectic reflection algebras
associated to any symplectic vector space V and finite subgroup � ≤ Sp(V ), but a
simple reduction allows one to study those subgroups � which are generated by
symplectic reflections (i.e. by elements whose set of fixed points is of codimension
two in V ). This essentially focuses attention on two cases:

(1) � = W , a finite complex reflection group, acting on V = h ⊕ h∗ where h is a
reflection representation of W ;

(2) � = Sn � K , where K is a finite subgroup of SL2(�), acting naturally on (�2)n.

The representation theory in the first case is mysterious at the moment: several
important results are known but there is no general theory yet. On the other hand a
geometric point of view on the representation theory in the second case is beginning to
emerge. A key fact is that in this case the singular space V/� admits a crepant resolution
of singularities: the representation theory of the symplectic reflection algebra is then
expected to be closely related to the resolution. In the case � = Sn (i.e. K is trivial)
there are two approaches to this: the first is via noncommutative algebraic geometry [8]
the second via sheaves of differential operators [7]. In this paper we extend the second
approach to the groups � = �n = Sn � C�.
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146 IAIN GORDON

1.2. To state our result we need to introduce a little notation here. Let Q be the
cyclic quiver with � vertices and cyclic orientation. Choose an extending vertex (in this
case any vertex) 0. Then let Q∞ be the quiver obtained by adding one vertex named ∞
to Q that is joined to 0 by a single arrow.

We shall consider representation spaces of these quivers. Let δ = (1, 1, . . . ,1) be
the affine dimension vector of Q, and set ε = e∞ + nδ, a dimension vector for Q∞.
Let Rep(Q, nδ) and Rep(Q∞, ε) be the representation spaces of these quivers with the
given dimension vectors. There is an action of G = ∏�−1

r=0 GLn(�) on both these spaces.
In fact, the action of the scalar matrices in G is trivial on Rep(Q, nδ) (but not on
Rep(Q∞, ε)) and so in this case the action descends to an action of PG = G/�∗.

Let X = Rep(Q, nδ) × �n−1. There is an action of PG on X.

1.3. Let D(Rep(Q∞, ε)) denote the ring of differential operators on the affine
space Rep(Q∞, ε), DX(nk) the sheaf of twisted differential operators on X and D(X, nk)
its algebra of global sections. The group action of G (respectively PG) on Rep(Q∞, ε)
(respectively X) differentiates to an action of g = Lie(G) (respectively pg = Lie(PG))
by differential operators. This gives mappings

τ̂ : g −→ D(Rep(Q∞, ε)), τ : pg −→ DX(nk).

1.4. Let Uk,c be the spherical subalgebra of type Sn � C�. (This is defined in
Section 3.4.)

THEOREM. For all (k, c) there are isomorphisms of algebras(
D(Rep(Q∞, ε))

Ik,c

)G
∼=

(
D(X, nk)

Ic

)PG
∼= Uk,c,

where Ik,c is the left ideal of D(Rep(Q∞, ε) generated by (τ̂ − χk,c)(g) and Ic is the left
ideal of D(X, nk) generated by (τ − χc)(pg) for suitable characters χk,c ∈ g∗ and χc ∈ pg∗.
(These are defined in Section 4.)

Note that it is a standard fact that the left hand side is an algebra. The proof of
the theorem has two parts. One part constructs a filtered homomorphism from the left
hand side to the right hand side using as its main input the work of Oblomkov [12].
The other part proves that the associated graded homomorphism is an isomorphism
and is a simple application of results of Crawley–Boevey [3] and [4], and of Gan and
Ginzburg [7].

1.5. We give an application of this result in Section 4. For related pairs (k, c) and
(k′, c′) we construct “shift functors”

Uk,c-mod −→ Uk′,c′-mod

using differential operators. We expect these to be a useful tool in the representation
theory of Cherednik algebras, deserving of careful study.

1.6. While writing this down, we were informed that the general version of [5,
Conjecture 11.22] has been proved in [6]. This result is more general than the work
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presented here and requires a new approach and ideas to overcome problems that
simply do not arise for the case � = Sn � C�.

2. Quivers.

2.1. Once and for all fix integers � and n. We assume that both are greater than
1. Set η = exp(2π i/�).

2.2. Let Q be the cyclic quiver with � vertices and cyclic orientation. Choose an
extending vertex (in this case any vertex) 0. Then let Q∞ be the quiver obtained by
adding one vertex named ∞ to Q that is joined to 0 by a single arrow. Let Q and Q∞
denote the double quivers of Q and Q∞ respectively, obtained by inserting an arrow
a∗ in the opposite direction to every arrow a in the quiver.

We shall consider representation spaces of these quivers. Let δ = (1, 1, . . . ,1) be
the affine dimension vector of Q, and set ε = e∞ + nδ, a dimension vector for Q∞.
Recall that

Rep(Q, nδ) =
�−1⊕
r=0

Matn(�) = {(X0, X1, . . . ,X�−1) : Xr ∈ Matn(�)} = {(X)}

and

Rep(Q∞, ε) =
�−1⊕
r=0

Matn(�) ⊕ �n = {(X0, X1, . . . ,X�−1, i) : Xr ∈ Matn(�), i ∈ �n}

= {(X, i)}.

Let G = ∏�−1
r=0 GLn(�) be the base change group. If g = (g0, . . . ,g�−1), then g acts on

Rep(Q, nδ) by

g · (X0, X1, . . . , X�−1) = (
g0X0g−1

1 , g1X1g−1
2 , . . . ,g�−1X�−1g−1

0

)
and on Rep(Q∞, ε) by

g · (X0, X1, . . . ,X�−1, i) = (
g0X0g−1

1 , g1X1g−1
2 , . . . ,g�−1X�−1g−1

0 , g0i
)
.

The action of the scalar subgroup �∗ is trivial in the first action (but not the second)
and so we can consider the first action, as a PG-action where PG = G/�∗. Let g and
pg be the Lie algebras of G and PG, respectively.

2.3. Let hreg ⊂ �n be the affine open subvariety consisting of points x =
(x1, . . . ,xn) such that

(i) if i �= j then xi �= ηmxj for all m ∈ �,
(ii) for each 1 ≤ i ≤ n xi �= 0.

This is the subset of �n on which �n = Sn � C� acts freely.
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2.4. We can embed hreg into Rep(Q, nδ) by first considering a point x =
(x1, . . . ,xn) ∈ hreg as a diagonal matrix X = diag(x1, . . . ,xn) and then sending this
to X = (X, X, . . . ,X). We denote the image of hreg in Rep(Q, nδ) by S.

Let T	 be the subgroup of G with elements (T, T, . . . , T) where T is a diagonal
matrix in GLn(�). Then T	 is the stabiliser of S. Now consider the mapping

π : G/T	 × hreg −→ Rep(Q, nδ)

given by π (gT	, x) = g · X . If we let G act on G/T	 × hreg by left multiplication, then
π is a G-equivariant mapping.

LEMMA. π is an étale mapping with covering group �n. In fact, its image Rep(Q, nδ)reg

is open in Rep(Q, nδ) and we have an isomorphism

ω : G/T	 ×�n hreg −→ Rep(Q, nδ)reg.

Proof. Let S = {X : x ∈ hreg}. Set NG(S) = {g ∈ G : g · S = S} and

ZG(S) = {g ∈ G : g · X = X for all X ∈ S}.

Suppose that g · X = Y for some X, Y ∈ S. This implies that for each 0 ≤ i ≤ � − 1

gi diag(x)�g−1
i = diag(y)�.

The hypotheses on hreg imply that both diag(x)� and diag(y)� are regular semisimple
in Matn(�). Two such elements are conjugate if and only if gi ∈ NGLn(�)(T) = T · Sn,
where T is the diagonal subgroup of GLn(�). Hence there exists σ ∈ Sn such that for all
i we have gi = tiσ for some ti ∈ T , and for all 1 ≤ r ≤ n we have that x�

σ (r) = y�
r . Hence

xσ (r) = ηmr yr for some mr ∈ �. Now we find that Y = g · X implies that diag(yr) =
tit−1

i+1 diag(ηmr yr). Since yr �= 0 this shows that ti+1 = diag(ηmr )ti for each i. Hence we
find that gT	 = (σ, diag(ηmr )σ, . . . , diag(ηmr )�−1σ )T	.

In particular, if X = Y we see from above that each mr = 0, so that ZG(S) = T	.
Thus the group �n is isomorphic to NG(S)/ZG(S) via the homomorphism that sends
(ηm1 , . . . ,ηmr )σ to (σ, diag(ηmr )σ, . . . , diag(ηmr )�−1σ )T	.

Now suppose that π (gT	, x) = π (hT	, y). Then (h−1g) · X = Y and so we see that
h−1g ∈ NG(S). This shows that π is the composition

G/T	 × hreg −−−−→ G/T	 ×�n hreg ∼−−−−→ Rep(Q, nδ)reg.

The first mapping factors out the action of �n, and since �n acts freely on hreg this is
an étale mapping. Hence, to prove the lemma, it suffices to show that Rep(Q, nδ)reg is
open in Rep(Q, nδ).

We claim first that Rep(Q, nδ)reg is the set O of representations of Q that
decompose into n simple modules of dimension δ and whose endomorphism ring is
n-dimensional. To prove this, observe that any element of Rep(Q, nδ)reg is isomorphic
to a representation of the form X and so it decomposes into the n indecomposable
modules X1, . . . Xn of dimension δ, where Xi = (xi, xi, . . . ,xi). (The condition xi �= 0
implies simplicity.) Now the representation Xi is isomorphic to the representation
(1, 1, . . . ,1, x�

i ). By hypothesis x�
i �= x�

j and so we deduce that the representations xi
are pairwise non-isomorphic which ensures that the endomorphism ring of X is n-
dimensional. This proves the inclusion Rep(Q, nδ)reg ⊆ O. On the other hand, if V
belongs to O then V = V1 ⊕ . . . ⊕ Vn, where each Vi is isomorphic to a representation
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(1, 1, . . . , 1, νi), for some non-zero scalars νi. Moreover, since dim End(V ) = n the νi

must be pairwise distinct. Now, let ηi be an �-th root of νi. Then Vi is isomorphic to
(ηi, . . . ,ηi). Therefore V is isomorphic to the representation X , where x = (η1, . . . , ηn).

Now we must show that O is open in Rep(Q, nδ). We use first the fact that the
canonical decomposition of the vector nδ is δ + δ + · · · + δ, [13, Theorem 3.6]. This
means that the representations of Rep(Q, nδ) whose indecomposable components all
have dimension δ form an open set. Now, consider the morphism f from Rep(Q, δ)
to � that sends the representation (λ1, . . . ,λ�) to the product λ1 . . . λ�. The open set
f −1(�∗) consists of the simple representations of dimension vector δ. Therefore the
subset of Rep(Q, nδ) consisting of representations which decompose as the sum of n
simple representations of dimension vector δ is open. On the other hand, the function
from Rep(Q, nδ) to � that sends a representation V to dim End(V ) is upper semi-
continuous. Thus {V : dim End(v) ≤ n} is an open set in Rep(Q, nδ). Intersecting these
two sets shows that O is open, as required. �

2.5. Now we are going to move from Q to Q∞ and so we start with the following
inclusion:

{
([gT	, x], i) : g−1

0 i is a cyclic vector for diag(x)
} ⊂ (G/T	 ×�n hreg) × �n.

By applying ω−1 × id�n , the left-hand side corresponds to an open subset of
Rep(Q, nδ) × �n = Rep(Q∞, ε). Call that set U∞. This is a G-invariant open set since
the G-action on triples is given by

h · ([gT	, x], i) = ([hgT	, x], h0i)

so that g−1
0 i is cyclic for diag(x) if and only if (h0g0)−1h0i is cyclic for diag(x). Observe

too that U∞ is an affine variety. Indeed it is defined by the non-vanishing of the
morphism

s : (G/T	 ×�n hreg) × �n −→ �

which sends ([gT	, x], i) to (g−1
0 i) ∧ diag(x) · (g−1

0 i) ∧ · · · ∧ diag(x)n−1 · (g−1
0 i).

LEMMA. The G-action on U∞ is free and projection onto the second component

π2 : U∞ −→ hreg/�n

is a principal G-bundle.

Proof. Suppose that h · ([gT	, x], i) = ([gT	, x], i).Then [g−1hgT	, x] = [T	, x]
and so, by Lemma 2.4, g−1hg ∈ T	.

We have that h0i = i. Setting i′ = g−1
0 i implies that g−1

0 h0g0i′ = i′. By hypothesis i′ is
a cyclic vector for diag(x). Hence with respect to the standard basis {ej}, i′ decomposes
as

∑
λjej, where each λj is non-zero. Therefore the only diagonal matrix that fixes i′ is

the identity element. In other words g−1
0 h0g0 = In. Since g−1hg ∈ T	 this implies that

g−1hg = id. Thus h = id and this proves that the action is free.
It remains to prove that each fibre of π2 is a G-orbit. We take ([gT	, x], i) ∈

π−1
2 ([x]). This equals g · ([T	, x], g−1

0 i). Now g−1
0 i is a cyclic vector for diag(x) and so

it has the form
∑

λjej with each λj non-zero. Let t = diag(λ1, . . . , λn) and consider
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t = (t, . . . , t) ∈ T	. We have

([gT	, x], i) = gtt−1([T	, x], g−1
0 i) = gt

(
[T	, x],

n∑
j=1

ej

)
.

This proves that each fibre of π2 is indeed a G-orbit. �

2.6. Consider the representation space for the doubled quiver Q∞:

Rep(Q∞, ε) = {(X0, . . . ,X�−1, Y0, . . . ,Y�−1, i, j) : Xr, Yr ∈ Matn(�), i ∈ �n, j ∈ (�∗)n}
= {(X, Y, i, j)}.

We can naturally identify it with T∗ Rep(Q∞, ε). The group G acts on the base and
hence on the total space of the cotangent bundle. The resulting moment map

µ : Rep(Q∞, ε) −→ g∗ ∼= g

is given by

µ(X, Y, i, j) = [X, Y ] + i j.

THEOREM (Gan–Ginzburg, Crawley–Boevey). Let µ−1(0) denote the scheme-
theoretic fibre of µ.

(1) µ−1(0) is reduced, equidimensional and a complete intersection.
(2) The moment map µ is flat.
(3) �[µ−1(0)]G ∼= �[h ⊕ h∗]�n .

Proof. (i) This is proved in [7, Theorem 3.2.3].
(ii) This follows from [3, Theorem 1.1] and the dimension formula in

[7, Theorem 3.2.3(iii)].
(iii) This is [4, Theorem 1.1]. �

2.7. Let X = {(X, i) ∈ Rep(Q, nδ) × �n−1}. This space is the quotient of the
(quasi-affine) open subvariety

U = {(X, i) : i �= 0} ⊂ Rep(Q∞, ε)

by the scalar group �∗. Thus there is an action of PG on X.
Since

T∗ �n−1 = {(i, j) : i �= 0, ji = 0}/�∗

we have

T∗X = {(X, Y, i, j) ∈ Rep(Q∞, ε) : i �= 0, ji = 0}/�∗.

The PG action on X gives rise to a moment map

µX : T∗X −→ pg∗ ∼= pg .
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Let

µ−1
X

(0) = {(X, Y, i, j) ∈ Rep(Q∞, ε) : i �= 0, ji = 0, [X, Y ] + i j = 0}/�∗

denote the scheme theoretic fibre of 0.

PROPOSITION. There is an isomorphism �[µ−1
X

(0)]PG ∼= �[h ⊕ h∗]�n .

Proof. Consider the G-equivariant open subvariety of µ−1(0) given by the non-
vanishing of i. The variety µ−1(0) is determined by the conditions [X, Y ] + i j = 0, and
so if we take the trace of this equation then we see that 0 = Tr(i j) = Tr(ji) = ji. Thus
{(X, Y, i, j) ∈ Rep(Q∞, ε) : i �= 0, ji = 0} ∩ µ−1(0) is an open subvariety of µ−1(0) and
so, in particular, is reduced by Theorem 2.6(1). Hence factoring out by the action of
�∗ ≤ G shows that µ−1

X
(0) is reduced and that there is a PG-equivariant morphism

µ−1
X

(0) −→ µ−1(0)//�∗.

This induces an algebra map

α : �[µ−1(0)]G −→ �
[
µ−1

X
(0)

]PG
.

We now follow some of the proof of [7, Lemma 6.3.2]. Write O1 for the conjugacy
class of rank one nilpotent matrices in gl(n), and let O1 denote the closure of O1 in gl(n).
The moment map υ : T∗ �n−1 −→ gl(n)∗ ∼= gl(n) that sends (i, j) to i j gives a birational
isomorphism T∗ �n−1 −→ O1. Let J ⊂ �[gl(n)] = C[Z] be the ideal generated by all
2 × 2 minors of the matrix Z and also by the trace function. Then J is a prime ideal
whose zero scheme is O1 and the pullback morphism υ∗ : �[gl(n)]/J −→ �[T∗ �n−1]
is a graded isomorphism.

Now the moment map µX : T∗X −→ g∗ factors as the composite

T∗X = T∗ Rep(Q, nδ) × T∗ �n−1 −−−−→ T∗ Rep(Q, nδ) × O1
θ−−−−→ pg∗,

where the first mapping is id ×υ and the second mapping θ sends (X, Y, Z) to [X, Y ] +
Z0, where Z0 indicates that we place the matrix Z on the copy of gl(n) associated to
the vertex 0. We have a graded algebra isomorphism

�[T∗ Rep(Q, nδ)] ⊗ �[gl(n)]/J −→ �[T∗X].

Now write �[X, Y, Z] = �[T∗ Rep(Q, nδ) × gl(n)], and let �[X, Y, Z]([X, Y ] + Z0)
denote the ideal in �[X, Y, Z] generated by all matrix entries of the � matrices [X, Y ] +
Z0. Let I denote the ideal �[X, Y, Z]([X, Y ] + Z0) + �[X, Y ] ⊗ J ⊂ �[X, Y, Z]. From
the above we have

�[µ−1
X

(0)] ∼= �[T∗ Rep(Q, nδ) × O1]/�[T∗ Rep(Q, nδ) × O1]θ∗(gl(n)) = �[X, Y, Z]/I.

Define an algebra homomorphism r : �[X, Y, Z] −→ �[X, Y ] by sending P ∈
�[X, Y, Z] to the function (X, Y ) �→ P(X, Y,−[X, Y ]0). Obviously r induces an
isomorphism �[X, Y, Z]/�[X, Y, Z]([X, Y ] + Z0) ∼= �[X, Y ]/I1, where I1 is the ideal
of �[Rep(Q, nδ)] = �[X, Y ] generated by the elements∑

h(a)=i

XaXa∗ −
∑

t(a)=i

Xa∗Xa
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for all i not equal to zero. Observe that the linear function P : (X, Y, Z) �→ TrZ =
Tr([X, Y ] + Z0) belongs to the ideal �[X, Y, Z]([X, Y ] + Z0). We deduce that the
mapping r sends �[X, Y ] ⊗ J to the ideal generated by

rank

( ∑
h(a)=0

XaXa∗ −
∑

t(a)=0

Xa∗Xa

)
≤ 1.

Thus we obtain algebra isomorphisms

�[µ−1
X

(0)] ∼= �[X, Y, Z]/I ∼= �[T∗ Rep(Q, nδ)]/I2,

where I2 is the ideal generated by the elements∑
h(a)=i

XaXa∗ −
∑

t(a)=i

Xa∗Xa,

for all 1 ≤ i ≤ � − 1, and

rank

( ∑
h(a)=0

XaXa∗ −
∑

t(a)=0

Xa∗Xa

)
≤ 1.

By [10, Theorem 1] the G-invariant (respectively PG-invariant) elements of
�[Rep(Q∞, ε)] (respectively �[Rep(Q, nδ)]) are generated by traces along oriented
cycles. Since all oriented cycles in Q are oriented cycles in Q∞ we have a surjective
composition of algebra homomorphisms

�[h ⊕ h∗]�n ∼= �[µ−1(0)]G −→ �[µ−1
X

(0)]PG −→
(

�[Rep(Q, nδ)]
I2

)PG

, (2.7.1)

where the first isomorphism is Theorem 2.6 (3). The left hand side is a domain of
dimension 2 dim h and so, to see that the mapping is an isomorphism, it suffices to
prove that the right hand side also has dimension 2 dim h.

Let I3 be the ideal of �[Rep(Q, nδ)] generated by the elements∑
h(a)=i

XaXa∗ −
∑

t(a)=i

Xa∗Xa

for all i. This is the ideal of the zero fibre of the moment map for the PG-action on
Rep(Q, nδ). This ideal contains I2 since the rank condition on the matrices is implied
by the commutator condition. Hence there is a surjective mapping

�[Rep(Q, nδ)]PG

IPG
2

−→ �[Rep(Q, nδ)]PG

IPG
3

.

We do not know yet whether the right hand side is reduced or not, but by [4,
Theorem 1.1] the reduced quotient of the right hand side is the ring of functions
of the variety (h ⊕ h∗)/�n. As this variety has dimension 2 dim h we deduce that the
composition in (2.7.1) is an isomorphism, and hence that

�[µ−1
X

(0)]PG ∼= �[h ⊕ h∗]�n .

�

https://doi.org/10.1017/S0017089505002946 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002946


RATIONAL CHEREDNIK ALGEBRAS 153

REMARK. In passing let us note that the commutativity of the following diagram

�[T∗ Rep(Q, nδ)] ι ��

pr

��

�[T∗ Rep(Q, nδ)] ⊗ �[T∗ �n−1] ��

υ∗

��

�[µ−1
X

(0)]

�
��

�[T∗ Rep(Q, nδ)] ⊗ �[O1]
r �� �[T∗ Rep(Q, nδ)]/I2

where ι( f ) = f ⊗ 1, shows that im ι maps surjectively onto �[µ−1
X

(0)].

3. Differential operators.

3.1. Symplectic reflection algebras. Let C� be the cyclic subgroup of SL2(�)
generated by σ = diag(η, η−1). The vector space V = (�2)n admits an action of
Sn � C� = Sn � (C�)n. Here (C�)n acts by extending the natural action of C� on �2,
whilst Sn acts by permuting the n copies of �2. For an element γ ∈ C� and an integer
1 ≤ i ≤ n we write γi to indicate the element (1, . . . , γ, . . . ,1) ∈ (C�)n which is non-
trivial in the i-th factor.

3.2. The elements Sn � C� whose fixed points are a subspace of codimension two in
V are called symplectic reflections. In this case their conjugacy classes are of two types.

(S) The elements si jγiγ
−1
j where 1 ≤ i, j ≤ n, si j ∈ Sn is the transposition that swaps

i and j, and γ ∈ C�.
(C�) The elements γi for 1 ≤ i ≤ n and γ ∈ C� \ {1}.

There is a unique conjugacy class of type (S) and � − 1 of type (C�) (depending on
the non-trivial element we choose from C�). We shall consider a conjugation invariant
function from the set of symplectic reflections to �. We can identify it with a pair (k, c)
where k ∈ � and c is an (� − 1)-tuple of complex numbers: the function sends elements
from (S) to k and the elements (σ m)i to cm.

3.3. There is a symplectic form on V that is induced from n copies of the standard
symplectic form ω on �2. If we pick a basis {x, y} for �2 such that ω(x, y) = 1, then we
can extend this naturally to a basis {xi, yi : 1 ≤ i ≤ n} of V such that the x’s and the y’s
form Lagrangian subspaces and ω(xi, yj) = δi j. We let TV denote the tensor algebra
on V : with our choice of basis this is just the free algebra on generators xi, yi for
1 ≤ i ≤ n. The symplectic reflection algebra Hk,c associated to Sn � C� is the quotient
of TV ∗ (Sn � C�) by the following relations:

xixj = xjxi, yiyj = yjyi (for all 1 ≤ i, j ≤ n),

yixi − xiyi = 1 + k
∑
j �=i

∑
γ∈C�

si jγiγ
−1
j +

∑
γ∈C�\{1}

cγ γi (for 1 ≤ i ≤ n),

yixj − xjyi = −k
�−1∑
m=0

ηmsi j(σ m)i(σ m)−1
j (for i �= j).

(NB: my k is −k for Oblomkov.)

https://doi.org/10.1017/S0017089505002946 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002946


154 IAIN GORDON

3.4. The spherical algebra. The symmetrising idempotent of the group algebra
C(Sn � C�) is given by

e = 1
|Sn � C�|

∑
w∈Sn�C�

w.

The subalgebra eHk,ce is denoted by Uk,c and called the spherical algebra. It will be
our main object of study.

3.5. Rings of differential operators. Recall the definition of X from 2.7. Let
DX(nk) denote the sheaf of twisted differential operators on X and let D(X, nk) be its
algebra of global sections. This is simply the tensor product D(Rep(Q, nδ)) ⊗ D�n−1 (nk).
(The twisted differential operators on �n−1 can be defined as follows. Let An =
�[x1, . . . ,xn, ∂1, . . . , ∂n] be the n-th Weyl algebra. This is a graded algebra with
deg(xi) = 1 and deg(∂i) = −1. The degree zero component is the subring generated
by the operators xi∂j which, under the commutator, generate the Lie algebra gl(n). Call
this subring R. Let E = ∑n

i=1 xi∂i ∈ R be the Euler operator. Then D(�n−1, nk) is the
quotient of R by the two-sided ideal generated by E − nk.)

The group action of PG on X differentiates to an action of pg on X by differential
operators. This gives a mapping

τ : pg −→ DX(nk). (3.5.1)

(One way to understand this is to start back with U ⊂ Rep(Q∞, ε) and look at
the G action on U . Differentiating the G-action gives an action of g by differential
operators on U , τ̂ : g −→ DU . Since �∗ acts trivially on Rep(Q, nδ) and by scaling on
i ∈ Rep(Q∞, ε), we find that τ̂ (id) = 1 ⊗ E, where id = (In, In, . . . ,In) ∈ � ⊂ g. Thus
we get an action of pg on (DU/DU (1 ⊗ E − nk))�∗ = DX(nk).)

3.6. Recall the Lie algebra g = Lie(G) and its quotient pg = Lie(PG) which is
simply g/� · id, where id = (In, . . . , In) ∈ g. Let χc : g −→ � send an element (X) =
(X0, . . . ,X�−1) ∈ g to

χc(X) =
�−1∑
r=0

Cr Tr(Xr),

where Cr = �−1(1 − ∑�−1
m=1 ηmrcm) for 1 ≤ r ≤ � − 1 and C0 = �−1(1 − � − ∑�−1

m=1 cm).
Observe that

χc(id) = Tr(In)
�−1∑
r=0

Ci = n
�−1∑
r=0

�−1∑
m=0

−ηrmcm = 0.

In particular χc is actually a character of pg.
Let χk : g −→ � send an element (X) = (X0, . . . , X�−1) to χk(c) = k Tr(X0).
We shall be regularly using the character χk,c ∈ g∗ defined by χk,c = χc + χk.

3.7. Let us recall Oblomkov’s deformed Harish–Chandra homomorphism [12].
By Lemma 2.4, S = ω(hreg/�n) is a subset of Rep(Q, nδ)reg which is a slice for the
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PG-action on Rep(Q, nδ). Let

W ′
k = (y1 . . . yn)−k�(0)

[
y±1

1 , . . . ,y±1
n

]
,

a space of multivalued functions on (�∗)n. The Lie algebra g acts on W ′
k by projection

onto its 0-th summand gl(n), and then by the natural action of gl(n) on polynomials (so
that Ei j acts as yi∂/∂yj). With this action the identity matrix in gl(n) becomes the Euler
operator E which acts by multiplication by −nk. Thus we can make W ′

k a pg-module
by twisting W ′

k by the character χk since then id acts trivially. If we call this module
Wk, then Wk = W ′

k ⊗ χk. Now define Fun′ to be the space of functions on Rep(Q, nδ)
of the form

f = f̃
�−1∏
i=0

det(Xi)ri ,

where f̃ is a rational function on Rep(Q, nδ)reg regular on S, ri = ∑i
j=0 Cj + σ and

σ = �−1 ∑�−1
s=0 sCs. Then (Fun′ ⊗ Wk)pg is a space of (pg, χc)-semi-invariant functions

defined on a neighbourhood of S that take values in Wk. This space is a free �[hreg]�n -
module of rank 1, the isomorphism being given by restriction to S. (Note that the
determinant of an element of the form (X, . . . ,X) is det(X)

∑
ri = 1 as

∑
ri = 0.) Any

pg-invariant differential operator D acts on such a function f . Oblomkov defines his
homomorphism to be the restriction of D( f ) to S.

3.8. We can view the procedure above in terms of Rep(Q∞, ε). By Lemma 2.5
we use S∞ = S × (1, . . . , 1) ∈ U∞ as a slice for the G-action. The space S × (�∗)n is a
closed subset of U∞ since the condition that i be cyclic for diag(x1, . . . ,xn) is equivalent
to i ∈ (�∗)n. Thus functions on a neighbourhood of S∞ in U∞ can be identified with
functions from a neighbourhood ofS taking values in functions on (�∗)n. In particular,
we can consider elements on (Fun′ ⊗ Wk)pg first as (g, χk,c)-semiinvariant functions
from a neighbourhood of S taking values in W ′

k and hence as (g, χk,c)-semiinvariant
functions on an open set in a neighbourhood of S∞. We can apply any element of
D ∈ D(U∞)g to these (g, χk,c)-semiinvariant functions and then restrict to S∞ to get a
homomorphism

Fk,c : D(U∞)g −→ D(hreg/�n).

3.9. Since Rep(Q∞, ε) = Rep(Q, nδ) × �n there is a mapping

G : D(Rep(Q, nδ))pg −→ D(U∞)g

that sends D ∈ D(Rep(Q, nδ))pg to (D ⊗ 1). Oblomkov’s homomorphism is Fk,c ◦ G.

3.10. Differentiating the G-action on U∞ gives a Lie algebra homomorphism
τ̂ : g −→ Vect(U∞) which we extend to an algebra map

τ̂ : U(g) −→ D(U∞).

By Lemma 2.5, U∞ is a principal G-bundle over hreg/�n, and so a generalisation of
[14, Corollary 4.5] shows that the kernel of Fk,c is (D(U∞)(τ̂ − χk,c)(g))g. Moreover,
since the finite group �n acts freely on hreg we can identify D(hreg/�n) with D(hreg)�n .
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3.11. Recall that

DX(nk) ∼=
(

DU

DU (τ̂ − χk)(� · id)

)�∗

.

Hence we have

(
DU

DU (τ̂ − χk,c)(g)

)G
∼=

(
DX(nk)

DX(nk)(τ − χc)(pg)

)PG

, (3.11.1)

where U = {(X, i) : i �= 0} ⊂ Rep(Q∞, nδ) as in 2.7. We consider the restriction
mapping DU −→ D(U∞). Composing the global sections of the isomorphism above
with this restriction and the homomorphism Fk,c gives

R′
k,c :

(
D(X, nk)

D(X, nk)(τ − χc)(pg)

)PG

−→ D(hreg)�n .

3.12. Let

δk,c(x) = δ−k−1δσ
�,

where δ = ∏
1≤i<j≤n(x�

i − x�
j ) and δ� = ∏n

i=1 xi. Define a twisted version of R′
k,c above

by

Rk,c(D) = δ−1
k,c ◦ R′

k,c(D) ◦ δk,c

for any differential operator D.

3.13. Our main result is as follows.

THEOREM. For all values of k and c, the homomorphism Rk,c has image im θk,c. In
particular we have an isomorphism

θ−1
k,c ◦ Rk,c :

(
D(X, nk)

D(X, nk)(τ − χc)(pg)

)pg ∼−−−−→ Uk,c.

Proof. Let us abuse notation by writing Uk,c for the image of Uk,c in D(hreg)�n

under θk,c. Since X = Rep(Q, nδ) × �n−1, there is a mapping given by

D(Rep(Q, nδ))PG −→ D(X, nk)PG −→ D(hreg)�n ,

that sends D ∈ D(Rep(Q, nδ))PG to Rk,c(D ⊗ 1). Recall τ from (3.5.1). Since gr τ =
µ∗
X we have an inclusion gr(D(X, nk))µ∗

X (pg) ⊆ gr(D(X, nk)(τ − χc)(pg)). This gives a
graded surjection

p :
(

gr D(X, nk)
gr(D(X, nk))µ∗

X (pg)

)PG

−→ gr
(

D(X, nk)
D(X, nk)(τ − χc)(pg)

)PG

.
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By Remark 2.7 the composition

gr D(Rep(Q, nδ))PG −→ gr D(X, nk)PG −→
(

gr D(X, nk)
gr(D(X, nk))µ∗

X (pg)

)PG

−→ gr
(

D(X, nk)
D(X, nk)(τ − χc)(pg)

)PG

is surjective. Thus the homomorphism

D(Rep(Q, nδ))PG −→
(

D(X, nk)
D(X, nk)(τ − χc)(pg)

)PG

is also surjective. In particular, by 3.9 this implies that the image of Rk,c equals the
image of Oblomkov’s Harish–Chandra homomorphism, which, by [12, Theorem 2.5],
is Uk,c.

Thus we have a filtered surjective homomorphism

Rk,c :
(

D(X, nk)
D(X, nk)(τ − χc)(pg)

)PG

−→ Uk,c.

Thus the dimension of the left hand side is at least 2 dim h = dim Uk,c. By Proposi-
tion 2.7 (

gr D(X, nk)
gr(D(X, nk))µ∗

X (pg)

)PG
∼= �[µ−1

X
(0)]PG ∼= �[h ⊕ h∗]�n .

Hence p is a surjection from a domain of dimension 2 dim h onto an algebra
of dimension at least 2 dim h and so is an isomorphism. It follows that
(D(X, nk)/D(X, nk)(τ − χc)(pg))pg is a domain of dimension 2 dim h. This implies that
Rk,c is an isomorphism. �

4. Application: Shift functors.

4.1. The Holland-Schwarz Lemma. We wish to understand the space

D(Rep(Q∞, ε))
D(Rep(Q∞, ε))(τ̂ − χk,c)(g)

.

As we observed in the proof of Theorem 3.13 there is a natural surjective
homomorphism

gr D(Rep(Q∞, ε))
gr D(Rep(Q∞, ε))µ∗(g)

−→ gr
(

D(Rep(Q∞, ε))
D(Rep(Q∞, ε))(τ̂ − χk,c)(g)

)
. (4.1.1)

It turns out that this is an isomorphism.

LEMMA (Schwarz, Holland). The homomorphism (4.1.1) is an isomorphism of
�[T∗ Rep(Q∞, ε)]-modules.

Proof. This is [9, Lemma 2.2] since, by Theorem 2.6 (2), the moment map µ is
flat. �
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4.2. This lets us prove the first part of the isomorphism in the statement of
Theorem 1.4.

LEMMA. There is an algebra isomorphism

(
D(Rep(Q∞, ε))

D(Rep(Q∞, ε))(τ̂ − χk,c)(g)

)G

−→
(

D(X, nk)
D(X, nk)(τ − χc)(pg)

)PG

.

Proof. We have a natural pg-equivariant mapping

D(Rep(Q∞, ε))�∗ −→ D�∗
U −→ DX(nk)

which induces a homomorphism

D(Rep(Q∞, ε))G −→
(

D(X, nk)
D(X, nk)(τ − χc)(PG)

)pg

.

This is surjective since, as we observed in the proof of Theorem 3.13, the image of
D(Rep(Q, nδ))PG ⊂ D(Rep(Q∞, ε)G spans the right hand side. By (3.11.1) the kernel
of this homomorphism includes the ideal (D(Rep(Q,∞), ε)(τ̂ − χk,c)(g))G. Hence we
have a surjective homomorphism

(
D(Rep(Q∞, ε)

D(Rep(Q,∞), ε)(τ̂ − χk,c)(g)

)G

−→
(

D(X, nk)
D(X, nk)(τ − χc)(pg)

)PG

. (4.2.1)

By Lemma 4.1 and Proposition 2.7, there is an isomorphism

(
gr

D(Rep(Q∞, ε)
D(Rep(Q,∞), ε)(τ̂ − χk,c)(g)

)G
∼=

(
gr D(Rep(Q∞, ε))

gr D(Rep(Q∞, ε))µ∗(g)

)G

= �[µ−1(0)]G

= �[h ⊕ h∗]�n .

This shows that the algebra on the left is a domain of dimension 2 dim h and so (4.2.1)
is also injective, as required. �

4.3. Shifting. The previous two lemmas provide us with an interesting series of
bimodules. Given a character � of G we define

B�
k,c =

(
D(Rep(Q∞, ε))

D(Rep(Q∞, ε))(τ̂ − χk,c)(g)

)�

to be the set of (G,�)-semiinvariants. Thanks to Lemma 4.2 and Theorem 3.13 this is
a right Uk,c-module. Now observe that if x ∈ g and D ∈ D(Rep(Q∞, ε))� then

[τ (x), D] = λ(x)D,
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where λ = d�. Hence B�
k,c is a left (D(Rep(Q∞, ε))/D(Rep(Q∞, ε))(τ̂ − χk,c − λ)(g))G-

module and so tensoring sets up a shift functor

S�
k,c :

(
D(Rep(Q∞, ε))

D(Rep(Q∞, ε))(τ̂ − χk,c)(g)

)G

-mod

−→
(

D(Rep(Q∞, ε))
D(Rep(Q∞, ε))(τ̂ − χk,c − λ)(g)

)G

-mod.

4.4. The character group of G is isomorphic to �� via

(i0, . . . , i�−1) �→
(

(g0, . . . ,g�−1) �→
�−1∏
r=0

det(gr)ir

)
.

Corresponding to the standard basis element εi is the character χi of g that sends X ∈ g

to Tr(Xi).

LEMMA. The bimodule Bεi
k,c above is a (Uk′,c′ , Uk,c)-bimodule, where k′ = k + 1 and

c′ = c + (1 − η−i, 1 − η−2i, . . . ,1 − η−(�−1)i).

Proof. Recall that (k, c) corresponds to the character of g we called χk,c which is
defined as

χk,c(X) = (C0 + k) Tr(X0) +
�−1∑
j=1

Cj Tr(Xj),

where Cr = �−1(1 − ∑�−1
m=1 ηmrcm) for 1 ≤ r ≤ � − 1 and C0 = �−1(1 − � − ∑�−1

m=1 cm).
We need to calculate (k′, c′) so that χk,c + χi = χk′,c′ . We have

(χnk,c + χi)(X) = (C0 + k) Tr(X0) + Tr(Xi) +
�−1∑
j=1

Cj Tr(Xj)

= (C′
0 + k′) Tr(X0) +

�−1∑
j=1

C′
j Tr(Xj).

Calculation shows that k′ = k + 1 and that if i = 0 then C′
j = Cj and otherwise

C′
j = Cj +




−1 if j = 0,

1 if j = i,
0 otherwise.

These unpack to give c′
m = cm + 1 − η−mi. �

4.5. Question. Thus for each 0 ≤ i ≤ � − 1 we have a shift functor

Si : Uk,c-mod −→ Uk+1,c′ -mod

where c′ is as above. When is this an equivalence of categories?
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REMARK. Shift functors are also constructed in [1] and [15]. Hopefully they agree
with the functors here.

REFERENCES

1. Y. Berest and O. Chalykh, Quasi-invariants of complex reflection groups, in preparation.
2. Y. Berest, P. Etingof and V. Ginzburg, Cherednik algebras and differential operators on

quasi-invariants, Duke Math. J. 118, 279–337.
3. W. Crawley-Boevey, Geometry of the moment map for representations of quivers,

Compositio Math. 126 (2001), 257–293.
4. W. Crawley-Boevey, Decomposition of Marsden–Weinstein reductions for representa-

tions of quivers, Compositio Math. 130 (2002), 225–239.
5. P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and

deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243–348.
6. P. Etingof, W. L. Gan, V. Ginzburg and A. Oblomkov, The �-Harish–Chandra

homomorphism, RT: 0511489.
7. W. L. Gan and V. Ginzburg, Almost commuting variety, D-modules, and Cherednik

algebras, RT:0409262, I.M.R.N, to appear.
8. I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes I, Adv.

Math. 198 (2005), 222–274.
I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes II, Duke

Math. J., to appear.
9. M. Holland, Quantization of the Marsden–Weinstein reduction for extended Dynkin
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