A REMARK ON RATIONAL CHEREDNIK ALGEBRAS AND DIFFERENTIAL OPERATORS ON THE CYCLIC QUIVER

IAIN GORDON

Department of Mathematics, Glasgow University, Glasgow G12 8QW, Scotland e-mail: ig@maths.gla.ac.uk

(Received 30 July, 2005; accepted 10 October, 2005)

Abstract. We show that the spherical subalgebra $U_{k,c}$ of the rational Cherednik algebra associated to $S_n \wr C_\ell$, the wreath product of the symmetric group and the cyclic group of order ℓ , is isomorphic to a quotient of the ring of invariant differential operators on a space of representations of the cyclic quiver of size ℓ . This confirms a version of [5, Conjecture 11.22] in the case of cyclic groups. The proof is a straightforward application of work of Oblomkov [12] on the deformed Harish–Chandra homomorphism, and of Crawley–Boevey, [3] and [4], and Gan and Ginzburg [7] on preprojective algebras.

2000 Mathematics Subject Classification. MSC 16U20, 16S32, 13N10.

1. Introduction.

- 1.1. The representation theory of symplectic reflection algebras has links with a number of subjects including algebraic combinatorics, resolutions of singularities, Lie theory and integrable systems. There is a family of symplectic reflection algebras associated to any symplectic vector space V and finite subgroup $\Gamma \leq Sp(V)$, but a simple reduction allows one to study those subgroups Γ which are generated by symplectic reflections (i.e. by elements whose set of fixed points is of codimension two in V). This essentially focuses attention on two cases:
 - (1) $\Gamma = W$, a finite complex reflection group, acting on $V = \mathfrak{h} \oplus \mathfrak{h}^*$ where \mathfrak{h} is a reflection representation of W;
 - (2) $\Gamma = S_n \wr K$, where K is a finite subgroup of $SL_2(\mathbb{C})$, acting naturally on $(\mathbb{C}^2)^n$.

The representation theory in the first case is mysterious at the moment: several important results are known but there is no general theory yet. On the other hand a geometric point of view on the representation theory in the second case is beginning to emerge. A key fact is that in this case the singular space V/Γ admits a crepant resolution of singularities: the representation theory of the symplectic reflection algebra is then expected to be closely related to the resolution. In the case $\Gamma = S_n$ (i.e. K is trivial) there are two approaches to this: the first is via noncommutative algebraic geometry [8] the second via sheaves of differential operators [7]. In this paper we extend the second approach to the groups $\Gamma = \Gamma_n = S_n \wr C_\ell$.

The author was partially supported by the Leverhulme trust.

1.2. To state our result we need to introduce a little notation here. Let Q be the cyclic quiver with ℓ vertices and cyclic orientation. Choose an extending vertex (in this case any vertex) 0. Then let Q_{∞} be the quiver obtained by adding one vertex named ∞ to Q that is joined to 0 by a single arrow.

We shall consider representation spaces of these quivers. Let $\delta = (1, 1, ..., 1)$ be the affine dimension vector of Q, and set $\epsilon = e_{\infty} + n\delta$, a dimension vector for Q_{∞} . Let $\operatorname{Rep}(Q, n\delta)$ and $\operatorname{Rep}(Q_{\infty}, \epsilon)$ be the representation spaces of these quivers with the given dimension vectors. There is an action of $G = \prod_{r=0}^{\ell-1} GL_n(\mathbb{C})$ on both these spaces. In fact, the action of the scalar matrices in G is trivial on $\operatorname{Rep}(Q, n\delta)$ (but not on $\operatorname{Rep}(Q_{\infty}, \epsilon)$) and so in this case the action descends to an action of $PG = G/\mathbb{C}^*$.

Let $\mathfrak{X} = \text{Rep}(Q, n\delta) \times \mathbb{P}^{n-1}$. There is an action of PG on \mathfrak{X} .

1.3. Let $D(\operatorname{Rep}(Q_{\infty}, \epsilon))$ denote the ring of differential operators on the affine space $\operatorname{Rep}(Q_{\infty}, \epsilon)$, $D_{\mathfrak{X}}(nk)$ the sheaf of twisted differential operators on \mathfrak{X} and $D(\mathfrak{X}, nk)$ its algebra of global sections. The group action of G (respectively PG) on $\operatorname{Rep}(Q_{\infty}, \epsilon)$ (respectively \mathfrak{X}) differentiates to an action of $\mathfrak{g} = \operatorname{Lie}(G)$ (respectively $\mathfrak{pg} = \operatorname{Lie}(PG)$) by differential operators. This gives mappings

$$\hat{\tau}: \mathfrak{g} \longrightarrow D(\operatorname{Rep}(Q_{\infty}, \epsilon)), \qquad \tau: \mathfrak{pg} \longrightarrow D_{\mathfrak{X}}(nk).$$

1.4. Let $U_{k,c}$ be the spherical subalgebra of type $S_n \wr C_\ell$. (This is defined in Section 3.4.)

THEOREM. For all (k, c) there are isomorphisms of algebras

$$\left(\frac{D(\operatorname{Rep}(Q_{\infty},\epsilon))}{I_{k,c}}\right)^{G} \cong \left(\frac{D(\mathfrak{X},nk)}{I_{c}}\right)^{PG} \cong U_{k,c},$$

where $I_{k,c}$ is the left ideal of $D(\text{Rep}(Q_{\infty}, \epsilon) \text{ generated by } (\hat{\tau} - \chi_{k,c})(\mathfrak{g}) \text{ and } I_c \text{ is the left ideal of } D(\mathfrak{X}, nk) \text{ generated by } (\tau - \chi_c)(\mathfrak{pg}) \text{ for suitable characters } \chi_{k,c} \in \mathfrak{g}^* \text{ and } \chi_c \in \mathfrak{pg}^*.$ (These are defined in Section 4.)

Note that it is a standard fact that the left hand side is an algebra. The proof of the theorem has two parts. One part constructs a filtered homomorphism from the left hand side to the right hand side using as its main input the work of Oblomkov [12]. The other part proves that the associated graded homomorphism is an isomorphism and is a simple application of results of Crawley–Boevey [3] and [4], and of Gan and Ginzburg [7].

1.5. We give an application of this result in Section 4. For related pairs (k, c) and (k', c') we construct "shift functors"

$$U_{k,c}\text{-mod} \longrightarrow U_{k',c'}\text{-mod}$$

using differential operators. We expect these to be a useful tool in the representation theory of Cherednik algebras, deserving of careful study.

1.6. While writing this down, we were informed that the general version of [5, Conjecture 11.22] has been proved in [6]. This result is more general than the work

presented here and requires a new approach and ideas to overcome problems that simply do not arise for the case $\Gamma = S_n \wr C_\ell$.

2. Quivers.

- **2.1.** Once and for all fix integers ℓ and n. We assume that both are greater than 1. Set $\eta = \exp(2\pi i/\ell)$.
- **2.2.** Let Q be the cyclic quiver with ℓ vertices and cyclic orientation. Choose an extending vertex (in this case any vertex) 0. Then let Q_{∞} be the quiver obtained by adding one vertex named ∞ to Q that is joined to 0 by a single arrow. Let \overline{Q} and \overline{Q}_{∞} denote the double quivers of Q and Q_{∞} respectively, obtained by inserting an arrow a^* in the opposite direction to every arrow a in the quiver.

We shall consider representation spaces of these quivers. Let $\delta = (1, 1, ..., 1)$ be the affine dimension vector of Q, and set $\epsilon = e_{\infty} + n\delta$, a dimension vector for Q_{∞} . Recall that

$$\operatorname{Rep}(Q, n\delta) = \bigoplus_{r=0}^{\ell-1} \operatorname{Mat}_n(\mathbb{C}) = \{(X_0, X_1, \dots, X_{\ell-1}) : X_r \in \operatorname{Mat}_n(\mathbb{C})\} = \{(X)\}$$

and

$$\operatorname{Rep}(Q_{\infty}, \epsilon) = \bigoplus_{r=0}^{\ell-1} \operatorname{Mat}_n(\mathbb{C}) \oplus \mathbb{C}^n = \{ (X_0, X_1, \dots, X_{\ell-1}, i) : X_r \in \operatorname{Mat}_n(\mathbb{C}), i \in \mathbb{C}^n \}$$
$$= \{ (X, i) \}.$$

Let $G = \prod_{r=0}^{\ell-1} GL_n(\mathbb{C})$ be the base change group. If $g = (g_0, \dots, g_{\ell-1})$, then g acts on $\text{Rep}(Q, n\delta)$ by

$$g \cdot (X_0, X_1, \dots, X_{\ell-1}) = (g_0 X_0 g_1^{-1}, g_1 X_1 g_2^{-1}, \dots, g_{\ell-1} X_{\ell-1} g_0^{-1})$$

and on $\operatorname{Rep}(Q_{\infty}, \epsilon)$ by

$$g \cdot (X_0, X_1, \dots, X_{\ell-1}, i) = (g_0 X_0 g_1^{-1}, g_1 X_1 g_2^{-1}, \dots, g_{\ell-1} X_{\ell-1} g_0^{-1}, g_0 i).$$

The action of the scalar subgroup \mathbb{C}^* is trivial in the first action (but not the second) and so we can consider the first action, as a PG-action where $PG = G/\mathbb{C}^*$. Let $\mathfrak g$ and $\mathfrak p\mathfrak g$ be the Lie algebras of G and PG, respectively.

- **2.3.** Let $\mathfrak{h}^{\text{reg}} \subset \mathbb{C}^n$ be the affine open subvariety consisting of points $x = (x_1, \dots, x_n)$ such that
 - (i) if $i \neq j$ then $x_i \neq \eta^m x_i$ for all $m \in \mathbb{Z}$,
 - (ii) for each $1 \le i \le n \ x_i \ne 0$.

This is the subset of \mathbb{C}^n on which $\Gamma_n = S_n \wr C_\ell$ acts freely.

2.4. We can embed $\mathfrak{h}^{\text{reg}}$ into $\text{Rep}(Q, n\delta)$ by first considering a point $x = (x_1, \ldots, x_n) \in \mathfrak{h}^{\text{reg}}$ as a diagonal matrix $X = \text{diag}(x_1, \ldots, x_n)$ and then sending this to $X = (X, X, \ldots, X)$. We denote the image of $\mathfrak{h}^{\text{reg}}$ in $\text{Rep}(Q, n\delta)$ by S.

Let T_{Δ} be the subgroup of G with elements (T, T, \dots, T) where T is a diagonal matrix in $GL_n(\mathbb{C})$. Then T_{Δ} is the stabiliser of S. Now consider the mapping

$$\pi: G/T_{\Lambda} \times \mathfrak{h}^{\text{reg}} \longrightarrow \text{Rep}(Q, n\delta)$$

given by $\pi(gT_{\Delta}, x) = g \cdot \underline{X}$. If we let G act on $G/T_{\Delta} \times \mathfrak{h}^{\text{reg}}$ by left multiplication, then π is a G-equivariant mapping.

LEMMA. π is an étale mapping with covering group Γ_n . In fact, its image $\operatorname{Rep}(Q, n\delta)^{reg}$ is open in $\operatorname{Rep}(Q, n\delta)$ and we have an isomorphism

$$\omega: G/T_{\Delta} \times_{\Gamma_n} \mathfrak{h}^{reg} \longrightarrow \operatorname{Rep}(Q, n\delta)^{reg}.$$

Proof. Let $S = \{\underline{X} : x \in \mathfrak{h}^{reg}\}$. Set $N_G(S) = \{g \in G : g \cdot S = S\}$ and

$$Z_G(S) = \{g \in G : g \cdot \underline{X} = \underline{X} \text{ for all } \underline{X} \in S\}.$$

Suppose that $g \cdot \underline{X} = \underline{Y}$ for some $\underline{X}, \underline{Y} \in \mathcal{S}$. This implies that for each $0 \le i \le \ell - 1$

$$g_i \operatorname{diag}(x)^{\ell} g_i^{-1} = \operatorname{diag}(y)^{\ell}.$$

The hypotheses on $\mathfrak{h}^{\text{reg}}$ imply that both $\operatorname{diag}(x)^{\ell}$ and $\operatorname{diag}(y)^{\ell}$ are regular semisimple in $\operatorname{Mat}_n(\mathbb{C})$. Two such elements are conjugate if and only if $g_i \in N_{GL_n(\mathbb{C})}(T) = T \cdot S_n$, where T is the diagonal subgroup of $GL_n(\mathbb{C})$. Hence there exists $\sigma \in S_n$ such that for all i we have $g_i = t_i \sigma$ for some $t_i \in T$, and for all $1 \le r \le n$ we have that $x_{\sigma(r)}^{\ell} = y_r^{\ell}$. Hence $x_{\sigma(r)} = \eta^{m_r} y_r$ for some $m_r \in \mathbb{Z}$. Now we find that $\underline{Y} = g \cdot \underline{X}$ implies that $\operatorname{diag}(y_r) = t_i t_{i+1}^{-1} \operatorname{diag}(\eta^{m_r} y_r)$. Since $y_r \ne 0$ this shows that $t_{i+1} = \operatorname{diag}(\eta^{m_r}) t_i$ for each i. Hence we find that $gT_{\Delta} = (\sigma, \operatorname{diag}(\eta^{m_r})\sigma, \dots, \operatorname{diag}(\eta^{m_r})^{\ell-1}\sigma) T_{\Delta}$.

In particular, if $\underline{X} = \underline{Y}$ we see from above that each $m_r = 0$, so that $Z_G(S) = T_\Delta$. Thus the group Γ_n is isomorphic to $N_G(S)/Z_G(S)$ via the homomorphism that sends $(\eta^{m_1}, \ldots, \eta^{m_r})\sigma$ to $(\sigma, \operatorname{diag}(\eta^{m_r})\sigma, \ldots, \operatorname{diag}(\eta^{m_r})^{\ell-1}\sigma)T_\Delta$.

Now suppose that $\pi(gT_{\Delta}, x) = \pi(hT_{\Delta}, y)$. Then $(h^{-1}g) \cdot \underline{X} = \underline{Y}$ and so we see that $h^{-1}g \in N_G(S)$. This shows that π is the composition

$$G/T_{\Delta} \times \mathfrak{h}^{\text{reg}} \longrightarrow G/T_{\Delta} \times_{\Gamma_n} \mathfrak{h}^{\text{reg}} \stackrel{\sim}{\longrightarrow} \text{Rep}(Q, n\delta)^{\text{reg}}.$$

The first mapping factors out the action of Γ_n , and since Γ_n acts freely on $\mathfrak{h}^{\text{reg}}$ this is an étale mapping. Hence, to prove the lemma, it suffices to show that $\text{Rep}(Q, n\delta)^{reg}$ is open in $\text{Rep}(Q, n\delta)$.

We claim first that $\operatorname{Rep}(Q, n\delta)^{reg}$ is the set O of representations of Q that decompose into n simple modules of dimension δ and whose endomorphism ring is n-dimensional. To prove this, observe that any element of $\operatorname{Rep}(Q, n\delta)^{reg}$ is isomorphic to a representation of the form \underline{X} and so it decomposes into the n indecomposable modules $\underline{X}_1, \ldots, \underline{X}_n$ of dimension δ , where $\underline{X}_i = (x_i, x_i, \ldots, x_i)$. (The condition $x_i \neq 0$ implies simplicity.) Now the representation \underline{X}_i is isomorphic to the representation $(1, 1, \ldots, 1, x_i^\ell)$. By hypothesis $x_i^\ell \neq x_j^\ell$ and so we deduce that the representations \underline{x}_i are pairwise non-isomorphic which ensures that the endomorphism ring of \underline{X} is n-dimensional. This proves the inclusion $\operatorname{Rep}(Q, n\delta)^{reg} \subseteq O$. On the other hand, if V belongs to O then $V = V_1 \oplus \ldots \oplus V_n$, where each V_i is isomorphic to a representation

 $(1, 1, ..., 1, \nu_i)$, for some non-zero scalars ν_i . Moreover, since dim End(V) = n the ν_i must be pairwise distinct. Now, let η_i be an ℓ -th root of ν_i . Then V_i is isomorphic to $(\eta_i, ..., \eta_i)$. Therefore V is isomorphic to the representation X, where $X = (\eta_1, ..., \eta_n)$.

Now we must show that O is open in $\operatorname{Rep}(Q, n\delta)$. We use first the fact that the canonical decomposition of the vector $n\delta$ is $\delta + \delta + \cdots + \delta$, [13, Theorem 3.6]. This means that the representations of $\operatorname{Rep}(Q, n\delta)$ whose indecomposable components all have dimension δ form an open set. Now, consider the morphism f from $\operatorname{Rep}(Q, \delta)$ to $\mathbb C$ that sends the representation $(\lambda_1, \dots, \lambda_\ell)$ to the product $\lambda_1 \dots \lambda_\ell$. The open set $f^{-1}(\mathbb C^*)$ consists of the simple representations of dimension vector δ . Therefore the subset of $\operatorname{Rep}(Q, n\delta)$ consisting of representations which decompose as the sum of n simple representations of dimension vector δ is open. On the other hand, the function from $\operatorname{Rep}(Q, n\delta)$ to $\mathbb N$ that sends a representation V to dim $\operatorname{End}(V)$ is upper semicontinuous. Thus $\{V : \dim \operatorname{End}(v) \leq n\}$ is an open set in $\operatorname{Rep}(Q, n\delta)$. Intersecting these two sets shows that O is open, as required.

2.5. Now we are going to move from Q to Q_{∞} and so we start with the following inclusion:

$$\{([gT_{\Delta}, x], i) : g_0^{-1}i \text{ is a cyclic vector for } \operatorname{diag}(x)\} \subset (G/T_{\Delta} \times_{\Gamma_n} \mathfrak{h}^{\operatorname{reg}}) \times \mathbb{C}^n.$$

By applying $\omega^{-1} \times \mathrm{id}_{\mathbb{C}^n}$, the left-hand side corresponds to an open subset of $\mathrm{Rep}(Q, n\delta) \times \mathbb{C}^n = \mathrm{Rep}(Q_{\infty}, \epsilon)$. Call that set U_{∞} . This is a *G*-invariant open set since the *G*-action on triples is given by

$$h \cdot ([gT_{\Delta}, x], i) = ([hgT_{\Delta}, x], h_0 i)$$

so that $g_0^{-1}i$ is cyclic for diag(x) if and only if $(h_0g_0)^{-1}h_0i$ is cyclic for diag(x). Observe too that U_∞ is an affine variety. Indeed it is defined by the non-vanishing of the morphism

$$s: (G/T_{\Delta} \times_{\Gamma_n} \mathfrak{h}^{\mathrm{reg}}) \times \mathbb{C}^n \longrightarrow \mathbb{C}$$

which sends $([gT_{\Delta}, x], i)$ to $(g_0^{-1}i) \wedge \operatorname{diag}(x) \cdot (g_0^{-1}i) \wedge \cdots \wedge \operatorname{diag}(x)^{n-1} \cdot (g_0^{-1}i)$.

Lemma. The G-action on U_{∞} is free and projection onto the second component

$$\pi_2: U_{\infty} \longrightarrow \mathfrak{h}^{reg}/\Gamma_n$$

is a principal G-bundle.

Proof. Suppose that $h \cdot ([gT_{\Delta}, x], i) = ([gT_{\Delta}, x], i)$. Then $[g^{-1}hgT_{\Delta}, x] = [T_{\Delta}, x]$ and so, by Lemma 2.4, $g^{-1}hg \in T_{\Delta}$.

We have that $h_0i = i$. Setting $i' = g_0^{-1}i$ implies that $g_0^{-1}h_0g_0i' = i'$. By hypothesis i' is a cyclic vector for diag(x). Hence with respect to the standard basis $\{e_j\}$, i' decomposes as $\sum \lambda_j e_j$, where each λ_j is non-zero. Therefore the only diagonal matrix that fixes i' is the identity element. In other words $g_0^{-1}h_0g_0 = I_n$. Since $g^{-1}hg \in T_\Delta$ this implies that $g^{-1}hg = \mathrm{id}$. Thus $h = \mathrm{id}$ and this proves that the action is free.

It remains to prove that each fibre of π_2 is a G-orbit. We take $([gT_{\Delta}, x], i) \in \pi_2^{-1}([x])$. This equals $g \cdot ([T_{\Delta}, x], g_0^{-1}i)$. Now $g_0^{-1}i$ is a cyclic vector for diag(x) and so it has the form $\sum \lambda_j e_j$ with each λ_j non-zero. Let $t = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and consider

 $t = (t, \ldots, t) \in T_{\Lambda}$. We have

$$([gT_{\Delta}, x], i) = g\underline{t}\underline{t}^{-1}([T_{\Delta}, x], g_0^{-1}i) = g\underline{t}\Big([T_{\Delta}, x], \sum_{j=1}^n e_j\Big).$$

This proves that each fibre of π_2 is indeed a *G*-orbit.

2.6. Consider the representation space for the doubled quiver \overline{Q}_{∞} :

$$Rep(\overline{Q}_{\infty}, \epsilon) = \{(X_0, \dots, X_{\ell-1}, Y_0, \dots, Y_{\ell-1}, i, j) : X_r, Y_r \in Mat_n(\mathbb{C}), i \in \mathbb{C}^n, j \in (\mathbb{C}^*)^n\}$$

$$= \{(X, Y, i, j)\}.$$

We can naturally identify it with $T^* \operatorname{Rep}(Q_{\infty}, \epsilon)$. The group G acts on the base and hence on the total space of the cotangent bundle. The resulting moment map

$$\mu: \operatorname{Rep}(\overline{Q}_{\infty}, \epsilon) \longrightarrow \mathfrak{g}^* \cong \mathfrak{g}$$

is given by

$$\mu(X, Y, i, j) = [X, Y] + i j.$$

Theorem (Gan–Ginzburg, Crawley–Boevey). Let $\mu^{-1}(0)$ denote the scheme-theoretic fibre of μ .

- (1) $\mu^{-1}(0)$ is reduced, equidimensional and a complete intersection.
- (2) The moment map μ is flat.
- (3) $\mathbb{C}[\mu^{-1}(0)]^G \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^{\Gamma_n}$.

Proof. (i) This is proved in [7, Theorem 3.2.3].

(ii) This follows from [3, Theorem 1.1] and the dimension formula in [7, Theorem 3.2.3(iii)].

2.7. Let $\mathfrak{X} = \{(X, i) \in \operatorname{Rep}(Q, n\delta) \times \mathbb{P}^{n-1}\}$. This space is the quotient of the (quasi-affine) open subvariety

$$U = \{(X, i) : i \neq 0\} \subset \text{Rep}(O_{\infty}, \epsilon)$$

by the scalar group \mathbb{C}^* . Thus there is an action of PG on \mathfrak{X} . Since

$$T^* \mathbb{P}^{n-1} = \{(i, j) : i \neq 0, ji = 0\} / \mathbb{C}^*$$

we have

$$T^*\mathfrak{X} = \{(X, Y, i, j) \in \operatorname{Rep}(\overline{Q}_{\infty}, \epsilon) : i \neq 0, ji = 0\}/\mathbb{C}^*.$$

The PG action on \mathfrak{X} gives rise to a moment map

$$\mu_{\mathfrak{X}}: T^*\mathfrak{X} \longrightarrow \mathfrak{pg}^* \cong \mathfrak{pg}$$
.

Let

$$\mu_{\mathfrak{X}}^{-1}(0) = \{(X, Y, i, j) \in \text{Rep}(\overline{Q}_{\infty}, \epsilon) : i \neq 0, ji = 0, [X, Y] + ij = 0\}/\mathbb{C}^*$$

denote the scheme theoretic fibre of 0.

PROPOSITION. There is an isomorphism $\mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)]^{PG} \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^{\Gamma_n}$.

Proof. Consider the *G*-equivariant open subvariety of $\mu^{-1}(0)$ given by the nonvanishing of *i*. The variety $\mu^{-1}(0)$ is determined by the conditions [X,Y]+ij=0, and so if we take the trace of this equation then we see that 0=Tr(ij)=Tr(ji)=ji. Thus $\{(X,Y,i,j)\in \operatorname{Rep}(\overline{\mathbb{Q}}_{\infty},\epsilon): i\neq 0, ji=0\}\cap \mu^{-1}(0)$ is an open subvariety of $\mu^{-1}(0)$ and so, in particular, is reduced by Theorem 2.6(1). Hence factoring out by the action of $\mathbb{C}^* \leq G$ shows that $\mu^{-1}_{\pi}(0)$ is reduced and that there is a *PG*-equivariant morphism

$$\mu_{\mathfrak{X}}^{-1}(0) \longrightarrow \mu^{-1}(0)//\mathbb{C}^*.$$

This induces an algebra map

$$\alpha: \mathbb{C}[\mu^{-1}(0)]^G \longrightarrow \mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)]^{PG}.$$

We now follow some of the proof of [7, Lemma 6.3.2]. Write O_1 for the conjugacy class of rank one nilpotent matrices in $\mathfrak{gl}(n)$, and let \overline{O}_1 denote the closure of O_1 in $\mathfrak{gl}(n)$. The moment map $\upsilon: T^*\mathbb{P}^{n-1} \longrightarrow \mathfrak{gl}(n)^* \cong \mathfrak{gl}(n)$ that sends (i,j) to ij gives a birational isomorphism $T^*\mathbb{P}^{n-1} \longrightarrow \overline{O}_1$. Let $J \subset \mathbb{C}[\mathfrak{gl}(n)] = C[Z]$ be the ideal generated by all 2×2 minors of the matrix Z and also by the trace function. Then J is a prime ideal whose zero scheme is \overline{O}_1 and the pullback morphism $\upsilon^*: \mathbb{C}[\mathfrak{gl}(n)]/J \longrightarrow \mathbb{C}[T^*\mathbb{P}^{n-1}]$ is a graded isomorphism.

Now the moment map $\mu_{\mathfrak{X}}: T^*\mathfrak{X} \longrightarrow \mathfrak{g}^*$ factors as the composite

$$T^*\mathfrak{X} = T^*\operatorname{Rep}(Q, n\delta) \times T^*\mathbb{P}^{n-1} \longrightarrow T^*\operatorname{Rep}(Q, n\delta) \times \overline{\mathsf{O}}_1 \stackrel{\theta}{\longrightarrow} \mathfrak{pg}^*,$$

where the first mapping is id $\times v$ and the second mapping θ sends (X, Y, Z) to $[X, Y] + Z_0$, where Z_0 indicates that we place the matrix Z on the copy of $\mathfrak{gl}(n)$ associated to the vertex 0. We have a graded algebra isomorphism

$$\mathbb{C}[T^* \operatorname{Rep}(Q, n\delta)] \otimes \mathbb{C}[\mathfrak{gl}(n)]/J \longrightarrow \mathbb{C}[T^*\mathfrak{X}].$$

Now write $\mathbb{C}[X, Y, Z] = \mathbb{C}[T^* \operatorname{Rep}(Q, n\delta) \times \mathfrak{gl}(n)]$, and let $\mathbb{C}[X, Y, Z]([X, Y] + Z_0)$ denote the ideal in $\mathbb{C}[X, Y, Z]$ generated by all matrix entries of the ℓ matrices $[X, Y] + Z_0$. Let I denote the ideal $\mathbb{C}[X, Y, Z]([X, Y] + Z_0) + \mathbb{C}[X, Y] \otimes J \subset \mathbb{C}[X, Y, Z]$. From the above we have

$$\mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)] \cong \mathbb{C}[T^* \operatorname{Rep}(Q, n\delta) \times \overline{\mathsf{O}}_1] / \mathbb{C}[T^* \operatorname{Rep}(Q, n\delta) \times \overline{\mathsf{O}}_1] \theta^*(\mathfrak{gl}(n)) = \mathbb{C}[X, Y, Z] / \mathbf{I}.$$

Define an algebra homomorphism $r: \mathbb{C}[X, Y, Z] \longrightarrow \mathbb{C}[X, Y]$ by sending $P \in \mathbb{C}[X, Y, Z]$ to the function $(X, Y) \mapsto P(X, Y, -[X, Y]_0)$. Obviously r induces an isomorphism $\mathbb{C}[X, Y, Z]/\mathbb{C}[X, Y, Z]([X, Y] + Z_0) \cong \mathbb{C}[X, Y]/I_1$, where I_1 is the ideal of $\mathbb{C}[\operatorname{Rep}(\overline{Q}, n\delta)] = \mathbb{C}[X, Y]$ generated by the elements

$$\sum_{h(a)=i} X_a X_{a^*} - \sum_{t(a)=i} X_{a^*} X_a$$

for all *i* not equal to zero. Observe that the linear function $P:(X, Y, Z) \mapsto TrZ = Tr([X, Y] + Z_0)$ belongs to the ideal $\mathbb{C}[X, Y, Z]([X, Y] + Z_0)$. We deduce that the mapping *r* sends $\mathbb{C}[X, Y] \otimes J$ to the ideal generated by

rank
$$\left(\sum_{h(a)=0} X_a X_{a^*} - \sum_{t(a)=0} X_{a^*} X_a\right) \le 1.$$

Thus we obtain algebra isomorphisms

$$\mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)] \cong \mathbb{C}[X, Y, Z]/\mathbf{I} \cong \mathbb{C}[T^* \operatorname{Rep}(Q, n\delta)]/I_2,$$

where I_2 is the ideal generated by the elements

$$\sum_{h(a)=i} X_a X_{a^*} - \sum_{t(a)=i} X_{a^*} X_a,$$

for all $1 < i < \ell - 1$, and

rank
$$\left(\sum_{h(a)=0} X_a X_{a^*} - \sum_{t(a)=0} X_{a^*} X_a\right) \le 1.$$

By [10, Theorem 1] the G-invariant (respectively PG-invariant) elements of $\mathbb{C}[\operatorname{Rep}(\overline{Q}_{\infty},\epsilon)]$ (respectively $\mathbb{C}[\operatorname{Rep}(\overline{Q},n\delta)]$) are generated by traces along oriented cycles. Since all oriented cycles in \overline{Q} are oriented cycles in \overline{Q}_{∞} we have a surjective composition of algebra homomorphisms

$$\mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^{\Gamma_n} \cong \mathbb{C}[\mu^{-1}(0)]^G \longrightarrow \mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)]^{PG} \longrightarrow \left(\frac{\mathbb{C}[\operatorname{Rep}(\overline{Q}, n\delta)]}{I_2}\right)^{PG}, \tag{2.7.1}$$

where the first isomorphism is Theorem 2.6(3). The left hand side is a domain of dimension $2 \dim \mathfrak{h}$ and so, to see that the mapping is an isomorphism, it suffices to prove that the right hand side also has dimension $2 \dim \mathfrak{h}$.

Let I_3 be the ideal of $\mathbb{C}[\operatorname{Rep}(\overline{Q}, n\delta)]$ generated by the elements

$$\sum_{h(a)=i} X_a X_{a^*} - \sum_{t(a)=i} X_{a^*} X_a$$

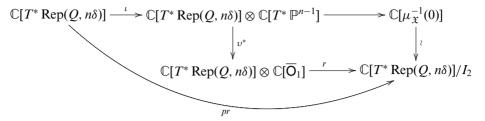
for all *i*. This is the ideal of the zero fibre of the moment map for the PG-action on $Rep(\overline{Q}, n\delta)$. This ideal contains I_2 since the rank condition on the matrices is implied by the commutator condition. Hence there is a surjective mapping

$$\frac{\mathbb{C}[\operatorname{Rep}(\overline{Q}, n\delta)]^{PG}}{I_2^{PG}} \longrightarrow \frac{\mathbb{C}[\operatorname{Rep}(\overline{Q}, n\delta)]^{PG}}{I_3^{PG}}.$$

We do not know yet whether the right hand side is reduced or not, but by [4, Theorem 1.1] the reduced quotient of the right hand side is the ring of functions of the variety $(\mathfrak{h} \oplus \mathfrak{h}^*)/\Gamma_n$. As this variety has dimension $2 \dim \mathfrak{h}$ we deduce that the composition in (2.7.1) is an isomorphism, and hence that

$$\mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)]^{PG} \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^{\Gamma_n}.$$

REMARK. In passing let us note that the commutativity of the following diagram



where $\iota(f) = f \otimes 1$, shows that im ι maps surjectively onto $\mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)]$.

3. Differential operators.

- **3.1. Symplectic reflection algebras.** Let C_{ℓ} be the cyclic subgroup of $SL_2(\mathbb{C})$ generated by $\sigma = \operatorname{diag}(\eta, \eta^{-1})$. The vector space $V = (\mathbb{C}^2)^n$ admits an action of $S_n \wr C_{\ell} = S_n \ltimes (C_{\ell})^n$. Here $(C_{\ell})^n$ acts by extending the natural action of C_{ℓ} on \mathbb{C}^2 , whilst S_n acts by permuting the n copies of \mathbb{C}^2 . For an element $\gamma \in C_{\ell}$ and an integer $1 \leq i \leq n$ we write γ_i to indicate the element $(1, \ldots, \gamma, \ldots, 1) \in (C_{\ell})^n$ which is nontrivial in the i-th factor.
- **3.2.** The elements $S_n \wr C_\ell$ whose fixed points are a subspace of codimension two in V are called *symplectic reflections*. In this case their conjugacy classes are of two types.
 - (S) The elements $s_{ij}\gamma_i\gamma_j^{-1}$ where $1 \le i, j \le n, s_{ij} \in S_n$ is the transposition that swaps i and j, and $\gamma \in C_\ell$.
 - (C_{ℓ}) The elements γ_i for $1 \leq i \leq n$ and $\gamma \in C_{\ell} \setminus \{1\}$.

There is a unique conjugacy class of type (S) and $\ell-1$ of type (C_ℓ) (depending on the non-trivial element we choose from C_ℓ). We shall consider a conjugation invariant function from the set of symplectic reflections to $\mathbb C$. We can identify it with a pair (k,c) where $k \in \mathbb C$ and c is an $(\ell-1)$ -tuple of complex numbers: the function sends elements from (S) to k and the elements $(\sigma^m)_i$ to c_m .

3.3. There is a symplectic form on V that is induced from n copies of the standard symplectic form ω on \mathbb{C}^2 . If we pick a basis $\{x, y\}$ for \mathbb{C}^2 such that $\omega(x, y) = 1$, then we can extend this naturally to a basis $\{x_i, y_i : 1 \le i \le n\}$ of V such that the x's and the y's form Lagrangian subspaces and $\omega(x_i, y_j) = \delta_{ij}$. We let TV denote the tensor algebra on V: with our choice of basis this is just the free algebra on generators x_i, y_i for $1 \le i \le n$. The symplectic reflection algebra $H_{k,c}$ associated to $S_n \wr C_\ell$ is the quotient of $TV * (S_n \wr C_\ell)$ by the following relations:

$$x_{i}x_{j} = x_{j}x_{i}, y_{i}y_{j} = y_{j}y_{i} (for all 1 \le i, j \le n),$$

$$y_{i}x_{i} - x_{i}y_{i} = 1 + k \sum_{j \ne i} \sum_{\gamma \in C_{\ell}} s_{ij}\gamma_{i}\gamma_{j}^{-1} + \sum_{\gamma \in C_{\ell} \setminus \{1\}} c_{\gamma}\gamma_{i} (for 1 \le i \le n),$$

$$y_{i}x_{j} - x_{j}y_{i} = -k \sum_{m=0}^{\ell-1} \eta^{m} s_{ij}(\sigma^{m})_{i}(\sigma^{m})_{j}^{-1} (for i \ne j).$$

(NB: my k is -k for Oblomkov.)

3.4. The spherical algebra. The symmetrising idempotent of the group algebra $C(S_n \wr C_\ell)$ is given by

$$e = \frac{1}{|S_n \wr C_\ell|} \sum_{w \in S_n \wr C_\ell} w.$$

The subalgebra $eH_{k,c}e$ is denoted by $U_{k,c}$ and called the *spherical algebra*. It will be our main object of study.

3.5. Rings of differential operators. Recall the definition of \mathfrak{X} from 2.7. Let $D_{\mathfrak{X}}(nk)$ denote the sheaf of twisted differential operators on \mathfrak{X} and let $D(\mathfrak{X}, nk)$ be its algebra of global sections. This is simply the tensor product $D(\operatorname{Rep}(Q, n\delta)) \otimes D_{\mathbb{P}^{n-1}}(nk)$. (The twisted differential operators on \mathbb{P}^{n-1} can be defined as follows. Let $A_n = \mathbb{C}[x_1, \ldots, x_n, \partial_1, \ldots, \partial_n]$ be the *n*-th Weyl algebra. This is a graded algebra with $\deg(x_i) = 1$ and $\deg(\partial_i) = -1$. The degree zero component is the subring generated by the operators $x_i \partial_j$ which, under the commutator, generate the Lie algebra $\mathfrak{gl}(n)$. Call this subring R. Let $\mathbf{E} = \sum_{i=1}^n x_i \partial_i \in R$ be the Euler operator. Then $D(\mathbb{P}^{n-1}, nk)$ is the quotient of R by the two-sided ideal generated by $\mathbf{E} - nk$.)

The group action of PG on $\mathfrak X$ differentiates to an action of $\mathfrak p\mathfrak g$ on $\mathfrak X$ by differential operators. This gives a mapping

$$\tau: \mathfrak{pg} \longrightarrow D_{\mathfrak{X}}(nk).$$
 (3.5.1)

(One way to understand this is to start back with $U \subset \text{Rep}(Q_{\infty}, \epsilon)$ and look at the G action on U. Differentiating the G-action gives an action of \mathfrak{g} by differential operators on U, $\hat{\tau}: \mathfrak{g} \longrightarrow D_U$. Since \mathbb{C}^* acts trivially on $\text{Rep}(Q, n\delta)$ and by scaling on $i \in \text{Rep}(Q_{\infty}, \epsilon)$, we find that $\hat{\tau}(\text{id}) = 1 \otimes \mathbf{E}$, where $\text{id} = (I_n, I_n, \ldots, I_n) \in \mathbb{C} \subset \mathfrak{g}$. Thus we get an action of \mathfrak{pg} on $(D_U/D_U(1 \otimes \mathbf{E} - nk))^{\mathbb{C}^*} = D_{\mathfrak{X}}(nk)$.

3.6. Recall the Lie algebra $\mathfrak{g} = \text{Lie}(G)$ and its quotient $\mathfrak{pg} = \text{Lie}(PG)$ which is simply $\mathfrak{g}/\mathbb{C} \cdot \text{id}$, where $\text{id} = (I_n, \ldots, I_n) \in \mathfrak{g}$. Let $\chi_c : \mathfrak{g} \longrightarrow \mathbb{C}$ send an element $(X) = (X_0, \ldots, X_{\ell-1}) \in \mathfrak{g}$ to

$$\chi_c(X) = \sum_{r=0}^{\ell-1} C_r \operatorname{Tr}(X_r),$$

where $C_r = \ell^{-1}(1 - \sum_{m=1}^{\ell-1} \eta^{mr} c_m)$ for $1 \le r \le \ell - 1$ and $C_0 = \ell^{-1}(1 - \ell - \sum_{m=1}^{\ell-1} c_m)$. Observe that

$$\chi_c(\mathrm{id}) = \mathrm{Tr}(I_n) \sum_{r=0}^{\ell-1} C_i = n \sum_{r=0}^{\ell-1} \sum_{m=0}^{\ell-1} -\eta^{rm} c_m = 0.$$

In particular χ_c is actually a character of pg.

Let $\chi_k : \mathfrak{g} \longrightarrow \mathbb{C}$ send an element $(X) = (X_0, \ldots, X_{\ell-1})$ to $\chi_k(c) = k \operatorname{Tr}(X_0)$. We shall be regularly using the character $\chi_{k,c} \in \mathfrak{g}^*$ defined by $\chi_{k,c} = \chi_c + \chi_k$.

3.7. Let us recall Oblomkov's deformed Harish–Chandra homomorphism [12]. By Lemma 2.4, $S = \omega(\mathfrak{h}^{reg}/\Gamma_n)$ is a subset of Rep $(Q, n\delta)^{reg}$ which is a slice for the

PG-action on Rep(Q, $n\delta$). Let

$$W'_k = (y_1 \dots y_n)^{-k} \mathbb{C}_{(0)} [y_1^{\pm 1}, \dots, y_n^{\pm 1}],$$

a space of multivalued functions on $(\mathbb{C}^*)^n$. The Lie algebra \mathfrak{g} acts on W_k' by projection onto its 0-th summand $\mathfrak{gl}(n)$, and then by the natural action of $\mathfrak{gl}(n)$ on polynomials (so that E_{ij} acts as $y_i\partial/\partial y_j$). With this action the identity matrix in $\mathfrak{gl}(n)$ becomes the Euler operator \mathbf{E} which acts by multiplication by -nk. Thus we can make W_k' a \mathfrak{pg} -module by twisting W_k' by the character χ_k since then id acts trivially. If we call this module W_k , then $W_k = W_k' \otimes \chi_k$. Now define Fun' to be the space of functions on $\operatorname{Rep}(Q, n\delta)$ of the form

$$f = \tilde{f} \prod_{i=0}^{\ell-1} \det(X_i)^{r_i},$$

where \tilde{f} is a rational function on $\operatorname{Rep}(Q, n\delta)^{reg}$ regular on \mathcal{S} , $r_i = \sum_{j=0}^i C_j + \sigma$ and $\sigma = \ell^{-1} \sum_{s=0}^{\ell-1} sC_s$. Then $(Fun' \otimes W_k)^{\mathfrak{pg}}$ is a space of (\mathfrak{pg}, χ_c) -semi-invariant functions defined on a neighbourhood of \mathcal{S} that take values in W_k . This space is a free $\mathbb{C}[\mathfrak{h}^{reg}]^{\Gamma_n}$ -module of rank 1, the isomorphism being given by restriction to \mathcal{S} . (Note that the determinant of an element of the form (X, \ldots, X) is $\det(X)^{\sum r_i} = 1$ as $\sum r_i = 0$.) Any \mathfrak{pg} -invariant differential operator D acts on such a function f. Oblomkov defines his homomorphism to be the restriction of D(f) to \mathcal{S} .

3.8. We can view the procedure above in terms of $\operatorname{Rep}(Q_{\infty}, \epsilon)$. By Lemma 2.5 we use $S_{\infty} = S \times (1, \dots, 1) \in U_{\infty}$ as a slice for the G-action. The space $S \times (\mathbb{C}^*)^n$ is a closed subset of U_{∞} since the condition that i be cyclic for $\operatorname{diag}(x_1, \dots, x_n)$ is equivalent to $i \in (\mathbb{C}^*)^n$. Thus functions on a neighbourhood of S_{∞} in U_{∞} can be identified with functions from a neighbourhood of S taking values in functions on $(\mathbb{C}^*)^n$. In particular, we can consider elements on $(Fun' \otimes W_k)^{\mathfrak{pg}}$ first as $(\mathfrak{g}, \chi_{k,c})$ -semiinvariant functions from a neighbourhood of S taking values in W'_k and hence as $(\mathfrak{g}, \chi_{k,c})$ -semiinvariant functions on an open set in a neighbourhood of S_{∞} . We can apply any element of S_{∞} to get a homomorphism

$$\mathfrak{F}_{k,c}:D(U_{\infty})^{\mathfrak{g}}\longrightarrow D(\mathfrak{h}^{\mathrm{reg}}/\Gamma_{n}).$$

3.9. Since $\operatorname{Rep}(Q_{\infty}, \epsilon) = \operatorname{Rep}(Q, n\delta) \times \mathbb{C}^n$ there is a mapping

$$\mathfrak{G}: D(\operatorname{Rep}(Q, n\delta))^{\mathfrak{pg}} \longrightarrow D(U_{\infty})^{\mathfrak{g}}$$

that sends $D \in D(\text{Rep}(Q, n\delta))^{pg}$ to $(D \otimes 1)$. Oblomkov's homomorphism is $\mathfrak{F}_{k,c} \circ \mathfrak{G}$.

3.10. Differentiating the *G*-action on U_{∞} gives a Lie algebra homomorphism $\hat{\tau}: \mathfrak{g} \longrightarrow \mathsf{Vect}(U_{\infty})$ which we extend to an algebra map

$$\hat{\tau}: U(\mathfrak{g}) \longrightarrow D(U_{\infty}).$$

By Lemma 2.5, U_{∞} is a principal G-bundle over $\mathfrak{h}^{\text{reg}}/\Gamma_n$, and so a generalisation of [14, Corollary 4.5] shows that the kernel of $\mathfrak{F}_{k,c}$ is $(D(U_{\infty})(\hat{\tau}-\chi_{k,c})(\mathfrak{g}))^{\mathfrak{g}}$. Moreover, since the finite group Γ_n acts freely on $\mathfrak{h}^{\text{reg}}$ we can identify $D(\mathfrak{h}^{\text{reg}}/\Gamma_n)$ with $D(\mathfrak{h}^{\text{reg}})^{\Gamma_n}$.

3.11. Recall that

$$D_{\mathfrak{X}}(nk) \cong \left(\frac{D_U}{D_U(\hat{\tau} - \chi_k)(\mathbb{C} \cdot \mathrm{id})}\right)^{\mathbb{C}^*}.$$

Hence we have

$$\left(\frac{D_U}{D_U(\hat{\tau} - \chi_{k,c})(\mathfrak{g})}\right)^G \cong \left(\frac{D_{\mathfrak{X}}(nk)}{D_{\mathfrak{X}}(nk)(\tau - \chi_c)(\mathfrak{pg})}\right)^{PG},$$
(3.11.1)

where $U = \{(X, i) : i \neq 0\} \subset \text{Rep}(Q_{\infty}, n\delta)$ as in 2.7. We consider the restriction mapping $D_U \longrightarrow D(U_{\infty})$. Composing the global sections of the isomorphism above with this restriction and the homomorphism $\mathfrak{F}_{k,c}$ gives

$$\mathfrak{R}'_{k,c}:\left(\frac{D(\mathfrak{X},nk)}{D(\mathfrak{X},nk)(\tau-\chi_c)(\mathfrak{pg})}\right)^{PG}\longrightarrow D(\mathfrak{h}^{\mathrm{reg}})^{\Gamma_n}.$$

3.12. Let

$$\delta_{k,c}(x) = \delta^{-k-1} \delta_{\Gamma}^{\sigma}$$

where $\delta = \prod_{1 \le i < j \le n} (x_i^{\ell} - x_j^{\ell})$ and $\delta_{\Gamma} = \prod_{i=1}^n x_i$. Define a twisted version of $\mathfrak{R}'_{k,c}$ above by

$$\mathfrak{R}_{k,c}(D) = \delta_{k,c}^{-1} \circ \mathfrak{R}'_{k,c}(D) \circ \delta_{k,c}$$

for any differential operator D.

3.13. Our main result is as follows.

THEOREM. For all values of k and c, the homomorphism $\mathfrak{R}_{k,c}$ has image im $\theta_{k,c}$. In particular we have an isomorphism

$$\theta_{k,c}^{-1} \circ \mathfrak{R}_{k,c} : \left(\frac{D(\mathfrak{X}, nk)}{D(\mathfrak{X}, nk)(\tau - \chi_c)(\mathfrak{pq})} \right)^{\mathfrak{pg}} \stackrel{\sim}{\longrightarrow} U_{k,c}.$$

Proof. Let us abuse notation by writing $U_{k,c}$ for the image of $U_{k,c}$ in $D(\mathfrak{h}^{reg})^{\Gamma_n}$ under $\theta_{k,c}$. Since $\mathfrak{X} = \text{Rep}(Q, n\delta) \times \mathbb{P}^{n-1}$, there is a mapping given by

$$D(\operatorname{Rep}(Q, n\delta))^{PG} \longrightarrow D(\mathfrak{X}, nk)^{PG} \longrightarrow D(\mathfrak{h}^{\operatorname{reg}})^{\Gamma_n},$$

that sends $D \in D(\operatorname{Rep}(Q, n\delta))^{PG}$ to $\mathfrak{R}_{k,c}(D \otimes 1)$. Recall τ from (3.5.1). Since $\operatorname{gr} \tau = \mu_{\mathcal{X}}^*$ we have an inclusion $\operatorname{gr}(D(\mathfrak{X}, nk))\mu_{\mathcal{X}}^*(\mathfrak{pg}) \subseteq \operatorname{gr}(D(\mathfrak{X}, nk)(\tau - \chi_c)(\mathfrak{pg}))$. This gives a graded surjection

$$p: \left(\frac{\operatorname{gr} D(\mathfrak{X}, nk)}{\operatorname{gr}(D(\mathfrak{X}, nk))\mu_{\mathcal{X}}^*(\mathfrak{pg})}\right)^{PG} \longrightarrow \operatorname{gr} \left(\frac{D(\mathfrak{X}, nk)}{D(\mathfrak{X}, nk)(\tau - \chi_c)(\mathfrak{pg})}\right)^{PG}.$$

By Remark 2.7 the composition

$$\operatorname{gr} D(\operatorname{Rep}(Q, n\delta))^{PG} \longrightarrow \operatorname{gr} D(\mathfrak{X}, nk)^{PG} \longrightarrow \left(\frac{\operatorname{gr} D(\mathfrak{X}, nk)}{\operatorname{gr}(D(\mathfrak{X}, nk))\mu_{\mathcal{X}}^{*}(\mathfrak{pg})}\right)^{PG}$$

$$\longrightarrow \operatorname{gr} \left(\frac{D(\mathfrak{X}, nk)}{D(\mathfrak{X}, nk)(\tau - \chi_{c})(\mathfrak{pg})}\right)^{PG}$$

is surjective. Thus the homomorphism

$$D(\operatorname{Rep}(Q, n\delta))^{PG} \longrightarrow \left(\frac{D(\mathfrak{X}, nk)}{D(\mathfrak{X}, nk)(\tau - \chi_c)(\mathfrak{pg})}\right)^{PG}$$

is also surjective. In particular, by 3.9 this implies that the image of $\mathfrak{R}_{k,c}$ equals the image of Oblomkov's Harish–Chandra homomorphism, which, by [12, Theorem 2.5], is $U_{k,c}$.

Thus we have a filtered surjective homomorphism

$$\mathfrak{R}_{k,c}: \left(\frac{D(\mathfrak{X}, nk)}{D(\mathfrak{X}, nk)(\tau - \chi_c)(\mathfrak{pg})}\right)^{PG} \longrightarrow U_{k,c}.$$

Thus the dimension of the left hand side is at least $2 \dim \mathfrak{h} = \dim U_{k,c}$. By Proposition 2.7

$$\left(\frac{\operatorname{gr} D(\mathfrak{X}, nk)}{\operatorname{gr}(D(\mathfrak{X}, nk))\mu_{\mathcal{X}}^{*}(\mathfrak{pg})}\right)^{PG} \cong \mathbb{C}[\mu_{\mathfrak{X}}^{-1}(0)]^{PG} \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^{*}]^{\Gamma_{n}}.$$

Hence p is a surjection from a domain of dimension $2 \dim \mathfrak{h}$ onto an algebra of dimension at least $2 \dim \mathfrak{h}$ and so is an isomorphism. It follows that $(D(\mathfrak{X}, nk)/D(\mathfrak{X}, nk)(\tau - \chi_c)(\mathfrak{pg}))^{\mathfrak{pg}}$ is a domain of dimension $2 \dim \mathfrak{h}$. This implies that $\mathfrak{R}_{k,c}$ is an isomorphism.

4. Application: Shift functors.

4.1. The Holland-Schwarz Lemma. We wish to understand the space

$$\frac{D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{D(\operatorname{Rep}(Q_{\infty}, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})}$$

As we observed in the proof of Theorem 3.13 there is a natural surjective homomorphism

$$\frac{\operatorname{gr} D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{\operatorname{gr} D(\operatorname{Rep}(Q_{\infty}, \epsilon))\mu^{*}(\mathfrak{g})} \longrightarrow \operatorname{gr} \left(\frac{D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{D(\operatorname{Rep}(Q_{\infty}, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})}\right). \tag{4.1.1}$$

It turns out that this is an isomorphism.

LEMMA (Schwarz, Holland). The homomorphism (4.1.1) is an isomorphism of $\mathbb{C}[T^*\operatorname{Rep}(Q_\infty,\epsilon)]$ -modules.

Proof. This is [9, Lemma 2.2] since, by Theorem 2.6 (2), the moment map μ is flat.

4.2. This lets us prove the first part of the isomorphism in the statement of Theorem 1.4.

LEMMA. There is an algebra isomorphism

$$\left(\frac{D(\operatorname{Rep}(Q_{\infty},\epsilon))}{D(\operatorname{Rep}(Q_{\infty},\epsilon))(\hat{\tau}-\chi_{k,c})(\mathfrak{g})}\right)^{G} \longrightarrow \left(\frac{D(\mathfrak{X},nk)}{D(\mathfrak{X},nk)(\tau-\chi_{c})(\mathfrak{pg})}\right)^{PG}.$$

Proof. We have a natural pg-equivariant mapping

$$D(\operatorname{Rep}(Q_{\infty}, \epsilon))^{\mathbb{C}^*} \longrightarrow D_U^{\mathbb{C}^*} \longrightarrow D_{\mathfrak{X}}(nk)$$

which induces a homomorphism

$$D(\operatorname{Rep}(Q_{\infty}, \epsilon))^G \longrightarrow \left(\frac{D(\mathfrak{X}, nk)}{D(\mathfrak{X}, nk)(\tau - \chi_c)(PG)}\right)^{\mathfrak{pg}}.$$

This is surjective since, as we observed in the proof of Theorem 3.13, the image of $D(\operatorname{Rep}(Q, n\delta))^{PG} \subset D(\operatorname{Rep}(Q_{\infty}, \epsilon)^G)$ spans the right hand side. By (3.11.1) the kernel of this homomorphism includes the ideal $(D(\operatorname{Rep}(Q, \infty), \epsilon)(\hat{\tau} - \chi_{k,c})(\mathfrak{g}))^G$. Hence we have a surjective homomorphism

$$\left(\frac{D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{D(\operatorname{Rep}(Q, \infty), \epsilon)(\hat{\tau} - \chi_{k,c})(\mathfrak{g})}\right)^{G} \longrightarrow \left(\frac{D(\mathfrak{X}, nk)}{D(\mathfrak{X}, nk)(\tau - \chi_{c})(\mathfrak{pg})}\right)^{PG}.$$
 (4.2.1)

By Lemma 4.1 and Proposition 2.7, there is an isomorphism

$$\left(\operatorname{gr} \frac{D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{D(\operatorname{Rep}(Q, \infty), \epsilon)(\hat{\tau} - \chi_{k,c})(\mathfrak{g})}\right)^{G} \cong \left(\frac{\operatorname{gr} D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{\operatorname{gr} D(\operatorname{Rep}(Q_{\infty}, \epsilon))\mu^{*}(\mathfrak{g})}\right)^{G} = \mathbb{C}[\mu^{-1}(0)]^{G}$$

$$= \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^{*}]^{\Gamma_{n}}.$$

This shows that the algebra on the left is a domain of dimension $2 \dim \mathfrak{h}$ and so (4.2.1) is also injective, as required.

4.3. Shifting. The previous two lemmas provide us with an interesting series of bimodules. Given a character Λ of G we define

$$B_{k,c}^{\Lambda} = \left(\frac{D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{D(\operatorname{Rep}(Q_{\infty}, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})}\right)^{\Lambda}$$

to be the set of (G, Λ) -semiinvariants. Thanks to Lemma 4.2 and Theorem 3.13 this is a right $U_{k,c}$ -module. Now observe that if $x \in \mathfrak{g}$ and $D \in D(\operatorname{Rep}(Q_{\infty}, \epsilon))^{\Lambda}$ then

$$[\tau(x), D] = \lambda(x)D$$
,

where $\lambda = d\Lambda$. Hence $B_{k,c}^{\Lambda}$ is a left $(D(\operatorname{Rep}(Q_{\infty}, \epsilon))/D(\operatorname{Rep}(Q_{\infty}, \epsilon))(\hat{\tau} - \chi_{k,c} - \lambda)(\mathfrak{g}))^G$ -module and so tensoring sets up a *shift functor*

$$S_{k,c}^{\Lambda} : \left(\frac{D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{D(\operatorname{Rep}(Q_{\infty}, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})}\right)^{G} \operatorname{-mod}$$

$$\longrightarrow \left(\frac{D(\operatorname{Rep}(Q_{\infty}, \epsilon))}{D(\operatorname{Rep}(Q_{\infty}, \epsilon))(\hat{\tau} - \chi_{k,c} - \lambda)(\mathfrak{g})}\right)^{G} \operatorname{-mod}.$$

4.4. The character group of G is isomorphic to \mathbb{Z}^{ℓ} via

$$(i_0,\ldots,i_{\ell-1})\mapsto \left((g_0,\ldots,g_{\ell-1})\mapsto \prod_{r=0}^{\ell-1}\det(g_r)^{i_r}\right).$$

Corresponding to the standard basis element ϵ_i is the character χ_i of \mathfrak{g} that sends $X \in \mathfrak{g}$ to $\text{Tr}(X_i)$.

LEMMA. The bimodule $B_{k,c}^{\epsilon_i}$ above is a $(U_{k',c'}, U_{k,c})$ -bimodule, where k' = k+1 and $c' = c + (1 - \eta^{-i}, 1 - \eta^{-2i}, \dots, 1 - \eta^{-(\ell-1)i})$.

Proof. Recall that (k, c) corresponds to the character of \mathfrak{g} we called $\chi_{k,c}$ which is defined as

$$\chi_{k,c}(X) = (C_0 + k) \operatorname{Tr}(X_0) + \sum_{j=1}^{\ell-1} C_j \operatorname{Tr}(X_j),$$

where $C_r = \ell^{-1}(1 - \sum_{m=1}^{\ell-1} \eta^{mr} c_m)$ for $1 \le r \le \ell - 1$ and $C_0 = \ell^{-1}(1 - \ell - \sum_{m=1}^{\ell-1} c_m)$. We need to calculate (k', c') so that $\chi_{k,c} + \chi_i = \chi_{k',c'}$. We have

$$(\chi_{nk,c} + \chi_i)(X) = (C_0 + k) \operatorname{Tr}(X_0) + \operatorname{Tr}(X_i) + \sum_{j=1}^{\ell-1} C_j \operatorname{Tr}(X_j)$$
$$= (C_0' + k') \operatorname{Tr}(X_0) + \sum_{i=1}^{\ell-1} C_j' \operatorname{Tr}(X_j).$$

Calculation shows that k' = k + 1 and that if i = 0 then $C'_j = C_j$ and otherwise

$$C'_{j} = C_{j} + \begin{cases} -1 & \text{if } j = 0, \\ 1 & \text{if } j = i, \\ 0 & \text{otherwise.} \end{cases}$$

These unpack to give $c'_m = c_m + 1 - \eta^{-mi}$.

4.5. Question. Thus for each $0 \le i \le \ell - 1$ we have a *shift functor*

$$S_i: U_{k,c}\text{-mod} \longrightarrow U_{k+1,c'}\text{-mod}$$

where c' is as above. When is this an equivalence of categories?

REMARK. Shift functors are also constructed in [1] and [15]. Hopefully they agree with the functors here.

REFERENCES

- 1. Y. Berest and O. Chalykh, Quasi-invariants of complex reflection groups, in preparation.
- **2.** Y. Berest, P. Etingof and V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, *Duke Math. J.* **118**, 279–337.
- **3.** W. Crawley-Boevey, Geometry of the moment map for representations of quivers, *Compositio Math.* **126** (2001), 257–293.
- **4.** W. Crawley-Boevey, Decomposition of Marsden-Weinstein reductions for representations of quivers, *Compositio Math.* **130** (2002), 225–239.
- **5.** P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, *Invent. Math.* **147** (2002), 243–348.
- **6.** P. Etingof, W. L. Gan, V. Ginzburg and A. Oblomkov, The Γ-Harish–Chandra homomorphism, RT: 0511489.
- 7. W. L. Gan and V. Ginzburg, Almost commuting variety, \mathcal{D} -modules, and Cherednik algebras, RT:0409262, I.M.R.N, to appear.
- **8.** I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes I, *Adv. Math.* **198** (2005), 222–274.
- I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes II, *Duke Math. J.*, to appear.
- **9.** M. Holland, Quantization of the Marsden–Weinstein reduction for extended Dynkin quivers, *Ann. Scient. École Norm. Sup.* (1999), 813–834.
- **10.** L. Le Bruyn and C. Procesi, Semisimple representations of quivers, *Trans. Amer. Math. Soc.* **317** (1990), 585–598.
- 11. T. Levasseur and J.T. Stafford, The kernel of a homomorphism of Harish-Chandra, *Ann. Scient. École. Norm. Sup.* 29 (1996), 385–397.
- **12.** A. Oblomkov, Deformed Harish-Chandra homomorphism for the cyclic quiver, *RT:0504395*, April 2005.
- 13. A. Schofield, General representations of quivers, *Proc. London Math. Soc.* (3) 65 (1992), 46–64.
- **14.** G. W. Schwarz, Lifting differential operators from orbit spaces, *Ann. Scient. École. Norm. Sup.* **28** (1995), 253–306.
 - **15.** R. Vale, Diagonal coinvariants for $\mathbb{Z}_m \wr S_n$, *RT:0505416*, May 2005.