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Local solutions to positive characteristic

non-Archimedean differential equations

João Pedro Pinto dos Santos

Abstract

In the complex domain, one can integrate (solve) holomorphic ordinary differential equa-
tions (ODEs) near a non-singular point. We study the existence of solutions in the case of
a positive characteristic base field k which is complete with respect to a non-Archimedean
absolute value. ODEs are substituted by modules over a ring of analytic functions
endowed with an action of all differential operators. The monodromy groups associated
to the corresponding category are computed.

1. Introduction

Cauchy established the existence and uniqueness of local solutions to ordinary differential equations
in the complex domain. Nowadays, the usual proof makes use of some contraction principle in
complete metric spaces, but Cauchy’s proof is, by far, the most interesting one for the algebraist. It
consists of: (1) solving the equations formally in power series; and (2) taking care of convergence (see,
for example, the last chapter of [Car61]). Once that has been done, the general theory of complex
analysis assures: (3) convergence in bigger domains. In the characteristic zero non-Archimedean
setting (3) fails but (1) and (2) can be carried [DGS94, III, 5]. The goal of this work is to understand
(2) in the case of an algebraically closed base field k of positive characteristic which is complete
with respect to a non-trivial non-Archimedean absolute value | · | : k∗ → R>0.

The geometric analogue of differential equations in positive characteristic are modules having
the action of all differential operators. For these modules one is presented with the basic question
of convergence of formal solutions. That is, let R be a ring of power series

∑∞
0 aix

i with some
boundedness condition on the |ai| (for example, that given in Definition 2 below). Let ∂n be the
operators analogous to

1
n!

dn

dxn

on R. A linear stratified differential equation of rank µ is a system of equations

∂ny1 = b
(n)
11 y1 + · · · + b

(n)
1µ yµ

...

∂nyµ = b
(n)
µ1 y1 + · · · + b(n)

µµ yµ

(n ∈ N) (1)

where the b(n)
ij are in R and the matrices (b(n)

ij ) satisfy some set of relations. These relations reflect the
relations between the operators ∂n, such as (∂1)p = 0 and ∂0 = id. If we were in characteristic zero,
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the constraints would restrict the (b(n)
ij ) in such a way that (b(1)ij ) is already sufficient information to

determine the other matrices. It is quite easy to see that these equations will always have solutions
(y1, . . . , yµ) in the ring k[[x]]; in fact, there exists a Y = (yij) ∈ GLµ(k[[x]]) whose columns are
solutions. Moreover, because the space of solutions will have k-dimension at most µ, it follows that
any other µ×µ invertible matrix whose columns are solutions to (1) is of the form Y ·A,A ∈ GLµ(k).

We then ask about convergence. We will see below (the example after Lemma 8) that it is not
always possible to find Y with entries in

k{x} :=
{ ∞∑

i=0

aix
i; limsup i

√
|ai| < +∞

}
.

Presented with such an impossibility, we then want to understand how far we are from solving
these equations with convergent functions (in k{x}). At this point it becomes convenient to intro-
duce an object controlling germs of stratified equations, the local fundamental group scheme Πloc

(Definition 9) and study its monodromy groups, which equal algebraic quotients of Πloc.
Our main result (Theorem 14) is to characterize these monodromy groups. Both the proof and the

statement were inspired by Matzat and van der Put’s solution of an inverse problem of differential
Galois theory in positive characteristic [MvdP03, § 7]. In fact, we really show the following. By
twisting meticulously the construction of [MvdP03, § 7], certain stratified differential equations over
A

1
k (not all of them!) will keep their global monodromy groups as they come closer to the origin. Of

course, there are entire families of non-trivial stratified differential equations over A
1
k which become

trivial when approaching the origin (etale coverings and the example in § 4). The crux of the proof is
really Lemma 15. To repeat, this is very peculiar to finite characteristic, as over Cp the monodromy
will vanish when approaching the origin.

Finally, we make a topological consideration. Convergence itself can be thought of as a topological
problem, i.e. find ‘small neighbourhoods’ in which all solutions exist as ‘analytic functions’ (this
should be understood in the sense of Grothendieck: regular functions of the structure ring of some
site). The existence of formal solutions is the question examined in the smooth topology (this is
a consequence of the Artin–Néron–Popescu–Rotthaus desingularization: see [AR88] for example).
This work studies convergence in the rigid topology.

Throughout, we will let k be an algebraically closed field of positive characteristic p complete
with respect to a non-trivial non-Archimedean absolute value

| · | : k∗ → R>0.

By a group or a group scheme we will mean an affine group scheme over k (Hopf algebra).

2. Setting

Given a ρ ∈ |k∗|, let

O(ρ) =
{ ∞∑

i=0

aix
i ∈ k[[x]]; lim

i
|ai|ρi = 0

}
(2)

denote the affinoid algebra of analytic functions on the disc

D(ρ) = {z ∈ k; 0 � |z| � ρ}.
Since ρ will be fixed in what follows, we will omit it from the notation and write R := O(ρ) and

D = D(ρ). On R, there are k-linear homomorphisms ∂n defined by

∂n

(∑
i�0

aix
i

)
=

∑
i�n

(
i
n

)
· aix

i−n, n � 0.
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Positive characteristic differential equations

These operators are the formal equivalent of (1/n!)(dn/dxn) in positive characteristic. Note that:

(i) ∂0 = id;

(ii) ∂n(fg) =
∑
∂r(f)∂s(g), where the sum is over all r, s � 0 with r + s = n;

(iii) ∂m ◦ ∂n =
(
m+ n
m

)
∂m+n.

The subring of Endk(R) generated over R by all these operators is called the ring of differential
operators and is denoted by D .

Definition 1. Let M be a finite R module. A stratification on M is a homomorphism of R-algebras

∇ : D → Endk(M).

This amounts to a family of k-linear homomorphisms {Dn}n∈N satisfying:

(i) D0 = id;

(ii) Dn(f · e) =
∑
∂r(f)Ds(e) for f ∈ R and e ∈M , the sum being over all r, s � 0 with r+ s = n;

(iii) Dm ◦Dn =
(
m+ n
m

)
Dm+n.

The category of stratified modules is denoted str(D).

The reader is directed to the Appendix to Chapter 5 of [dSan06] for a more sheaf-theoretical
definition of stratified modules.

The category of modules with a stratification forms an abelian tensor category as one can see
by defining the tensor product stratification module

(M,DM
n ) ⊗ (N,DN

n ) := (M ⊗R N,D
M⊗N
n )

where
DM⊗N

n (s⊗ t) =
∑

DM
i (s) ⊗DN

j (t),

sum over all i, j � 0 such that i+ j = n.
Modules with stratification are locally free. This can be done by copying the proof of Propo-

sition 8.9 in [Kat70] (which also shows the existence of formal solutions) or using the structure of
F -divided module (see below). In particular, str(D) is neutral Tannakian, if one takes the fibre at 0
as fibre functor [DM82, Definition 2.19, p. 138].

Another basic result on stratified modules is Katz’s theorem. It connects the definition of
stratified module to that of F -divided module. Let F : R→ R be the absolute Frobenius.

Definition 2. The category of F -divided modules on D, Fdiv(D), has objects {Mn, ϕn}n∈N, where
Mn are finite R-modules and ϕn : F ∗Mn+1 → Mn is an isomorphism of R-modules. An arrow
θ• : {Mn, ϕn} → {Nn, ψn} is a sequence of R-linear homomorphisms θn : Mn → Nn such that
ψn ◦ F ∗(θn+1) = θn ◦ ϕn.

The category Fdiv(D) is obviously a tensor category; using faithful flatness of F , it is also
abelian with kernels and cokernels defined termwise. By a lemma of Shepherd-Barron [dSan06], if
{Mi} is an F -divided module, then all the Mi are locally free over R. The connection between str
and Fdiv is given by the following theorem.

Theorem 3 (Katz). The categories Fdiv(D) and str(D) are naturally equivalent tensor categories.

See [Gie75] or Chapter 5 of [dSan06] for the construction of these equivalences. A short indication
is given in § 3.1 below.

1467

https://doi.org/10.1112/S0010437X07003089 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003089


J. P. P. dos Santos

Remark. (a) Another name for Theorem 3 is ‘the theorem of Cartier–Katz’ (used in [dSan06]). The
presence of Cartier’s name is used to remind us of the idea behind a proof.

(b) About the terminology: Grothendieck introduced stratified sheaves in [Gro68] and Gieseker
introduced F -divided sheaves in [Gie75] (they were then called flat sheaves). In [MvdP03] stratified
sheaves over a field are called ID-modules and F -divided sheaves have no special name. Of course,
we are all talking about the same objects, but Grothendieck’s terminology seems to facilitate the
relation with geometry. Perhaps a more indicative name is D-module, but we have the impression
that this term is overburdened.

3. Fundamental matrices and monodromy groups

In this section we study two aspects of stratified modules. The first (§ 3.1) is the problem of finding
formal solutions to a system like in (1). As remarked in the Introduction, this step goes back to
Cauchy and is conceptually very useful. The notion of F -division plays a central role: we are able
to find a basis for the solution space using a special x-adic limit of matrices, called a fundamental
matrix.

Second (§ 3.2), we introduce the F -divided modules of Matzat and van der Put. The monodromy
group of such a module is naturally a closed subgroup of a prescribed algebraic group – this will be
important when computing the monodromy.

We keep the notation of § 2: ρ ∈ |k∗|, R is the ring of analytic functions on D = D(ρ) and str is
the category of stratified (F -divided) modules over D. Also, let Rn = R∩ k[[xpn

]] = Rn ⊂ R be the
image of R under Fn : R→ R.

3.1 Fundamental matrices

Stratified modules are free because they are locally free and R is a principal ideal domain. Take M
to be a free R-module of rank µ with a stratification ∇ and let {M = M0 ⊃ M1 ⊃ · · · } be the
F -division of M obtained via Katz’s theorem; Mn is the subspace of elements in M killed by all
∇(∂ν) with 0 < ν < pn. We see each Mn as a subgroup of M which is invariant under multiplication
by Rn and the natural inclusion Mn+1 ⊂ Mn induces an isomorphism Mn+1 ⊗Rn+1 Rn → Mn of
Rn-modules. Take e(0) = (e(0)1 , . . . , e

(0)
µ ) as a basis of M = M0 and let e(n) be a basis of Mn over Rn.

If we agree to write the column vectors of e(n) in the basis e(0), then e(n) is a matrix in GLµ(R).
Let ϕn be the isomorphism Mn+1 ⊗Rn+1 Rn → Mn and identify it with the invertible matrix with
coefficients in Rn representing the lower horizontal arrow in the diagram below.

Mn+1 ⊗Rn+1 Rn

via e(n+1)

��

ϕn �� Mn

via e(n)

��
R⊕µ

n
�� R⊕µ

n

In matricial terms, we have e(n+1) = e(n) · ϕn. If we let fn := ϕ0 · · ·ϕn−1, then the operators
Dn := ∇(∂n) will be given by (following the recipe given by Katz’s theorem)

Dν(e(0)) := (Dνe
(0)
1 , . . . ,Dνe

(0)
µ ) = e(0) · fn · ∂ν(f−1

n ), 0 < ν < pn.

If we take ϕn(0) = I (which is always possible if we pick e(n) conveniently), the sequence {fn}
will converge to some element Φ of GLµ(k[[x]]) (in the x-adic topology!) and the columns of Φ are
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all killed by Dn for n > 0. To see this, it is sufficient to prove that, for any n > 0,

Dn(e(0) · Φ) ∈
( ⋂

m�0

xmM̂

)µ

= 0,

where M̂ ⊃ M is the x-adic completion of M . But if ν is large enough, there is a matrix γ with
power series entries such that Φ − fν = xpn · γ and hence

Dn(e(0) · Φ) = Dn(e(0) · (Φ − fν)) = xpn
Dn(e(0) · γ).

Also note that any s ∈ M̂ which is killed by all Dn with n > 0 is a k-linear combination of the
columns of e(0) · Φ:

Homstr(D(ρ))(�,M) = {α ∈ kµ; Φ · α ∈M}.
Definition 4. Assume all bases e(n) have been chosen to satisfy ϕn(0) = I. The matrix Φ con-
structed above is a fundamental matrix of (M,∇). If all the choices are explicit, we say that Φ is
the fundamental matrix.

3.2 The modules of Matzat and van der Put
Definition 5. Given a k-vector space V of finite dimension and a sequence {ϕn ∈ GL(V ⊗Rn)}n∈N
with ϕn(0) = I, we obtain an F -divided module M(ϕ•) by setting M(ϕ•)n = V ⊗k Rn and using
the ϕn as transition isomorphisms.

This association preserves the constructions of linear algebra:

M((ϕ ⊗ ψ)•) = M(ϕ•) ⊗M(ψ•), M((ϕ∨)•) = M(ϕ•)∨

etc. The fundamental matrix for M(ϕ•) is just the x-adic limit limn ϕ0 · · ·ϕn.
If we take ϕn ∈ G(Rn) ⊆ GL(V ⊗ Rn), for some algebraic subgroup G of GL(V ), then the

monodromy group of M(ϕ•) in str(D) will be naturally a subgroup of G (Lemma 7). First we need
the formal definition of monodromy or Galois group.

Definition 6. Let (A,⊗) be a neutral Tannakian category and V an object. Let 〈V 〉⊗ be the full
subcategory of A having as objects the sub-quotients (= quotients of sub-objects) of objects of the
form

V
(a1,...,as)
(b1,...,bs)

:= V a1
b1

⊕ · · · ⊕ V as
bs
, V a

b := V ⊗a ⊗ (V ∨)⊗b, (3)

where s runs over the non-negative integers and (a1, . . . , as), (b1, . . . , bs) run over all the s-uples of
non-negative integers. The monodromy group of V is the group scheme associated, via Tannakian
duality [DM82, 2.11], to the category 〈V 〉⊗. The notation is: Gmono(V,A) or G(V,A).

Returning to the monodromy group of M(ϕ•), note that to any representation

θ : G→ GL(W )

we can associate another stratified module using θ(ϕn) ∈ GL(W ⊗Rn); this defines a tensor functor
τ : Repk(G) → str(D). Since every representation of G is a sub-quotient of some

V
(a1,...,as)
(b1,...,bs)

,

τ takes values in 〈M(ϕ•)〉⊗, which is equivalent to Repk(Gmono(M(ϕ•), str)). Because τ(V ) =
M(ϕ•), the group homomorphism Gmono(M(ϕ•), str) → G obtained from τ is a closed embedding
[DM82, 2.21, p. 139]. This shows the next result.

Lemma 7 (compare [MvdP03, Proposition 5.3]). If the matrices ϕn defining the stratified module
M(ϕ•) belong to G(Rn), G ⊆ GL(V ) a closed subgroup, then Gmono(M(ϕ•), str) is naturally a
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closed subgroup of G. More precisely, the tensor functor τ : Repk(G) → str defined by τ(V ) =
M(ϕ•) induces a closed embedding.

Remark. Kedlaya proves [Ked04] that every locally free module over a polydisc is free (the analogue
of the Quillen–Suslin theorem). So, one can control stratified modules over such affinoids by the
method of fundamental matrices.

4. One-dimensional modules

Keep ρ ∈ |k∗|. Let D again denote the disc {z ∈ k : 0 � |z| � ρ} and R its ring of analytic functions.
For M ∈ str(D), let Φ denote the fundamental matrix (after a choice of the e(n)). Assume that M
is of rank one and write ϕn = 1 − xpn

γn.

Lemma 8. If r ∈ |k∗| is strictly smaller than ρ, then M restricted to D(r) is trivial (that is, the
convergence radius of Φ is ρ).

Proof. Let r < ρ be in |k∗| and let ‖ · ‖r denote the spectral norm of the disc D(r):∥∥∥∥∑
i�0

aix
i

∥∥∥∥
r

= sup
i

|ai|ri = sup
z∈D(r)

∣∣∣∣∑
i�0

aiz
i

∣∣∣∣.
We have the estimates:

(i) ‖ϕn‖r = 1;
(ii) limn ‖ϕn − 1‖r = 0.

The lemma is a consequence of (i) and (ii) since ‖ · ‖r is multiplicative on O(r) and this algebra
is complete with respect to it [BGR84, § 6.1.5, p. 234]. Both (i) and (ii) will be a consequence of
Proposition 5.1.3/1 on p. 193 of [BGR84]; this proposition states that f ∈ O(1)−{0} is invertible if
and only if ‖f‖1 = |f(0)| and ‖f−f(0)‖1 < ‖f‖1. Because ρ ∈ |k∗|, O(ρ) is isometrically isomorphic
to O(1); it follows that

‖xpn
γn‖ρ < 1.

Now (i) follows from the fact that ‖xpn
γn‖r � ‖xpn

γn‖ρ < 1 and ‖ ·‖r is non-Archimedean. Item (ii)
follows from

‖ϕn − 1‖r = ‖xpn‖r · ‖γn‖r � rpn · ‖γn‖ρ < rpn
ρp−n

= (r/ρ)p
n
.

Example. If we try to adapt the same proof to the case of higher rank, we will find an obstruction
in the existence of nilpotents in the algebra Endk(R⊕m) – this fact destroys the multiplicativity of
norms. The entries of an invertible matrix in End(R⊕m) might have large spectral norms: take(

1 ∗
0 1

)
for example. If we pick

ϕn =
(

1 anx
pn

0 1

)
,

then

Φ = lim
n
ϕ0 · · ·ϕn =

(
1 θ
0 1

)
, θ =

∞∑
i=0

aix
pi
.

Choosing the ai conveniently, this gives an example of a stratified module over D which, even
if we shrink D, is not trivial. On the other hand, taking ai = 1 gives a stratified module over A

1
k

which has ‘global’ monodromy Ga but becomes trivial in any disc D(r) with r < 1.
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The above stratified module has one solution (horizontal vector) (1, 0)t. This vector is also fixed
by all ϕn(c) where c runs over k. To produce stratified modules with no solutions at all (even in a
small disc), we will avoid the existence of such a fixed vector. See § 6.1.

5. Local monodromy groups

As we are really interested in convergence in some neighbourhood of the origin, str(D(ρ)) is not
what we want. Neither is str(k{x}) (see the remark below). The useful concept is contained in the
next definition.

Definition 9. We define T to be the Tannakian category

lim−→
ρ

str(D(ρ)), ρ ∈ |k∗|.

That is, the class of objects ObT is just the union of the class of objects in str(D(ρ)) for all ρ ∈ |k∗|
and the arrows between M ∈ str(D(ρ1)) and N ∈ str(D(ρ2)) are

lim−→Homstr(D(r))(M |D(r), N |D(r)), r < min(ρ1, ρ2).

Then Πloc is the fundamental group scheme associated to it via the fibre functor 0∗ : T →
(k-mod) (see [DM82, Theorem 2.11]).

Remark. The category T is not the category of stratified modules over k{x} because the matrices
defining Dn, for an object of T , will have a common convergence radius. It is possible to construct
stratified modules over k{x} whose monodromy group is Gm.

We are interested in the algebraic quotients of Πloc, which are the monodromy groups of its ob-
jects. The reader should notice that the monodromy group G(?,T ) (Definition 6) is the obstruction
to finding a fundamental matrix which converges in a neighbourhood of the origin: G(?,T ) is trivial
if and only if such a matrix exists.

We give an adaptation of Lemma 7 to this situation.

Lemma 10. (i) We use the same notation as in Lemma 7. The monodromy group of M(ϕ•) in the
category T is a closed subgroup of the monodromy group of M(ϕ•) in str(D(ρ)). In particular, it
is a closed subgroup of G.

(ii) Moreover, we let ρ′ < ρ be in |k∗| and let M (respectively M ′) denote an object of str(D(ρ))
(respectively its restriction to D(ρ′)). Then there exists a natural closed embedding

ι : G(M ′, str(D(ρ′))) � � �� G(M, str(D(ρ)))

of the monodromy groups and under this homomorphism the representation corresponding to M
restricts to the representation corresponding to M ′.

Proof. The monodromy group of M(ϕ•) in str(D(ρ)) is the Tannakian fundamental group associ-
ated to the category of all sub-quotients in str(D(ρ)) of M(ϕ•)

(a1,...,as)
(b,...,bs)

(notation is that of (3)).
The monodromy of M(ϕ•) in T is analogous and the lemma is just an application of [DM82,
Proposition 2.21, p. 139].

The second part is just as easy (and uses again the same proposition in [DM82]).

Corollary 11. Let M be an object of T . Then there are a ρ ∈ |k∗| and an Mρ such that M is the
restriction of Mρ and the natural homomorphism G(M,T ) → G(Mρ, str(D(ρ))) is an isomorphism.

Proof. This is a consequence of the second part of Lemma 10 and the fact that all monodromy
groups in str(D(r)) are reduced (see [dSan06, ch. 1]).
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Given a reduced algebraic group G over k, we introduce the groups p(G) and G(p). The group
p(G) is the smallest closed subgroup of G containing all the elements of order a power of p. Obviously
it is a normal subgroup.

Lemma 12 [MvdP03, Claim, p. 28]. The notation is as above. We have that:

(i) p(G) is an algebraic subgroup of G;

(ii) the connected component of the quotient G(p) := G/p(G) is either trivial or a torus and π0G
(p)

is a finite group of order prime to p.

Lemma 13. Let G be an algebraic quotient of Πloc. Then we have that:

(i) G is reduced;

(ii) if G is finite, it is trivial;

(iii) G is connected and equals p(G).

Proof. The proof of (i) follows from Corollary 11 and the fact (which was used to prove the corollary)
that all the monodromy groups of str(D(ρ)) are reduced. The validity of (ii) is a consequence of (i)
and the fact that the local ring lim→ρ O(D(ρ)) = k{x} is strict henselian [Nag62, Theorem 45.5,
p. 193] – for more information on F -divided modules and etale coverings the reader is directed
to [dSan06, ch. 1]. We now prove (iii). By item (ii), Πloc has no non-trivial finite etale quotients, so
π0(G(p)) = {1} and G(p) = (G(p))◦, which should be either trivial or a torus. By Lemma 8, every
diagonal quotient of Πloc is trivial. Hence, G(p) = {1}.

This lemma takes care of the ‘only if’ part of our following main result.

Theorem 14. An algebraic group G is a quotient of Πloc if and only if it is reduced, connected and
generated, as an algebraic group, by its elements of order a power of p.

The proof is given below in Theorem 19: given a connected reduced algebraic group G = p(G),
we construct a module in T whose monodromy is G.

6. Differential equations with no non-trivial convergent solutions
and proof of Theorem 14

In this section we will give a proof of Theorem 14 (our main theorem). The idea is as follows. Let
G = p(G) ⊆ GL(m). We want to find matrices ϕn ∈ G(Rn) such that the canonical embedding of
the monodromy group H of M(ϕ•) in G (Lemma 10) is in fact an isomorphism. Chevalley taught
us how to deal with the construction of quotients G/H by finding lines in some representation W
of G which are fixed by H but not by G (by general Tannakian theory, such a representation is
related to the standard representation G ⊆ GL(m)). We follow this idea with the constant support
of Lemma 8, which states that such a line will in fact correspond to a fixed element for the H-action
(convergent solution). The proof of Theorem 14 will follow from the non-existence of such fixed
vectors (if we chose the ϕn carefully!). Section 6.1 shows what sort of constraint will appear if there
exists a convergent solution and § 6.2 shows how to pick the matrices ϕn so as to violate these
constraints.

6.1 Some properties impeding convergent solutions
In this section we study conditions on the matrices ϕn so that M = M(ϕ•) has no convergent
solution (Lemma 15) Convergent means that there exists a horizontal morphism from the trivial
object of str(D(ρ)) to M , for some small ρ. Of course, this is equivalent to finding an α ∈ V = 0∗M
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with Φ · α ∈ V ⊗ O(ρ), as any element of M̂ = M ⊗ k[[x]] killed by all differential operators of
positive order is a k-linear combination of the columns of Φ.

In order to see what kind of constraint the convergence of Φ·α will impose on the norms ‖ϕn ·α‖ρ,
we want, first, to take ϕn to be polynomial. This will allow us to use the degree to compare the
coefficients of Φ · α with those of ϕn · α.

We would like the degrees to grow fast so that ϕ0 · · ·ϕn+1 is the sum of ϕ0 · · ·ϕn with terms of
higher degree. As this is not really feasible (for the pair n, n+1), we follow [MvdP03] and introduce
very large ‘gaps’ in the sequence ϕn:

ϕ0 · · ·ϕn = ϕ0 · · ·ϕn+1 = · · · = ϕ0 · · ·ϕn′−1

for some n′ � n (see Property 2 below).
Finally, in order to avoid the situation in which the degree of ϕ0 · · ·ϕnα stays bounded, we will

impose that the group generated by the various ϕn(k) with n � N generate a subgroup of GL(V )
which does not fix α (Property 4).

Let An := k[xpn
] and let V be a k-vector space with a fixed basis: km ∼= V . Take matrices

ϕn ∈ GL(V ⊗k An) with the following properties.

Property 1. One has ϕn(0) = I.

Property 2. There is an increasing sequence of positive integers {ni}i∈N such that ϕn = I if
n �∈ {ni}. Also, {ni+1 − ni}i∈N tends to infinity.

Property 3. If we write ϕn = I + Γn, then the degree of Γn in x is bounded by bpn, b > 0.

Property 4. Let G be the subgroup of GL(V ) generated by the subset
⋃

n�0 ϕn(k). Then, for any
N ∈ N, G is also generated by

⋃
n�N ϕn(k).

We note that the degree of a matrix in GL(V ⊗k k[x]) = GLm(k[x]) is well defined as is the
degree of a vector f ∈ V ⊗k k[x]. Also, given an element

ξ =
∞∑
i=0

vi ⊗ xi ∈ V ⊗k k[[x]], (4)

we define, for some ρ ∈ |k∗|,
‖ξ‖ρ = sup

i
{|vi|ρi},

where | · | : V → R�0 is the maximum norm with respect to the basis giving km ∼= V . Under these
conventions, V ⊗k O(ρ) is the subspace of all ξ with limi |vi|ρi = 0.

Note that picking a different basis for V gives a different ‖ · ‖ρ : V ⊗k O(ρ) → R�0, but the
topology is the same. In particular, the concept of a sequence in V ⊗k O(ρ) having bounded norm
is well defined.

We will also find it convenient to call the monomials vi ⊗ xi of ξ in (4) the terms of ξ.
The matrices ϕn define a stratified module M(ϕ•) over D(ρ), ρ ∈ |k∗|, and we let Φ be the

fundamental matrix (in the notation of Definition 5). Recall that we are denoting by G the subgroup
of GL(V )(k) generated by

⋃
n�0 ϕn(k).

Lemma 15. The notation is as above. Assume that, for some α ∈ V − {0}, Φ · α ∈ V ⊗k k[[x]] is
actually in V ⊗k O(ρ). If α is not fixed by G then there exists an infinite subsequence S ⊆ {ni}i∈N
such that Γs · α �= 0 and ‖Γs · α‖ρ is bounded for all s ∈ S.

Proof. First of all, Φ · α ∈ V ⊗k O(ρ) if and only if ϕ−1
n · · ·ϕ−1

0 Φ · α ∈ V ⊗k O(ρ). Thus, we can
assume that pni+1 > bpni for all i � 0. Let Φn denote ϕ0 · · ·ϕn. It is easy to see that the degree
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of Φni ·α is less than pni+1. These normalizations are made to study the terms of Φ ·α and to show
that they are related to the Γ∗ · α in a way that the condition Φ · α ∈ V ⊗k O(ρ) gives the desired
bound.

More precisely, take an arbitrary i ∈ N and let us study the next step Φni+1 · α in the sequence.
We have

Φni+1 · α = Φni · α+ (Φni+1 − Φni) · α
= Φni · α+ Φni · Γni+1 · α.

Of course, we might have ϕni+1 · α = α and the second term above is zero. But, since α �∈ V G,
Property 4 above guarantees that there exists j > i such that ϕnν · α = α for all ν ∈ {i+1, . . . , j−1},
but Γnj · α �= 0. Hence Φni · Γnj · α �= 0 (Φn is invertible) and

Φnj · α = Φni · α+ Φnj−1 · Γnj · α and Φnj−1 · Γnj · α �= 0.

Now, the condition on the degrees shows that the degree of Φni ·α is less than the term of least
degree in Φnj−1 ·Γnj · α since the degree of Φni ·α is at most bpni and non-zero terms of Γnj ·α �= 0
have degree greater than or equal to pnj . This has the important consequence that all terms ?⊗ xd

appearing in Φni · α also appear in Φ · α. If we follow the same reasoning with j in place of i, it
follows that the same terms ?⊗xd appearing in Φnj−1 ·Γnj ·α appear in Φ ·α. Because Φ ·α belongs
to V ⊗k O(ρ), there exists a constant c > 0 such that ‖Φnj−1 · Γnj · α‖ρ � c.

All terms in Φnj−1 · Γnj · α are of the form ? ⊗ xd, with

d = ε0r0p
n0 + · · · + εj−1rj−1p

nj−1 + rjp
nj , ε ∈ {0, 1}, r ∈ {1, . . . , b}.

By the (easy) Lemma 16 below, the terms of Φnj−1Γnj ·α whose degree is between pnj and bpnj

will be the terms of corresponding degree in Γnj · α. Hence, ‖Γnj · α‖ρ � c, as we wanted.

Lemma 16. Let {0, . . . , b}⊕N be the restricted product of the set {0, . . . , b} with respect to the
subset {0}. Assume that pni+1 > bpni for all i � 0. Then the map {0, . . . , b}⊕N → N given by

(m0,m1, . . . ) �→
∞∑
i=0

mip
ni

is injective.

Proof. The proof is very easy.

6.2 Proof of Theorem 14
Take any reduced connected algebraic group G = p(G). Note that any unipotent subgroup of G is
contained in p(G), and hence the closed normal subgroup U(G) generated by all the unipotent and
connected closed subgroups of G is contained in p(G). The quotient G/U(G) is a torus or trivial
and hence contains no elements of order a power of p; it follows that U(G) = p(G). Using this we
have the following result.
Lemma 17 [MvdP03, 7.6]. Let G equal p(G) as above. Then there are morphisms u1, . . . , uh : Ga →
G taking 0 to the identity such that G is generated by

⋃
i ui(k).

Now, let u1, . . . , uh be as in Lemma 17 above. Choose a sequence {an}∞n=1 in k∗ such that |an|
grows very fast:

lim
n→+∞

log |an|
pn

= +∞. (5)

In particular the inequality
|an| � crpn

, c, r > 0, (6)
is only possible for finitely many n.
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Pick a sequence of non-negative integers {ni}i∈N as in Property 3 and define elements ϕn ∈
G(An) by

ϕn :=

{
I, if n �∈ {ni}i∈N,
ul(anix

pni ), if n = ni and i ≡ lmodh.
(7)

Let π : G→ GL(V ) be a representation. Writing

π ◦ ul(x) = I +
b∑

r=1

γ
(π)
lr ⊗ xr, γ

(π)
lr ∈ Endk(V ),

it follows that

πϕni = I +
b∑

r=1

ar
ni

· γ(π)
lr ⊗ xrpni , if i ≡ lmodh. (8)

So, if α ∈ V is such that

‖πϕni · α− α‖ρ � c, for some c > 0,

we have for i ≡ l mod h

|γ(π)
lr · α| · |ani |r � cρ−rpni . (9)

In the presence of growth condition (5), inequality (9) is possible for infinitely many values of i
if and only if γ(π)

lr · α = 0.
Let Φ be the fundamental matrix for the module M(πϕ•). If, for some α ∈ V −{0}, Φ ·α actually

belongs to V ⊗k O(ρ) (ρ > 0), by Lemma 15, α is fixed by G. In a nutshell, we have the following
lemma.

Lemma 18. Let G = p(G) and let u1, . . . , uh : Ga → G be morphisms as in Lemma 17. Let {an}n∈N
be a sequence in k∗ satisfying (5) and let {ni}i∈N be a sequence of integers as in Property 2 above.
Take {ϕn}n∈N as in (7) and, for some representation π : G → GL(V ), let Φ be the fundamental
matrix for M(πϕ•). If α ∈ V is such that Φ · α ∈ V ⊗k O(ρ), then α ∈ V G.

Theorem 19. Keep the notation of Lemma 18 and assume that π embeds G as a closed subgroup
of GL(V ). Then the canonical inclusion of the monodromy group Gmono := G(M(πϕ•),T ) ⊆ G
given in Lemma 10 is in fact an equality.

Proof. Assume that Gmono �= G and use Lemma 21 below to obtain a representation θ : G→ GL(W )
with

θ = ∧r(πa1
b1

⊕ · · · ⊕ πas
bs

),

such that Gmono fixes a line L ⊂ W which is not fixed by G. Since Gmono acts trivially on L (by
Lemma 8), there exists α ∈WGmono which is not in WG. Now, the representation of Πloc obtained
by the composition

Πloc → Gmono → G→ GL(W )

induces, by Tannakian duality, an N ∈ T which is just M(θ(ϕ•)), since
r∧

(M(πϕ•)
(a1,...,as)
(b1,...,bs)

) ∼= M
( r∧

((πϕ•)
(a1,...,as)
(b1,...,bs)

)
)
.

Let Ψ be the fundamental matrix of the stratified module M(θϕ•). By Lemma 20 below, it follows
that Ψ ·α is in W ⊗k O(ρ) for some ρ ∈ |k∗|. By Lemma 18, α ∈WG, which is a contradiction. This
shows that the representation W cannot exist and hence that Gmono = G.
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Lemma 20. Let V be a k-vector space and let ϕn ∈ GL(V )(An) be such that ϕn(0) = I. Let Φ
denote the fundamental matrix for M(ϕ•). If α ∈ V is fixed by Πloc, then Φ ·α belongs to V ⊗k O(ρ)
for some ρ ∈ |k∗|.
Proof. Let a : �→ V be the Πloc-equivariant map that takes 1 to α. This corresponds to an arrow

A : �→M(ϕ•)

in some str(D(ρ)), with ρ ∈ |k∗|, such that taking the fibre at 0 gives a back. But A(1) is of the
form Φ · β for some β ∈ V . Since Φ(0) = I, we have α = (Φ · β)(0) = β and because A is defined
over D(ρ) we have Φ · α = Φ · β = A(1) ∈ V ⊗k O(ρ).

Lemma 21. Let H ⊆ G ⊆ GL(V ) and assume that H �= G. Then there exist r, a1, . . . , as, b1, . . . ,
bs ∈ N such that H is the stabilizer of a line in

r∧
(V (a1,...,as)

(b1,...,bs)
).

Proof. From [Wat79, Corollary 1.16, p. 122] there exists a representation U of G which has H as
the stability group of a line L. Such a representation U is of the form U ′/U ′ with subrepresentations
U ′ ⊂ U ′ ⊆ V

(a1,...,as)
(b1,...,bs)

. It follows easily that H is the stability group of a subspace U (3) ⊂ V
(a1,...,as)
(b1,...,bs)

.
The rest is linear algebra.

Remark. If k is only perfect, Lemma 7.5 of [MvdP03] still holds. As a consequence, Lemma 17
above will also hold (with the obvious changes) if we assume that the reduced and connected
k-group scheme G is generated by its closed k-subgroups H ⊆ G where H is connected, reduced
and unipotent. The previous construction will then extend to this situation: if G is as before, then
it is an algebraic quotient of Πloc. I thank the referee for calling my attention to this fact.
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