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ABSTRACT

For insurance companies in Europe, the introduction of Solvency II leads to
a tightening of rules for solvency capital provision. In life insurance, this espe-
cially affects retirement products that contain a significant portion of longevity
risk (e.g., conventional annuities). Insurance companies might react by price
increases for those products, and, at the same time, might think of alterna-
tives that shift longevity risk (at least partially) to policyholders. In the extreme
case, this leads to so-called tontine products where the insurance company’s
role is merely administrative and longevity risk is shared within a pool of
policyholders. From the policyholder’s viewpoint, such products are, how-
ever, not desirable as they lead to a high uncertainty of retirement income
at old ages. In this article, we alternatively suggest a so-called tonuity that
combines the appealing features of tontine and conventional annuity. Until
some fixed age (the switching time), a tonuity’s payoff is tontine-like, after-
wards the policyholder receives a secure payment of a (deferred) annuity. A
tonuity is attractive for both the retiree (who benefits from a secure income at
old ages) and the insurance company (whose capital requirements are reduced
compared to conventional annuities). The tonuity is a possibility to offer tailor-
made retirement products: using risk capital charges linked to Solvency II, we
show that retirees with very low or very high risk aversion prefer a tontine or
conventional annuity, respectively. Retirees with medium risk aversion, how-
ever, prefer a tonuity. In a utility-based framework, we therefore determine the
optimal tonuity characterized by the critical switching time that maximizes the
policyholder’s lifetime utility.
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1. INTRODUCTION

Recent increases in life expectancy and the steep decline of interest rates have
led to improved awareness of the risks contained in retirement products. In
response, insurance regulation gets more importance as demonstrated, for
example, by the introduction of Solvency II in Europe. Insurance companies
are now forced to back their investment and longevity risk by more risk capital.
This development incentivizes insurance companies to modify their products
and shift risks partially to the customer: Return guarantees of (equity-linked)
life insurance contracts are lowered or even omitted. Further, the replacement
of conventional annuities by pooled annuities is discussed in the literature.

This article addresses the latter and discusses the product design of retire-
ment products, focusing on longevity risk. In a first step, we compare con-
ventional annuities to so-called tontines. Tontines were recently revisited1 by
several authors, for example, Sabin (2010), Milevsky and Salisbury (2015,
2016) or Gründl and Weinert (2016). The concept is simple: a group of policy-
holders provides premia in a common pool that is administered by an insurance
company. At inception, the members specify a withdrawal plan. The money
from this withdrawal plan is shared between survivingmembers. If a pool mem-
ber dies, any claims on the common pool cease. At first glance, this product
seems unattractive: the constant payout of an annuity is replaced by an uncer-
tain cash flow that depends on the number of surviving members of the pool.
Fluctuations are largest at old ages where a secure cash flow is most desirable.
Milevsky and Salisbury (2015) show that the retiree’s lifetime utility is higher
for conventional annuities than for tontines, when comparing actuarially fairly
priced products and ignoring risk charges. However, in Europe, Solvency II
regulation forces insurers to provide solvency capital for longevity risk (see,
e.g., EIOPA, 2014). We show that the attractiveness of conventional annu-
ities is decreased if policyholders are charged for the cost of required longevity
risk capital. We can find situations where a tontine is preferable over an
annuity.

From the policyholder’s viewpoint, it might, however, neither be desirable
to be fully insured against longevity risk (and pay the resulting high risk cap-
ital charges) nor to be fully prone to longevity risk (and risk an uncertain
retirement income, especially at old ages). This has inspired hybrid retirement
products. So-called pooled annuity funds are frequently discussed in recent
literature (see, e.g., Piggott et al., 2005; Richter and Weber, 2011; Donnelly
et al., 2013; Qiao and Sherris, 2013; Donnelly et al., 2014; Donnelly, 2015).
Being very similar to a tontine, such a product includes a smoothing mecha-
nism that updates the payout already if there is a change in expected future life
expectancy of the underlying cohort. Secondly, and trivially, the policyholder
might just split her retirement funds between annuity and tontine products
(see, e.g., Menoncin, 2008; Huang and Milevsky, 2011; Gründl and Weinert,
2016). Inspired by the first 17th-century tontine schemes in France and Great
Britain,2 we propose a third approach. We suggest the policyholder to buy a
term-tontine that provides a tontine-like payout at early ages of retirement.
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After some initially specified date (the switching time), however, the tontine-
like payments are switched to a constant (deferred) annuity payoff. In the
remainder of this article, this new product is named “tonuity”. To us, this prod-
uct seems to be attractive as it combines the appealing features of tontine and
annuity for insurers as well as policyholders: (1) Risk capital charges are sig-
nificantly reduced. (2) The increased liquidity need in case of an unexpected
increase in life expectancy is shared between policyholders and the insurance
company. If there is a longevity shock, losses are covered not only by the
insurance company, but also by the policyholder. Income fluctuations for the
policyholder can, by design, only occur at early ages of retirement where they
can be compensated by, for example, a part-time job. (3) At old ages, payout
fluctuations are fully eliminated.

In this article, we make the following contributions to the literature. We
follow Milevsky and Salisbury (2015) and determine the optimal payout func-
tion of a tonuity maximizing the expected lifetime utility for a retiree with
constant relative risk aversion (CRRA) and no bequest motives. Instead of
using fixed risk loadings, we suggest linking risk loadings to the Solvency II
risk margin (RM) (following the calculation of solvency capital requirements
(SCRs) as mandated by the Solvency II framework, for example, in Directive
2009/138/EC, 2009; Olivieri and Pitacco, 2009; Börger, 2010; EIOPA, 2014).
This allows us to quantify the tradeoff between longevity risk charges and
utility losses due to longevity risk. We distinguish tonuity products by their
switching time, the extreme cases of a zero switching time being a conventional
annuity and an infinite switching time being the tontine product. Choosing the
switching time optimally allows us to design a tailor-made retirement product
for the policyholder. Our numerical results suggest that tonuities are preferred
by retirees with medium risk aversion, while policyholders with low or high risk
aversion would buy a tontine or annuity, respectively.

The remainder of the article is organized as follows. In Section 2, we
describe the payoffs of annuities and tontines and determine the optimal annu-
ity and tontine payoff if policyholders apply a CRRA utility function. Then,
we show how to compute risk capital charges under European Solvency II
regulation. In Section 3, we discuss (dis)advantages of annuity and tontine.
To combine the appealing features of the two products, Section 4 introduces
the novel tonuity product. We derive the tonuity payoff (including the opti-
mal switching time) maximizing the policyholder’s expected lifetime utility. A
numerical analysis and comparison of annuity, tontine and tonuity is carried
out in Section 5. Finally, we provide some concluding remarks in Section 6 and
detailed proofs in Appendix A.

2. TONTINES AND ANNUITIES: PAYOFF AND OPTIMALITY

In this section, we first review two retirement products, namely tontines and
annuities. Both products are bought at the time of retirement by retirees aged x.
At contract initiation, the retirees provide a single premium P0 to the insurance
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company. Depending on their residual lifetime, they receive payments during
their retirement phase (see Section 2.1). While in an annuity product, mortality
risk is fully borne by the insurance company, in a tontine product, mortal-
ity risk of n policyholders is pooled and (mainly) borne by the policyholders.
We make the assumption that policyholders within one tontine pool are of the
same age x. Further, they have, conditional on the evolution of the underlying
mortality law, identical and independent distributions of remaining lifetimes
and identical longevity risk preferences. Following Solvency II regulation, the
insurance company needs to provide risk capital in order to cover the prod-
ucts’ longevity risk. To cover at least the cost of capital (CoC) provision, the
insurer may demand a single charge F0 at contract initiation, in addition to the
net premium P0 (see Section 2.4).

With respect to mortality, we commonly distinguish two different types of
risk: firstly, there is idiosyncratic (or unsystematic) mortality risk. We under-
stand this as the risk stemming from the fact that the individual’s lifetime is
uncertain but follows some population-wide mortality law. As such, this risk
can be diversified by choosing the pool size n large enough. Secondly, there is
aggregate (or systematic) mortality risk. This risk comes from the fact that
we cannot determine the true underlying mortality law with certainty: this
might, for example, be caused by unexpected medical progress or changes in
lifestyle. As this type of risk changes the mortality law for the population
as a whole, it cannot be diversified by simply choosing the pool size n large
enough. If aggregate mortality risk increases the expected lifetime, this is also
referred to as longevity risk. Typical patterns of improvement of human life-
time are named by terms like compression, extension or rectangularization.
This describes that people get on average older; however, these improvements
cannot help individuals to exceed some (unknown) maximum age. Then, less
people die at young ages (extension) and deaths accumulate at old ages (com-
pression). This leads to a rectangular shape of the survival curve (see, e.g.,
Fries, 1980).

We use t px to denote the best-estimate t-year survival probability of an
x-year-old policyholder, according to some continuous time mortality law,
obtained from, for example, publicly available life tables. To account for
uncertainty in this mortality law (i.e., systematic or aggregate mortality risk),
we are inspired by, for example, Lin and Cox (2005) and apply a mortality
shock ε to our best-estimate survival curve t px to obtain the shocked survival
curve t p

1−ε
x . This way, we provide consistency in our survival probabilities: we

can still guarantee that (a) tp1−ε
x ∈ (0, 1] for all t≥ 0 and (b) for any 0≤ s< t,

survival probabilities fulfill the property t p
1−ε
x = s p

1−ε
x · t−s p1−ε

x+s , where t−s p
1−ε
x+s

denotes the survival curve of a person aged x+ s. From this decomposition,
we see that the shock occurs immediately and applies to all future points in
time. In general, we will assume that ε is a (continuous) random variable with
density fε(ϕ) and support on (− ∞, 1). If ε < 0, this leads to survival prob-
abilities that are lower than the best-estimate t px. If ε ∈ (0, 1), people live on
average longer than expected. We later calibrate the shock distribution ε such
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that (on average) we obtain our best-estimate curve, that is, E[t p
1−ε
x ]≈ t px. The

moment-generating function of the mortality shock ε is for s≥ 0 denoted by

mε(s) :=E [esε ]. (2.1)

Now, given some realization ϕ of the longevity shock ε, we denote the pol-
icyholder’s remaining lifetime by ζϕ. The indicator 1{ζϕ>t} that is 1 if the
policyholder survives time t (and 0 otherwise) is then assumed to follow a
Bernoulli (t p

1−ϕ
x ) distribution. Exploiting the (conditional) independence of the

pool member’s remaining lifetime, the number of pool members at time t is,
given some realization ϕ of the mortality shock ε, predicted to be binomially
distributed, that is, Nϕ(t)∼Bin (n, t p

1−ϕ
x ). Given the realization of the mortal-

ity shock ϕ, we are only left with unsystematic mortality risk that can be fully
removed by a suitably large pool size. The unconditional remaining lifetime is
in the following denoted by ζε , and the unconditional number of pool members
by Nε(t).

Throughout this paper, quantities with [∞] refer to tontines whereas [0] refer
to annuities. For universal expressions that apply to both types of contracts,
these symbols are dropped.

2.1. Payoff to policyholders

In an annuity contract, any policyholder continuously receives an annuity
payment c(t) until death. This payment stream can be written as:

b[0](t) := 1{ζε>t} c(t). (2.2)

In a tontine contract, mortality risk (both systematic and unsystematic) is
shared between a pool of n≥ 1 policyholders, while in an annuity it is borne
by the insurance company.3 If, at time t> 0, the number of policyholders is
Nε(t), each policyholder receives n/Nε(t) multiplied by an initially specified
payment stream d(t). Following Milevsky and Salisbury (2015), this leads to
the following continuous payment stream:

b[∞](t) :=
⎧⎨
⎩ 1{ζε>t}

nd(t)
Nε(t)

if Nε(t)> 0,

0, else
. (2.3)

Note that, in contrast to the annuity payment (2.2), the tontine payment
depends substantially on the number of policyholders Nε(t). In case the size
of the pool is one (n= 1) and c(t)= d(t), the tontine payoff (2.3) equals the
payoff of an annuity (2.2).

2.2. Net Premium

First, ignoring the risk capital charge F0, we determine the net premium of
both contracts. To focus on the effects of mortality risk, we ignore financial
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risks. Therefore, we do not model the assets of the insurance company and
simply assume that the premium earns a constant, continuously compounded,
risk-free rate r. In this section, we first compute a fair (net) premium P0 that is
computed without any longevity risk loadings and is used to determine the opti-
mal annuity and tontine payout functions. For an annuity, this net premium is
given by

P0 =P[0]
0 :=E

⎡
⎣ ∞∫

0

e−rtb[0](t) dt

⎤
⎦=

∞∫
0

e−rt
E
[
1{ζε>t}

]
c(t) dt

=
∞∫
0

e−rtc(t)

1∫
−∞

t p
1−ϕ
x fε(ϕ) dϕ dt=

∞∫
0

e−rtc(t)t px ·mε(− log t px) dt.

(2.4)

Similarly, the time t= 0 net premium of the tontine contract is given by (see the
following Remark 1)

P0 =P[∞]
0 :=E

⎡
⎣ ∞∫

0

e−rtb[∞](t)dt

⎤
⎦=E

⎡
⎣ ∞∫

0

e−rt1{ζε>t}
nd(t)
Nε(t)

dt

⎤
⎦

=
∞∫
0

e−rt
E

[
t p

1−ε
x E

[
nd(t)
Nϕ(t)

∣∣∣∣∣ ζϕ > t, ε = ϕ

]]
dt

=
∞∫
0

e−rt
E

[
t p

1−ε
x ·

n−1∑
k=0

nd(t)
k+ 1

(
n− 1
k

)
(t p

1−ε
x )k(1− t p

1−ε
x )n−1−k

]
dt

=
∞∫
0

e−rt
E

[
n∑

k=1

(
n
k

)
(t p

1−ε
x )k(1− t p

1−ε
x )n−k

]
d(t) dt

=
∞∫
0

e−rt
E

[
1− (1− t p

1−ε
x )n

]
d(t) dt

=
∞∫
0

e−rt
1∫

−∞

(
1− (1− t p

1−ϕ
x )n

)
fε(ϕ) dϕ d(t) dt, (2.5)

where in the third line we used that, conditional on ζϕ > t, the number of
pool members Nϕ(t) is at least 1. Then, from the perspective of one surviv-
ing pool member and conditional on a mortality shock ϕ, the total pool size is
distributed according to Nϕ(t)− 1∼Bin (n− 1, t p

1−ϕ
x ).
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Remark 1 (Relation to Milevsky and Salisbury, 2015). Our net premium (2.5)
slightly differs from Milevsky and Salisbury (2015), who instead obtain the
(higher) premium

P0 =
∞∫
0

e−rtd(t)dt. (2.6)

The difference results from the fact that in case of (2.6), the net premium is set
such that Nε(t)= 0 is excluded, that is, there is always some participants that live
forever. Hence, the insurer does not bear any longevity risk and always retains a
systematic profit. In contrast, our premium (2.5) is actuarially fair and thus leaves
some longevity risk with the insurer, that is, the risk related to the time of death
of the last survivor. The approximation of (2.5) by (2.6) is plausible for large
portfolios.

2.3. Optimality of c(t) and d(t)

What still needs to be determined are the optimal payout functions c(t) and
d(t) of the two retirement products. Therefore, we assume that policyholders
are risk-averse with regard to longevity risk and evaluate their payoff streams
using CRRA utility (see Assumption 1 for a formal introduction).

Assumption 1 (Utility function). The policyholder evaluates consumption by
using a CRRA utility function, that is

u(x)= x1−γ

1− γ
, (2.7)

where x≥ 0 is the payment the policyholder receives and γ ∈ (0,∞) \ {1} is the
policyholder’s relative risk aversion.

Following, for example, Yaari (1965), we make the following assumption
about the policyholder’s preferences:

Assumption 2 (Policyholder’s preferences). Optimally, a rational retiree without
bequest motives would choose the product payoff b(t) that maximizes the expected
discounted lifetime utility

E

[ ∫ ζε

0
e−ηt u

(
b(t)

)
dt

]
(2.8)

subject to the constraint that the initially provided net premium of the annuity
and tontine is given by (2.4) and (2.5), respectively. The utility function u is as
introduced in Assumption 1 and the policyholder’s subjective discount rate is η.
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A policyholder whose preferences are described by (2.7) and (2.8) can
choose optimal payout functions c∗(t) and d∗(t) of annuity and tontine, respec-
tively. The result is given by Theorem 2. For deterministic survival functions,
it has been obtained by Milevsky and Salisbury (2015).

Theorem 2 (Optimal payout function: annuity and tontine). Assume that the
policyholder’s preferences for consumption can be described by Assumption 2.

(a) For an annuity product, maximizing the expected discounted lifetime utility
(2.8) subject to the constraint (2.4) leads to

c∗(t)= e
1
γ
(r−η)t ·P0 ·

⎛
⎝ ∞∫

0

e(
r−η
γ

−r)t
t px ·mε(− log t px) dt

⎞
⎠−1

. (2.9)

The policyholder’s expected discounted lifetime utility is then given by

U [0] :=
∞∫
0

e−ηt
t px ·mε(− log t px) · u

(
c∗(t)

)
dt. (2.10)

(b) For a tontine product, maximizing the expected discounted lifetime utility
(2.8) subject to the constraint (2.5) leads to

d∗(t)= e
1
γ
(r−η)t(

λ∗) 1
γ

·
(
κn,γ ,ε(t px)

) 1
γ( 1∫

−∞

(
1− (

1− t p
1−ϕ
x

)n)
fε(ϕ) dϕ

) 1
γ

, (2.11)

where

κn,γ ,ε(t px) :=
n∑

k=1

(
n
k

)(
k
n

)γ
1∫

−∞

(
t p

1−ϕ
x

)k (
1− t p

1−ϕ
x

)n−k
fε(ϕ) dϕ, (2.12)

λ∗ :=

⎛
⎜⎜⎜⎜⎝
1
P0

∞∫
0

e(
r−η
γ

−r)t
(
κn,γ ,ε(t px)

) 1
γ(

1∫
−∞

(
1−

(
1− t p

1−ϕ
x

)n)
fε(ϕ) dϕ

) 1
γ

−1
dt

⎞
⎟⎟⎟⎟⎠

γ

.

For γ ∈N\{1}, we can exploit that nγ · κn,γ ,ε is the γ th moment of a binomial
distribution, that is

κn,γ ,ε(t px)=
1
nγ

γ∑
l=1

al · t plx ·mε(− l log t px), (2.13)
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with real coefficients al defined in Lemma 4 in Appendix A.1. The policy-
holder’s expected discounted lifetime utility is then given by

U [∞] :=
∞∫
0

e−ηtκn,γ ,ε(t px) · u
(
d∗(t)

)
dt. (2.14)

Proof. See Appendix A.1. Note that the implementation of (2.12) gets chal-
lenging for portfolio sizes n≥ 100 as then the binomial coefficients

(n
k

)
are

difficult to compute. Equation (2.13), in contrast, can easily be implemented
also for large portfolio sizes. If one is interested in non-integer valued risk-
aversion coefficients γ , it might make sense to approximate (2.12) by (2.13)
using suitable interpolation techniques.

By allowing the subjective discount rate η to differ from the risk-free inter-
est rate r, the optimal annuity payout function c∗(t) is not constant over time.
For η = r and deterministic survival distributions (i.e., ε ≡ 0), we are back to
the result of Milevsky and Salisbury (2015). Note that the optimal payout
functions c∗(t) and d∗(t) are derived by considering the net premium P0. In
the subsequent section, we will add risk capital charges F0 that depend on the
(longevity) risk the insurance provider is taking by issuing a policy. It would of
course be desirable to choose the optimal payout functions taking into account
also the risk capital charges. This, however, does not lead to analytic solutions
and is computationally unfeasible. In other words, the optimal benefit amount
computed here is a simplification to avoid the untractability caused by the risk
margins. We are implicitly assuming that we assess the optimal benefit amount
before computing the charges for longevity risk! �

2.4. Risk capital charges

So far, the premiums derived in Section 2.2 are actuarially fair on a net basis.
We neglect any administration or acquisition charges, but, to fairly compare
our retirement products, we add risk charges for longevity risk that compen-
sate the insurance company for the risks taken. The RM ensures that “the value
of technical provisions is equivalent to the amount that insurance and reinsur-
ance undertakings would be expected to require in order to take over and meet
the insurance and reinsurance obligations” (see EIOPA, 2014’s technical pro-
visions TP 5.2.). We see this as an alternative to risk premia for longevity risk
that are often incorporated in the literature (see e.g., Bauer et al., 2010 for a
comparison of different approaches).

We therefore determine the CoC provision for longevity risk following
Solvency II regulation in Europe (see also Pitacco et al., 2009; EIOPA, 2014).4

These costs are then paid as an additional charge F0 at contract initiation.
Generally, the amount of regulatory capital required by Solvency II stan-

dards is consistent with a Value-at-Risk assessment of the basic own funds at
a 99.5% confidence level on a 1-year time horizon, see Article 101 of Directive
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2009/138/EC (2009). For the longevity risk sub-module, the standard approach
is to consider an instantaneous and permanent 20% decrease in annual death
probabilities, see EIOPA (2014). As our payout functions require a continu-
ous survival curve, we need to calibrate our stochastic mortality shock ε to the
Solvency II annual shock, see Section 3. Following Olivieri and Pitacco (2009),
the SCR at any time t≥ 0 can be computed as

SCR(t)=BEL(t | shock)−BEL(t | ∗ ), (2.15)

that is, as the difference between the value of liabilities subject to a longevity
shock BEL(t | shock) and the best-estimate (BEL(t | ∗ )) of mortality. Note
that, seen from time 0, SCRs at time t are actually random variables, as they
depend on the evolution of mortality up to time t. We follow Börger (2010)
and take the assumption that mortality, up to time t, evolves according to best-
estimate assumptions, that is, the probability to survive time t is given by t px.
Then, at any time t> 0, the insurer has to fulfill the capital requirements for
n · t px contracts. Survival probabilities after time t are then subject to the mor-
tality shock ε. Given a realization ϕ of the mortality shock, the survival curve
after time t is then given by {s−t p1−ϕ

x+t }s≥t. Hence, the (per contract) best-estimate
of liabilities at time t is given by

BEL[0] (t | ∗ )= t px

∞∫
t

e−r(s−t)
E
[
s−t p

1−ε
x+t

] · c∗(s) ds. (2.16)

For the tontine, the (per contract) best-estimate of liabilities is given by

BEL[∞] (t | ∗ )= t px

∫ ∞

t
e−r(s−t)

E

[(
1− (

1− s−t p
1−ε
x+t

)n)] · d∗(s) ds. (2.17)

Next, we want to compute 99.5% quantiles of the time-t liability value of annu-
ity and tontine. For a realization ϕ of the shock for future mortality ε, we
obtain for the annuity a time-t liability value of

V[0] (t, ϕ)= t px

∞∫
t

e−r(s−t)
s−t p

1−ϕ
x+t · c∗(s) ds (2.18)

and for the tontine

V[∞] (t, ϕ)= t px

∫ ∞

t
e−r(s−t)

(
1−

(
1− s−t p

1−ϕ
x+t

)n) · d∗(s) ds. (2.19)

Both (2.18) and (2.19) are strictly increasing functions in ϕ. For this reason,
the 99.5% quantile of the time-t liability value can be expressed by the 99.5%
quantile of the mortality shock ε, that is, BEL[0] (t | shock)=V[0] (t, z0.995) and
BEL[∞] (t | shock)=V[∞] (t, z0.995), respectively.5

According to EIOPA (2014), we now determine the RM for the SCRs:

RM=CoC ·
∞∑
t=0

e−r(t+1) · SCR(t), (2.20)
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where CoC is the cost of capital rate. The initial single charge for longevity risk
is then set to F0 =RM. For a tontine, we denote this charge by F [∞]

0 and for an
annuity by F [0]

0 .

3. NUMERICAL I: (DIS)ADVANTAGES OF THE RETIREMENT PRODUCTS

In the following, we give a numerical example to demonstrate the
(dis)advantages of tontines and annuities during retirement. The policyholder
initially pays the risk capital charge F0 that is given by the RM (2.20) in
addition to the actuarially fair net premium P0.

In the present paper, we only deal with post-retirement mortality, which
is typically at and above age 60 (or 65). Richards (2012) has studied a large
number of analytic mortality laws and found that the quality of a given law
depends heavily on the age interval it is used for. According to Richards (2012),
the Gompertz law, Gompertz (1825), works best for ages 60–90 and is hence
used in this paper as it describes the most important age group for retirement
products. We use the parameterization for the mortality intensity given by

μx+t = 1
b
e
x+t−m

b , (3.1)

where b> 0 is the dispersion coefficient and m> 0 the modal age at death,
following Gumbel (1958) and, for example, Milevsky and Salisbury (2015).
Best-estimate survival probabilities can then be derived to

tpx := e− ∫ t
0 μx+s ds = ee

x−m
b

(
1−e tb

)
.

We follow Milevsky and Salisbury (2015) and set the Gompertz parameters to
m= 88.721 and b= 10. We further assume that the mortality shock ε follows a
truncated normal distribution on (− ∞, 1), that is,N(−∞,1)(μ, σ 2). The parame-
tersμ and σ are determined as follows: (1) The mortality shock ε is chosen such
that the expected survival probabilities E

[
t p

1−ε
x

]
are close to the best-estimate

survival probabilities t px. (2) Reducing the 1-year death probabilities by 20%
(as described in the Solvency II standard approach), we obtain a shocked sur-
vival curve t p

SolvII shock
x on a discrete grid t= 1, 2, . . . ,T , with T = 55. On these

annual dates, we want this curve to be close to the 99.5% quantile of our
internal mortality shock model t p

1−z0.995
x , where z0.995 is the 99.5% quantile of

the shock magnitude ε. We equally weigh these two objectives and minimize
squared errors of the differences, that is, we use the objective function

min
μ,σ

T∑
t=1

∣∣∣t px −E
[
t p

1−ε
x

] ∣∣∣2 +
∣∣∣t pSolvII shockx − tp1−z0.995x

∣∣∣2. (3.2)

For our parameter set, we obtain μ = −0.0035 and σ = 0.0814 with a sum
of squared errors of about 6.4 · 10−5. Then, 0.5% and 99.5% quantiles of the
mortality shock are −21.4% and 20.7%, respectively. As Figure 1 shows, a
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16 A. CHEN, P. HIEBER AND J.K. KLEIN

TABLE 1

BASE-CASE PARAMETER SET.

Net premium Pool size Risk aversion
P0 =P[0]

0 =P[∞]
0 = 10,000 n= 100 γ = 10

Risk-free rate Subjective discount
rate

CoC rate

r= 4% η = 4% CoC= 6%a

Initial age Gompertz law Mortality
shock ε ∼N(−∞,1)(μ, σ 2)

x= 65 m= 88.721, b= 10 μ = −0.0035, σ = 0.0814

aThe CoC is typically prescribed by the regulator (see, e.g., EIOPA, 2014). As the level is
oriented at the credit spread of a BBB-rated company, the value might change over time or
company-specific rates could be implemented. We therefore analyze the impact for various
CoC rates.

Maturity
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l r
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0.8

1 original survival curve
fitted survival curve
Solvency II shock curve
fitted shocked curve

FIGURE 1: Best-estimate survival curve and quantile function of truncated normally distributed shocks
compared with original survival curve and Solvency II shock.

truncated normally distributed shock magnitude allows for a very good fit
of best-estimate and shocked survival curves in the relevant range of contract
durations. In the following, we consider the base-case parameter set as stated
in Table 1.

We can now compute the RMs (or risk capital charges F0) for the prod-
ucts under consideration, see Table 2. We choose the base-case parameter set
from Table 1. Even for small pool sizes of n= 10, the risk charge for a ton-
tine product is small compared to the net premium P0 = 10,000. The capital
charge for an annuity contract amounts to a relevant share of 4.8% of the initial
contribution. Overall, the risk capital charges for a tontine are much lower than
those of an annuity.
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TABLE 2

RISK CAPITAL CHARGE F0 FOR DIFFERENT POOL SIZES n,
USING THE BASE-CASE PARAMETER SET FROM TABLE 1.

Product Risk capital charge F0

Tontine n= 10 101.32
n= 100 10.89
n= 1000 1.33

Annuity 483.51

The increased (aggregate) mortality risk of a tontine, however, needs to be
reflected by a utility loss. We therefore consider annuities and tontines with net
premium P0 =P[0]

0 =P[∞]
0 = 10,000. We then determine the number of tontines

CEQ[∞] that yield the same expected discounted lifetime utility as one annuity,
that is, we solve

U [0] !=
∫ ∞

0
e−ηt ·E

[
u
(
CEQ[∞] ·b[∞](t)

)]
dt=CEQ1−γ

[∞] ·U [∞] (3.3)

for CEQ[∞], using that CEQ[∞] tontines have a payoff of CEQ[∞] ·b[∞](t). From
(3.3), we obtain

CEQ[∞] :=
(
U [0]

U [∞]

) 1
1−γ

(3.4)

and denote this term by relative certainty equivalent. The relative certainty
equivalent is the number of tontines with net premium P[∞]

0 = 10,000 that needs
to be bought in order to receive the same expected discounted lifetime utility as
from an annuity with net premium P[0]

0 = 10,000. Stated differently, the policy-
holder is indifferent between one annuity and CEQ[∞] tontines. Among prod-
ucts with identical expected discounted lifetime utility, the policyholder would
choose the one with the lowest gross premium. That is why, in the follow-
ing analysis, we compare gross premia of CEQ[∞] tontines (i.e., CEQ[∞] ·(P0 +
F [∞]
0 )) and one annuity (i.e., P0 + F [0]

0 ). As in Table 2, Table 3 compares ton-
tines with different pool sizes to annuities. Each product presented in this table
maintains the same utility level for the policyholder. The lower the gross pre-
mium presented, the more attractive is the product for the policyholder. In
Table 3, we highlight the lowest gross premium in bold letters. We observe that
without risk capital charges (i.e., CoC=0%), the tontine’s gross premium is
always higher than the annuity’s gross premium P0 = 10,000. This result sug-
gests that, neglecting risk capital charges (CoC=0%), the policyholder clearly
prefers the (cheaper) annuity to a tontine product. This is reversed, if CoC
rates are positive and tontine pool sizes are n= 100 or n= 1000: here, tontine
products are cheaper (and thus more attractive) than an annuity.
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18 A. CHEN, P. HIEBER AND J.K. KLEIN

TABLE 3

GROSS PREMIUM OF CEQ[∞] TONTINES COMPARED TO THE GROSS PREMIUM OF AN ANNUITY FOR
DIFFERENT COC RATES AND TONTINE POOL SIZES, USING THE BASE-CASE PARAMETER SET FROM

TABLE 1. THE PRESENTED PRODUCTS YIELD THE SAME EXPECTED UTILITY FOR THE
POLICYHOLDER, WE HIGHLIGHT THE LOWEST GROSS PREMIUM IN BOLD LETTERS. SEE ALSO (3.4).

Product CoC= 0% CoC= 2% CoC= 4% CoC= 6% CoC= 8%

n= 10 11,223 11,261 11,299 11,337 11,375
CEQ[∞] Tontines n= 100 10,273 10,277 10,281 10,284 10,288

n= 1000 10,103 10,103 10,104 10,104 10,105
One annuity 10,000 10,161 10,322 10,484 10,645
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FIGURE 2: Continuous payment stream during the retirement phase using the base-case
parameter set from Table 1.

The above analysis indicates that tontines are a useful tool to reduce mor-
tality risk exposure from the insurer’s perspective. The policyholder may weigh
the tradeoff between the exposure to (aggregate) mortality risk and the risk
capital charges. Her preference depends, among others, on longevity risk aver-
sion γ and the CoC rate. Furthermore, he has to be aware of one disadvantage
of tontine products: the uncertainty in payoff streams is increasing with age.
This is demonstrated in Figure 2 where both the optimal annuity payment c∗(t)
(black line) and the optimal tontine payout d∗(t) are given. The tontine pay-
outs n · d∗(t) are shared within the policyholder pool. We thus also give the
distribution of the payments to a single surviving policyholder n · d∗(t)/N0(t)
(the gray area presents the interdecile range of these payments, that is, at any
time t ∈ [0, 35] the upper (lower) edge represents a 90% (10%) quantile of the
payment to the policyholder). For t= 25, that is, at the age of 90, this range is
already [770, 970] and thus very unattractive for the risk-averse policyholder.

In the next section, we introduce a product that unites the favorable char-
acteristics of annuities (stable payments over time from the perspective of a
policyholder) and tontines (reduced capital requirements from the perspective
of an insurer). We refer to this product by the term “tonuity”.
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4. COMBINED PRODUCT: TONUITY

In the previous section, we have shown that both annuities and tontines have
desirable characteristics, but also drawbacks. While annuities require a signif-
icantly higher portion of risk capital than tontines, their constant and secure
payment stream at old ages is preferable to a tontine payout. This suggests
combining the two contracts to a tonuity that, up to an initially specified future
time point, behaves as a tontine product and afterwards changes to a constant
payment of a (deferred) annuity.

• From the policyholder’s viewpoint, the additional mortality risk expo-
sure (compared to annuities) reduces capital charges included in the gross
premium. This makes the product more attractive. If the policyholder is
in good health, he can make up possibly occurring financial losses by, for
example, a part-time job.

• From the insurance company’s perspective, the longevity risk exposure and
required risk capital are lower than a simple annuity contract. Further into
the future, when the portfolio has considerably shrunken, insurers may com-
pensate deviations from expected mortality patterns more easily. With a
then relatively small portfolio, losses due to a potential deviation from best-
estimate survival probabilities might better meet the longevity risk appetite
of the insurer.

The differences among the diverse products are summarized in Table 4. More
formally, we denote the switching time by τ > 0. This switching time is fixed at
contract initiation. In [0, τ ], the contract has a tontine-like payoff. After time
τ , the payout is designed as a (deferred) annuity. Let d[τ ](t) denote the tontine
payout function and c[τ ](t) the continuous (deferred) annuity payment. Hence,
a policyholder receives at time t the payment stream of a tonuity:

b[τ ](t) := 1{0≤t<min{τ ,ζε }}
nd[τ ](t)
Nε(t)

+ 1{τ≤t<ζε } c[τ ](t), (4.1)

where ζε is again the residual lifetime of the policyholder.
We assume that the payout functions d[τ ](t) and c[τ ](t) are fixed at the ini-

tiation of the contract. Note that annuity and tontine are just special cases of
a tonuity with τ = 0 and τ = ∞, respectively. The (fair) net premium for the
tonuity is given by

P0 =
τ∫

0

e−rt
1∫

−∞

(
1− (1− t p

1−ϕ
x

)n
)fε(ϕ) dϕ d[τ ](t) dt

+
∞∫

τ

e−rt
t px ·mε(− log t px) c[τ ](t) dt. (4.2)
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TABLE 4

COMPARISON OF PRODUCT TYPES: PERSPECTIVES OF POLICYHOLDERS AND INSURERS.

Policyholder Insurer

Annuity Fixed continuous payments until
death

Fully affected by longevity risk and
its costs

Tonuity Longevity risk exposure until fixed
date, fixed payments until death
afterwards

Risk of longevity is removed for
payments until a fixed date,
longevity risk and costs only
afterwards

Tontine Full participation in longevity risk,
likely fluctuations at high ages

Minimal longevity risk and costs,
no fluctuations in payment stream

Again, the payout functions c∗
[τ ](t) and d

∗
[τ ](t) can be set optimally by maximiz-

ing the expected discounted lifetime utility (2.8) given an initial net premium
P0. Theorem 3 gives the result.

Theorem 3 (Optimal payout function: tonuity). For a tonuity product with switch-
ing time τ ∈ [0,∞) and premium P0, maximizing the expected discounted lifetime
utility (2.8) subject to the constraint (4.2) leads to

d∗
[τ ](t)

∣∣∣
0≤t≤τ

= e
1
γ
(r−η)t

(λ∗)
1
γ

·
(
κn,γ ,ε(t px)

) 1
γ(

1∫
−∞

(
1− (

1− t p
1−ϕ
x

)n)
fε(ϕ) dϕ

) 1
γ

,

c∗
[τ ](t)

∣∣∣
t>τ

= e
1
γ
(r−η)t

(λ∗)
1
γ

, (4.3)

where the optimal Lagrangian multiplier is given by

λ∗ = 1
Pγ

0

⎛
⎜⎜⎜⎝

τ∫
0

e(
r−η
γ

−r)t (
κn,γ ,ε(t px)

) 1
γ( 1∫

−∞

(
1− (

1− t p
1−ϕ
x

)n)
fε(ϕ) dϕ

) 1
γ

−1
dt

+
∞∫

τ

e(
r−η
γ

−r)t
t px ·mε(− log t px) dt

⎞
⎟⎟⎟⎠

γ

(4.4)

and kn,γ ,ε(t px) is as defined in Theorem 2. The policyholder’s expected discounted
lifetime utility is then given by

U [τ ] :=
τ∫

0

e−ηtu
(
d∗
[τ ](t)

) · κn,γ ,ε(t px) dt+
∞∫

τ

e−ηt
t px ·mε(− log t px) · u

(
c∗
[τ ](t)

)
dt.

(4.5)
If γ ∈N\{1}, κn,γ ,ε(t px) can again be simplified using (2.13).
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Proof. See Appendix A.2.

For the RM, we need again best-estimate liabilities BEL[τ ] (t | ∗ ) and liabil-
ities subject to a longevity shock BEL[τ ] (t | shock) for a tonuity with switching
time τ . For t≤ τ , this is given by

BEL[τ ] (t | ∗ )= t px

∫ τ

t
e−r(s−t)

E

[(
1− (

1− s−t p
1−ε
x+t

)n)] · d∗
[τ ](s) ds

+ t px

∫ ∞

τ

e−r(s−t)
E
[
s−t p

1−ε
x+t

] · c∗
[τ ](s) ds, (4.6)

BEL[τ ] (t | shock)= t px

∫ τ

t
e−r(s−t)

(
1− (

1− s−t p
1−z0.995
x+t

)n) · d∗
[τ ](s) ds

+ t px

∫ ∞

τ

e−r(s−t)
s−t p

1−z0.995
x+t · c∗

[τ ](s) ds. (4.7)

For t≥ τ , best-estimate liabilities BEL[τ ] (t |, ∗) and shocked liabilities
BEL[τ ] (t |shock) are given by (2.16) and (2.18), respectively, if the payoff
stream c∗(t) is replaced by c∗

[τ ](t). Equations (2.15) and (2.20) can then be used
to determine the risk capital charges F [τ ]

0 =RM. �

5. NUMERICAL II: COMPARISON OF ANNUITY, TONTINE AND TONUITY

We analyze the attractiveness of the tonuity and compare it to the annuity and
tontine. Therefore, we use (unless specified differently) the same assumptions
and the same parameter set as in Section 3.

Especially from the policyholder’s viewpoint, it is necessary to find a way
to weigh longevity risk (aversion) and the amount of risk capital charges F0.
A highly longevity risk-averse policyholder might prefer an annuity to a ton-
tine even if the CoC rates (and thus the risk capital charges) are high. As in
Section 3, we introduce a relative certainty equivalent CEQ[τ ] that is chosen
such that the policyholder is indifferent between one annuity with net premium
P[0]

0 = 10,000 and CEQ[τ ] tonuities with the same net premium P[τ ]
0 = 10,000,

that is, CEQ[τ ] solves

U [0] !=
∫ ∞

0
e−ηt ·E

[
u
(
CEQ[τ ] ·b[τ ](t)

)]
dt=CEQ1−γ

[τ ] ·U [τ ]. (5.1)

Therefore, generalizing (3.4) in Section 3, we obtain relative certainty equiva-
lents of a tonuity with switching time τ as

CEQ[τ ] :=
(
U [0]

U [τ ]

) 1
1−γ

. (5.2)
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FIGURE 3: Gross premia CEQ[τ ] ·(P0 + F [τ ]
0 ) using the base-case parameter set from Table 1 and the case

n= 900 and CoC = 0.9%, varying the switching time τ . For the policyholder, each product has the same
expected discounted lifetime utility.

The policyholder is indifferent between the annuity (which is a tonuity with
τ = 0) and CEQ[τ ] tonuities. This is the case as the tonuity payoff CEQ[τ ] ·b[τ ](t)
leads to the same expected discounted lifetime utility as an annuity. Noting
that CEQ[τ ] tonuities require a net premium of CEQ[τ ] ·P0 and a risk capital
charge of CEQ[τ ] ·F [τ ]

0 , we can now compare gross premia CEQ[τ ] ·(P0 + F [τ ]
0 )

to determine the best retirement product from the policyholder’s perspective,
that is, the cheapest product that maintains the expected utility level of an
annuity. This comparison includes annuities (τ = 0) and tontines (τ = ∞) as
special cases.

Figure 3 illustrates the choice of the optimal switching time τ ∗ and the inter-
play of switching times and resulting gross premia in a numerical example. For
each switching time τ ≥ 0, the figure presents risk capital charge CEQ[τ ] ·F [τ ]

0

and gross premium CEQ[τ ] ·(P0 + F [τ ]
0 ) as a function of the switching time.

Hence, the left-hand limit (τ ↓ 0) represents the immediate subscription to
an annuity, whereas the right-hand limit (τ ↑ ∞) corresponds to a lifelong
tontine.

Since all tonuity products with payout function CEQ[τ ]b[τ ](t) yield the same
lifetime utilityU [0] for the policyholder, the decision on which tonuity to choose
is a tradeoff between the risk capital charge F [τ ]

0 (which is highest for the annu-
ity and lowest for the tontine) and the net premium CEQ[τ ] ·P0 (which is lowest
for the annuity and highest for the tontine). Overall, for a given parameter set,
we can determine the optimal switching time τ ∗ that minimizes gross premia
CEQ[τ ] ·(P0 + F [τ ]

0 ).6

Here, the optimal switching time is τ ∗ = 18 and τ ∗ = 38, in case of a large
portfolio (n= 900) and low CoC rate (CoC= 0.9%) and the base case (see
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FIGURE 4: Optimal switching time τ ∗ using the base-case parameter set from Table 1 varying the CoC rate
and risk aversion γ .

Table 1), respectively. Note that, in the base case, an expected utility maxi-
mizing individual would only be willing to switch to an annuity well above
age 90, if he is charged the full cost of longevity risk transfer within a Solvency
II model. For practical purposes, this seems to be a quite high switching time,
yet, according to the mortality model, an individual has an expected remaining
lifetime of more than 20 years at age 65 and the probability to survive at least
until age 90 is above 35%.

We now want to further examine the optimal switching time and deter-
mine its sensitivity to the different parameters. Figure 4 first presents the
optimal switching time τ ∗ depending on the CoC rate and the risk aversion
coefficient γ . In case that there is no risk capital charge (CoC= 0%), the pol-
icyholder prefers the annuity to a tonuity or tontine product (black). This
is in line with the results in Section 3. This result changes if longevity risk
charges are added: in Figure 4, we observe that for CoC= 6%, as suggested by
Solvency II regulation, the retiree prefers either a tontine or a tonuity (gray)
to the annuity product. This even holds for very risk-averse retirees, with
switching times about 30 years after retirement across different levels of risk
aversion.

Figure 5 presents the optimal switching time τ ∗ depending on the risk aver-
sion γ and the risk-free rate r. For low risk aversion parameters (here γ < 2),
we observe that it is optimal for the policyholder to stay with the tontine and
never switch to an annuity product. The increased longevity risk of a tontine
seems to be compensated by the reduced risk capital charges. For medium to
high risk aversion coefficients (γ ∈ [6, 10]), it is always optimal to buy a tonu-
ity. Here, the tonuity seems to be an optimal balance between longevity risk
taking and risk capital charges. The optimal switching time τ ∗ is decreasing in
the risk-free interest rate r. This effect, however, is moderate.

Next, Figure 6 presents the optimal switching time τ ∗ depending on the
portfolio size n and the subjective discount rate η. The subjective discount rate
η is not relevant in the analysis of optimal switching times—it only has a minor
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FIGURE 5: Optimal switching time τ ∗ using the base-case parameter set from Table 1 varying the risk
aversion coefficient γ and risk-free rate r.
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FIGURE 6: Optimal switching time τ ∗ using the base-case parameter set from Table 1 varying the subjective
discount rate η and portfolio size n.

impact on τ ∗. In contrast, we observe that the portfolio size is a very important
parameter in our analysis. Already a portfolio size of n= 200 seems to diversify
mortality risk pretty well. Then, it is attractive for the policyholder to invest
into a tontine (τ ∗ = ∞).

6. CONCLUSION

Risk-oriented solvency regulation decreases the attractiveness of retirement
products that contain a significant portion of (aggregate) mortality risk. If
increased solvency costs are handed over to the policyholder, he/she might
prefer to keep part of the product’s (aggregate) mortality risk. In this paper,
we have suggested a novel retirement product called tonuity that nicely
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combines annuity and tontine products and can more easily adapt to the
policyholder’s needs. Buying a tonuity, the policyholder benefits from risk
capital charges that are lower than those of conventional annuities. Further, a
tonuity eliminates income fluctuations at old ages, one of the main drawbacks
of a tontine or a pooled annuity fund. In case of an unexpected increase in life
expectancy (longevity shock), it is not only the insurance company but also the
policyholder that has to fund the additional liquidity need. The policyholder
has to accept a decrease in pension income at early ages of retirement where it
might be easier to compensate income fluctuations by, for example, a part-time
job. In a utility-based framework, we have determined the optimal tonuity
payout that maximizes the policyholder’s expected discounted lifetime utility.
Linking risk capital charges to Solvency II regulation, we have obtained
a tailor-made retirement product that better aligns the tradeoff between
risk capital charges and longevity risk aversion. While a highly risk-averse
policyholder prefers a conventional annuity, a policyholder with medium risk
aversion chooses a tonuity. A policyholder whose risk aversion is low would
buy a tontine product.

NOTES

1. At the beginning of the 20th century, a total amount of 6 billion dollars has been invested
in tontine products, about 2/3 of the life insurance nominal. Shortly afterwards, tontines were
prohibited in Great Britain and the US. An increased sensitivity to longevity risk might encourage
its re-introduction (see, e.g., Ransom and Sutch, 1987).

2. In the 17th and 18th centuries, the switching between tontine and annuity products is doc-
umented. Great Britain’s 1693 tontine allowed subscribers to convert the tontine shares into a
lifelong annuity (see, e.g., Weir, 1989). In 1770, tontine subscribers in France were forced to
convert into life annuities (see, e.g., Weir, 1989).

3. Note that the unsystematic mortality risk borne by the participants of the tontine can
initially be diversified by choosing the pool size n large enough. However, at old ages, the
portfolio size naturally decreases, exposing the participants in the tontine to both systematic and
unsystematic mortality risk.

4. In TP.5.2., the technical provisions for an insurance contract are specified as the best-
estimate of liabilities plus the so-called risk margin. The technical provisions are deemed
equivalent to the amount another insurer would ask for as compensation for taking over the
insurance business. In our approach, we apply this principle to individual contracts, that is, the
life insurer sets a premium that is sufficient to cover the expected claims plus the necessary risk
capital charge.

5. Here, we use that for a real valued random variable X with cumulative distribution func-
tion FX and quantile function F−1

X , x ∈R, confidence level y ∈ (0, 1) and g :R→Rmonotonically
increasing, and we have that
F−1
g(X )( y)≤ x⇔P(g(X )≤ x)≥ y⇔P(X ≤ g−1(x))≥ y⇔ FX (g−1(x))≥ y⇔ F−1

X ( y)≤ g−1(x)⇔
g
(
F−1
X ( y)

)≤ x.
6. We use a rather simple, yet stochastic, model for the calculation of the risks associated with

issuing policies for retirement income. More sophisticated models, parameterizations or internal
models would affect these results. In particular, the CoC rate seems to be important. The lower
the CoC an undertaking uses, the more attractive the annuity will be, and the earlier one would
switch from tonuity to annuity.
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APPENDIX A. PROOFS

A.1. Proof of Theorem 2

For a related result, see also Milevsky and Salisbury (2015) (special case mε(s)= 1). Note
first that

1∫
−∞

t p
1−ϕ
x fε(ϕ) dϕ = t px ·E

[
e−ε log t px

]
= t px ·mε(− log t px).

For part (a) one can use the Lagrangian function

L
(
c, λ

)
:=

∞∫
0

e−ηt

1∫
−∞

t p
1−ϕ
x fε(ϕ) dϕ · u(c(t)) dt

+ λ

⎛
⎝P0 −

∞∫
0

e−rtc(t)
1∫

−∞
t p

1−ϕ
x fε(ϕ) dϕ dt

⎞
⎠

=
∞∫
0

e−ηt
t px ·mε(− log t px) · u

(
c(t)

)
dt

+ λ

⎛
⎝P0 −

∞∫
0

e−rtt px ·mε(− log t px) · c(t) dt
⎞
⎠.
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The first-order condition yields c∗(t)= (
λ · e(η−r)t)− 1

γ . From the budget constraint, we then

obtain λ∗ =P−γ

0

( ∞∫
0
e(

r−η
γ −r)t

t px ·mε(− log t px) dt
)γ . This directly leads to (2.9). The annu-

ity is constant over time if the subjective discount rate equals the risk-free rate, that is,
η = r.

For part (b), to determine the optimal payout function d(t) to the tontine pool, we again
maximize the expected discounted lifetime utility (2.8) subject to (2.5). In case of power
utility, u(x)= x1−γ /(1− γ ), γ > 0 and γ �= 1, we find that

L(d, λ) :=E

[ ∫ ζε

0
e−ηt u

(
b[∞](t)

)
dt

]

+ λ

⎛
⎝P0 −

∞∫
0

e−rtd(t)
1∫

−∞

(
1−

(
1− t p

1−ϕ
x

)n)
fε(ϕ) dϕ dt

⎞
⎠

=E

⎡
⎣ ∞∫

0

1{ζε>t}e−ηtu
(
nd(t)
Nε(t)

)
dt

⎤
⎦

+ λ

⎛
⎝P0 −

∞∫
0

e−rtd(t)
1∫

−∞

(
1−

(
1− t p

1−ϕ
x

)n)
fε(ϕ) dϕ dt

⎞
⎠

=
∞∫
0

e−ηt
E

[
t p

1−ϕ
x ·E

[
u
(
nd(t)
Nϕ(t)

) ∣∣∣ζϕ > t, ε = ϕ
]]

dt

+ λ

⎛
⎝P0 −

∞∫
0

e−rtd(t)
1∫

−∞

(
1−

(
1− t p

1−ϕ
x

)n)
fε(ϕ) dϕ dt

⎞
⎠

=
∞∫
0

e−ηt
n∑

k=1

(
n
k

)(
k
n

)γ
1∫

−∞

(
tp

1−ϕ
x

)k (
1− tp

1−ϕ
x

)n−k
fε(ϕ) dϕ

︸ ︷︷ ︸
=:κn,γ ,ε (t px)

·u(d(t)) dt

+ λ

⎛
⎝P0 −

∞∫
0

e−rtd(t)
1∫

−∞

(
1−

(
1− t p

1−ϕ
x

)n)
fε(ϕ) dϕ dt

⎞
⎠ (A.3)

We can then solve the optimization using the Euler–Lagrange theorem, see, for example,

Gelfand and Fomin (1963, p. 43). The optimality condition ∂L(d, γ )/∂d != 0 is given by

e−ηtκn,γ ,ε(t px) ·
(
d∗(t)

)−γ = λ∗e−rt
1∫

−∞

(
1− (1− tp

1−ϕ
x )n

)
fε(ϕ) dϕ,
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where u′(x) := ∂u(x)/∂x= x−γ and λ∗ is the Lagrangian multiplier which makes the bud-
get constraint binding. The optimal tontine payoff can be solved explicitly and owns the
following structure:

d∗(t)= e
1
γ (r−η)t

(
λ∗) 1

γ

·
(
κn,γ ,ε(t px)

) 1
γ( 1∫

−∞
(
1− (

1− t p
1−ϕ
x

)n)fε(ϕ) dϕ
) 1

γ

,

where λ∗ > 0 is chosen such that the budget constraint in (2.5) holds, that is,

λ∗ :=

⎛
⎜⎜⎝ 1
P0

∞∫
0

e(
r−η
γ −r)t · (κn,γ ,ε( t px)) 1

γ

⎛
⎝ 1∫

−∞

(
1−

(
1− t p

1−ϕ
x

)n)
fε(ϕ) dϕ

⎞
⎠

1− 1
γ

dt

⎞
⎟⎟⎠

γ

.

The computation of κn,γ ,ε(t px) is numerically challenging if the portfolio size n is large. We
therefore present a more convenient expression if the risk aversion coefficient is a natural
number, that is, γ ∈N \ {1}. Consider first Lemma 4.

Lemma 4 (Moments of the binomial distribution). For n ∈N and p ∈ (0, 1) consider Z∼
Bin (n, p). For k, l = 0, 1, 2, . . ., we then find that

E
[
Zk]=

k∑
l=1

al · pl ,

where al := bkl · nl, nl := n(n− 1) · · · (n− l + 1), and the bkl’s are determined by the iteration

b0l = δl0, bkl = l · bk−1,l + bk−1,l−1,

where δij is the usual Kronecker symbol (δij = 1 for i= j and 0 otherwise).

Proof. See, for example, Theorem 2.2 in Knoblauch (2008). A table for the bkl’s (for the
range 0≤ k, l ≤ 10) is given by Table 2.1 in Knoblauch (2008). �

Introducing Zϕ ∼Bin (n, t p
1−ϕ
x ), we can apply Lemma 4 to obtain

κn,γ ,ε(t px) :=E

[ n∑
k=1

(
n
k

)(
k
n

)γ

(t p
1−ϕ
x )k(1− t p

1−ϕ
x )n−k

]
= 1
nγ

E

[
E

[
Zγ

ϕ

∣∣∣ ε = ϕ
]]

γ∈N\{1}= 1
nγ

E

[
γ∑
l=1

al
(
t p

1−ε
x

)l ]

= 1
nγ

γ∑
l=1

al · t plx ·E[ exp (−εl log t px
) ]

= 1
nγ

γ∑
l=1

al · t plx ·mε(− l log t px),

where the coefficients al are as introduced in Lemma 4.
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A.2. Proof of Theorem 3

To determine the optimal payout, we take the Lagrangian function:

L(d, c, λ) :=
τ∫

0

e−ηtu
(
d∗
[τ ](t)

) n∑
k=1

(
n
k

)(
k
n

)γ
1∫

−∞

(
t p

1−ϕ
x

)k (
1− t p

1−ϕ
x

)n−k
fε(ϕ) dϕ dt

+
∞∫

τ

e−ηt
t px ·mε(− log t px) · u

(
c∗[τ ](t)

)
dt

+ λ

⎛
⎝P0 −

τ∫
0

e−rt
1∫

−∞

(
1− (1− t p

1−ϕ
x )n

)
fε(ϕ) dϕ d[τ ](t) dt

+
∞∫

τ

e−rtt px ·mε(− log t px) · c[τ ](t) dt
⎞
⎠.

where we drop the t-dependence of d and c to improve readability. In order to maximize the
Lagrangian function, we first take derivatives with respect to d and c, that is,

∂L(d, c, λ)
∂d

=1{0≤t<τ }
(
e−ηt

n∑
k=1

(
n
k

) 1∫
−∞

(t p
1−ϕ
x )k(1− t p

1−ϕ
x )n−kfε(ϕ) dϕ · u′

(
nd
k

)

− λe−rt
1∫

−∞

(
1− (1− t p

1−ϕ
x )n

)
fε(ϕ) dϕ

) != 0,

∂L(d, c, λ)
∂c

=1{t≥τ }
(
e−ηt

t px ·mε(− log t px) · c−γ − λe−rtt px ·mε(− log t px)
) != 0.

Solving for d and c, we can show that the Lagrangian takes global optima if

d∗
[τ ](t)

∣∣∣
0≤t≤τ

= e
1
γ (r−η)t

(λ∗)
1
γ

·
(
κn,γ ,ε(t px)

) 1
γ( 1∫

−∞
(
1− (

1− t p
1−ϕ
x

)n)fε(ϕ) dϕ
) 1

γ

, c∗[τ ](t)
∣∣∣
t>τ

= e
1
γ (r−η)t

(λ∗)
1
γ

,

(A.4)

where κn,γ ,ε(tpx) is as introduced in Theorem 2. The budget constraint (4.2) then leads to
the optimal Lagrangian multiplier

λ∗ =

⎛
⎜⎜⎜⎝ 1
P0

τ∫
0

e(
r−η
γ −r)t

(
κn,γ ,ε(t px)

) 1
γ( 1∫

−∞
(
1− (

1− t p
1−ϕ
x

)n)fε(ϕ) dϕ
) 1

γ −1
dt

+
∞∫

τ

e(
r−η
γ −r)t

t px ·mε(− log t px) dt

⎞
⎟⎟⎟⎠

γ

.
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