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SMOOTHNESS AND CONDITIONING
IN GENERALISED SMOOTHING SPLINE CALCULATIONS
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Abstract

We consider a generalisation of the stochastic formulation of smoothing splines,
and discuss the smoothness properties of the resulting conditional expectation
(generalised smoothing spline), and the sensitivity of the numerical algorithms.
One application is to the calculation of smoothing splines with less than the usual
order of continuity at the data points.

1. Introduction

Let data j/j corresponding to the signal plus noise model

Vi = hTx.{ti) + eit i = l,2,...,n, (1.1)

be given, where h,x(£j) € Rp and j/i,£t € R. Here, for simplicity, h is constant

and the data points U equispaced (U = (i — l ) / (n — 1) = (i — 1)6). Also the

£i ~ JV(0,<T2) are assumed to be independent, while x(£) satisfies the stochastic

differential equation

where M: Rp —• Rp is assumed smooth enough for our purposes, w(t) is a

Wiener process independent of the e^i = 1,2, . . . ,n, satisfying, for positive

semi-definite V: Rp —• Rp given,

E{(Wi{t + 6)- Wiimwjit + 6)- Wj{t))} = Vij6 (1.3)
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44 M. R. Osborne and Tania Prvan [2]

and A serves to define the relative scale of the two noise processes. We note that,
although determining A is often an important part of the estimation problem, it is
not considered in detail here. Our aim is to compute the conditional expectation
x(t \n) of x(t) given the data (1.1), and to explore the relations between:

(i) the smoothness attainable in x(t | n),
(ii) the role of the control quantities h and V, and
(iii) the conditioning of the algorithms for computing x(£ | n).
Let T(t, f) be the fundamental matrix defined by

dT/dt = MT, T(£,t) = I. (1.4)

Then the solution to (1.2) satisfying the initial condition x(£) = x^ can be
written

x(«) = T(t, £)x€ + aVX f T{t, s)~^ds. (1.5)

It follows that we can associate with the observational equations (1.1) the state-
space dynamics equations

x{ti+1)=T{ti+1,ti)x{ti) + u{ti+i,ti), (1.6)

where (using the assumption that w(t) is a Wiener process)

/— fti+1 dw
u(ti+1,ti) = aV\ J T(ti+1,s)—ds~N(O,n(ti+i,ti)), (1.7)

and

= <72A f '+ I T(ti+1,s)VT(ti+1,s)Tds. (1.8)
Jtt

An immediate consequence of the formulation (1.1), (1.6)-(1.8) is that the
Kalman filter can be used to compute conditional expectations. Assume that
x(ti | i), the conditional expectation of x(^) given y3-,j = 1,2,..., i, and

vsr{x{ti)-x{ti\i)} = Si]i (1.9)

are known; problems involved in the specification of the initial conditions are
discussed in [7]. Then

x(t i + 110 = T(*i+i,*i)x(*i | 0 (1.10)

is the best available estimate of x(ij+i), and the innovation

hrx(*,-+ 1 |0 (1.11)

is uncorrelated with the past. It follows that the projection theorem (for example,
Luenberger [6]) can be used to give

x(ti+1 11 + 1) = x(t<+110 + a2
.
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[3] Generalised Smoothing Spline Calculations 45

and

where
Si+l\i = Tlti+l,U)Si\iT{ti+1,ti)

T + n{U+uti)- (1-14)
A backward recurrence called the fixed-point smoothing algorithm [10] is needed
to incorporate the dependence on all the data. For (,_i < t < U, this gives

x(t | n) = T(t, ti-JxiU-i I * - 1) + A{U,t){x{U I») " x('< I« ~ 1)). (L 1 5)

where

| ^ |_ 1 ) (1.16)

and
T(ti,t) = Q(t,ti-1)T(ti,t)

T. (1.17)

This recursion reduces to the "Discrete-time Fixed-interval Smoother" when
t = tj. The derivation of this smoother given in [1] can be extended without
difficulty to give (1.15)-(1.17).

Several important algorithms for carrying out the Kalman filter numerically
(essentially the class of information filter algorithms) make use of a local rescaling
based on a square-root factorisation of Q(U+i,ti) as an important step. The
method of Paige and Saunders [9] is one such procedure. It makes use of an
equivalent least-squares formulation of the estimation problem due to Duncan
and Horn [3], and applies stable computing procedures based on orthogonal
transformations to this least-squares form of the problem. This approach was
followed in [7], where it is shown that if

V = b b r , (1.18)

V l _>h ,0 -»O, (1.19)

where vi is the eigenvector associated with the smallest eigenvalue of Q(t + 8, t),
and

bTPi(M)h = 0, i = 0 , l , . . . , p - 2 , (1.20)

where

Po{M) = I, Pi(M) = dPi-1/dt-MPi-1, z = 1,2,... (1.21)

then
(i) x(t | n) has p - 1 continuous derivatives,
(ii) the condition number of the Paige and Saunders algorithm is O(6~2p+1/X),

and
(iii) this condition number is of the same order in 6 as the condition number

of the standard implementation of the generalised Reinsch algorithm [7].
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Here the smoothness result is generalised to our more general situation, and
interest centres on the relation of h to the eigendecomposition of V. We also
consider whether it is possible to improve the condition-number results. Our
point of departure is that these results are both disappointing and somewhat
surprising. The Reinsch algorithm is analogous to using a high-order difference
approximation to integrate a high-order differential equation for a linear func-
tional of x, and it is now widely appreciated that this approach leads to larger
condition numbers than do methods which work with the corresponding first-
order system directly. Here the right analogue of the first-order system would
seem to be the Kalman filter applied to (1.1), (1-6). We show that the problem
is in the local scaling, by using an alternative approach suggested by Paige [8] for
the generalised least-squares problem, which overcomes the bulk of the difficulty.

If this device is applied to the full least-squares problem then it appears
difficult to maintain sparsity, but the resulting algorithm does retain the main
advantage of the Paige and Saunders method, in that it provides the smoothed
values x(£, \n), i = 1,2,..., n, without the need for a separate smoothing step.
The order of magnitude of the condition number for this modified procedure
can be estimated, and proves to be both independent of p and almost always
more favourable than the estimates obtained in [7]. Paige's device can also be
applied to generate a recursive algorithm which proves to be a fairly standard
square-root covariance form of the Kalman filter. This would appear to support
the claim of superiority made for the covariance form over the information form
of the Kalman filter made by Ansley and Kohn [2] in similar applications.

2. Smoothness properties

In this section the dependence of the smoothness of x(t | n) on h and V is
explored.

LEMMA 2 .1 . IfV^O then the largest eigenvalue of Q(t + 6, t) is O(\8)
as 8 —> 0 and the corresponding eigenvector is asymptotic to the orthogonal
complement of the kernel ofV. If there exists v such that

= 0, j = 0 , l , . . . , f c - l , (2.1)

then the smallest eigenvalue ofQ(t + 6,t) is O(X62k+1).

PROOF. The first step is to make a Taylor-series expansion of Q(t + 6,t).
This is derived using

djT{t,s)/ds:> =T{t,s)Pj{M), (2.2)

https://doi.org/10.1017/S0334270000006020 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006020


[5] Generalised Smoothing Spline Calculations 47

where Pj(M) is defined in (1.21). We obtain

/

t+s
J2{s - (t + 6))i+jPi{M)VPj(M)Tds. (2.3)

id
The result now follows by making Rayleigh-quotient estimates [5] for the extreme
eigenvalues.

The smoothness properties of x(t | n) are obtained by differentiating the in-
terpolation formula (1.15). This gives, for U-i <t <U.

j*{t | n) = Mx(« | n) + a2\VTT(ti, t)S7\)_^xfc | n) - x(i< | i - 1)). (2.4)

It shows immediately that the interesting points are the data points U,
i = 1,2,..., n. Here we have

D=jtx{ti+\n)-jtx{ti-\n)

= o2\V{T{ti+1, U)TS-+\ H{x{ti+11 n) - x(ii+111))

and this reduces, using the filtering and smoothing equations, to

D = -XVh{yi-hTx{ti\n)}, (2.5)

so that x(i | n) can be continuously differentiate only if Vh = 0.
To extend this result to higher derivatives, note that the first occurrence

of a discontinuity in x(£ | n) will appear in differentiating the term involving
VT(ti, i)T in (2.4). Paralleling the above argument shows that the first k deriva-
tives of x(t | n) are continuous only if

VP,(M)Th = 0, i = O, l , . . . , f c - l . (2.6)

In particular, it follows that

fc<dimker{V}. (2.7)

REMARK 2 .1 . The above discussion has the following consequences.
(i) If V is nonsingular, then (2.7) implies that k = 0, so that x(< | n) has a

derivative that is discontinuous at the data points irrespective of the choice of
h. In this case the eigenvalues of fi(£ + 6, t) are all O(X6).

(ii) If there exists v satisfying (2.1), then the choice h = v ensures that x.(t \ n)
has k continuous derivatives.

REMARK 2.2 The condition-number estimate for the Paige and Saunders
algorithm given in [7] was based on a Rayleigh-quotient estimate using a com-
parison vector constructed to stimulate the small eigenvalues of fl(t + 6, i). This
argument can be paraphrased here to show that if h is chosen to give optimal
smoothness (say k continuous derivatives) to x(t |n) , then, using Lemma 2.1,
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the condition number of the Paige and Saunders algorithm is O(6 2k 1/X). If
V is nonsingular then k = 0 and the Paige and Saunders algorithm is compar-
atively well conditioned. In the polynomial smoothing spline case the resulting
piecewise polynomial has (p - 1) derivatives continuous at the data points.

REMARK 2.3 The freedom of choice in both h and V makes it possible to con-
struct algorithms for generalised splines with a range of smoothness possibilities
at the data points. For example, if

M =

corresponding to p = 3, then Xi(t \ n) is a quintic piecewise polynomial with its
first three derivatives continuous at the data points.

3. Algorithms

The signal-plus-noise model (1.1) and (1.6) can be rewritten as

0 =

(3.1)

(3.1a)

" " ' (3.1b)

(3.1c)

which can be expressed as the following system of equations

f = Cx + r.

To describe the terms in this equation explicitly, let

X = X x X X 2 X • • • X X « ,

where

r = rx x r2 x •• • x rn,
where

and

where

= bidiag|[h
/
r],i = l,

f = fx x f 2 x - x f n ,
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[7] Generalised Smoothing Spline Calculations 49

Here J is the covariance of r. Setting J = SST, the Paige and Saunders linear
least-squares formulation can be obtained by premultiplying (3.1) by S~*, which
gives us the Duncan and Horn form of the generalised least-squares problem
which is

minr T J - 1 r . (3.2)
X

However, Paige [8] points out that the generalised least-squares problem can be
posed as

min sTs; Ss = Cx - f, (3.3)
X,8

where r = Ss. This has the form of an equality constrained sum of squares, and
avoids the potentially ill-conditioned inversion of S. To solve this problem, let
Z be a matrix of maximum rank such that

ZTC = 0. (3.4)

Then (3.3) is equivalent to the problem

min sTs; ZTSa = -ZTi. (3.5)

The key point of this development is that (3.5) can be well conditioned even
when J is exactly singular. Once s is known, then the constraints on (3.3) are
consistent for determining x, and can be solved by any convenient and stable
method.

To apply this procedure to (3.1), note first that Z is found easily. A suitable
form is

Z = [z1 ,z2 , . . . ,zn] , (3.6)

where

Z j = Z j j X Z j 2 X • • • X Z i n ,

h 1 \TT(tj+i,t,)hl . . , n . .
_i ' Zi> = n >•?<*> andz < : / =0, j >z.

J L U J (3.6a)
It is readily seen that STZ contains the submatrix al, and so is of full rank. To
solve (3.5) for s, note that if STZ is factored in the form

(3.7)

where Q = [Qi | Q2] is orthogonal and U upper triangular, then

9 = -Q1U-T(ZTf). (3.8)

Also, STZ is block upper Hessenberg, so some economies of storage can be
obtained by exploiting this structure. For example, if plane rotations are used
to build up Q, then it is possible to economise on the elements that must be held
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by carrying out the forward substitution in (3.8) as the diagonal elements of U
are calculated and applying the result to collapse the area in which Qi is being
accumulated. But this still appears to need at least n2/4 locations. To complete
the computation, note that, from (3.1b),

x(ti\n) = T(ti,ti-i)x(ti-i\n) + fi1/2(*,-,ti_i)s, (3.9)

where s is partitioned to conform with r, and s, consists of the first p components
of the t'th partition. This is a block forward substitution which can be expected
to be stable in either stationary or transient (decaying) problems.

One possible way of avoiding the storage problem is by applying Paige's device
recursively. The idea is to start with x(£t-1 i) and compute x(f,-+i_| i + 1) by
using the information from the (i + l)st observation to set up the corresponding
generalised least-squares problem. This problem is

m i n r r J - 1 r , (3.10)

where
J = &ag{Sni,n{ti+i,ti),o*h (3-10a)

and

r r = [x(tt) -xi{i,x(ti+1) -T(ti+1,ti)x{ti),hTx(ti+1) - yi+1\. (3.10b)

Here Z reduces to the vector

zT = [hTT(ti+uti),h
T,-l], (3.11)

and the constraints on 8 corresponding to (3.5) become

ZTSB = -z r f , (3.12)
giving the least-norm solution

Substituting s into the equation corresponding to (3.9) just gives the Kalman
filter equations, essentially in square-root covariance form. These are well condi-
tioned, in contrast to the corresponding recursive development for the informa-
tion filter; the argument used in [7] is readily adapted to show this. To proceed
to the next step requires S*+\,i+1, which is conveniently kept in lower triangular
form, and standard techniques exist for computing this [5]. For example, this
can be done by first making the orthogonal transformation

and then donating by computing a further orthogonal transformation to obtain

[(5 t+i | t+i)T °

In this case, a smoothing pass is required to complete the computation of x(t \ n).
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4. Sensitivity analysis

Two phases must be considered in analysing the generalised least-squares for-
mulation of the estimation problem. These correspond to setting up the equality-
constrained least-squares problem and to its solution. The first phase requires
the square-root factorisation of J given in (3.1a) by, for example, factoring the
individual blocks using the Choleski algorithm. As U(t + 6, t) can be ill condi-
tioned, this step could be suspect in general. However, in many cases of interest,
the structure of fi can be exploited. For example, in estimating polynomial
smoothing splines, pre-and post-diagonal rescaling can be used to effectively re-
move this difficulty. For this reason, attention is directed to the solution phase
of the calculation.

Paige's analysis [8] shows that if ||s|| ^ 0, and H cond{ZT S} and cond{j4} get
large as 6 —• 0, then the relative change due to perturbation ||£x||/||x|| will be
proportional to

K = cond{Zr5}cond{C}2||s||/||q||, (4.1)

where q = f + r is the estimate of the true signal. In particular, there is no direct
dependence on cond{5}. Here s = S~1r isa vector of estimates of independent,
iV(0,1) random variables. It follows that, almost surely, ||s|| = O(6~1^2) and, as
a consequence

=O(1). (4.2)

To compute cond{ZTS}, note that this depends on the extreme eigenvalues
of

ZTJZ = a2I + nV, (4.3)

where

and

h T r ( t i , s )nr (^ , s ) T hds .= I
Jt

As tp(s, t) can be expected to be a slowly varying function in general (for example,
in the spline case where T has polynomial elements), it is reasonable to expect
the order of magnitude of the largest eigenvalue of (4.3) to be picked up by
forming the Rayleigh quotient with a test vector, each component of which is 1.
This gives

+n2 I I tp{s,t)dsdt
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as ||n|| = o2XO{6). To estimate the order of magnitude of the small eigenvalues,
it is necessary to introduce some cancellation into the Rayleigh-quotient sum.
This can be done using a test vector with components (—1)*, i = 1,2, ...,n,
which achieves a differencing of adjacent elements so that

RQ = a1 + n{n2(double sum)£(differencing)<72A<5(from fi)}/n(normalising)

(4.5)
If, as in [7], we make the assumption that X = 0(6^), 0 < </> < 1, then the
estimates (4.4), (4.5) give (strictly a lower bound to the condition number)

cond{ZTS} = 0(A1/25-1/2). (4.6)

Tq estimate the order of magnitude of the condition number of C, we again
use the Rayleigh-quotient argument. In this case, it follows from (3.1c) that

RQ - E?= 1IWI2 ' ( }

where
Wi = x i + 1 - T ( i t + 1 , i , ) x i . . (4.8)

To make RQ small, it is necessary to make both w» and hTXj small while
simultaneously making XJ large. Note that there is no restriction in scaling Wj
so that max* ||wi|| = 1 and that

T(ti+1,ti) = I + 6M(ti) + O(62). (4.9)

It follows that if w, is chosen at each step to just about maximally increase
||xi||, then Wj will be slowly varying (essentially representable by a continuous
function so w(tj) = w») and consequently will have norm close to 1. In addition,
it is necessary to keep hTx, small. Now if hTXfc = 0, k = l,2,...,i + l, then

h T x i + 1 = hT{Wl- + T(ti+Uti)xi} = 0

= hT{w, + 6M(t)} + O^2!!!!)

This suggests that w^ be chosen recursively by

W i = -6M(U)xi + z,, hTZi = 0, (4.11)

where z,- is chosen to increase Xj+i and the remarks made concerning the selec-
tion of Wi apply. In this case

= z +

r*t+i

z(t)dt
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In particular, both ||wi|| = O(l) as required and hTXj = O(l). Substituting in
(4.7) gives (again strictly a lower bound)

RQ = O(62). (4.13)

The condition-number estimate requires information also on the largest singular
value of C. That this is 0(1) follows from a straightforward application of
Gershgorin's theorem to CTC. It follows from (4.2), (4.6), and (4.13) that

( •

REMARK 4.1 The important feature of (4.14) is that it is independent of
p. It is also significant that it is generally smaller than the condition-number
estimate derived in [7]. For example, when p = 2 and x(£|n) is continuously
differentiate (this includes the important case of cubic smoothing splines), the
ratio of condition numbers is

which favours the algorithm considered here provided the assumption A =
0 < <j> < 1, is realistic. Of course, by the time p = 3 the margin in favour has
become considerable. It is worthwhile noting that the condition numbers quoted
are lower bounds.

5. Numerical results

The generalised recursive least-squares implementation of the generalised
smoothing spline was used on two data sets, the Gallant data [4] (here n = 72),
and the sunspot data [10, p. 487], (here n = 176) for h = ei, for a range of
values of p, A and V. These examples are of interest in showing two extreme
kinds of behaviour, in the sense that the Gallant data appears to require a low
order smoothing spline (so that there is overfitting for higher values of p), while
in the case of the sunspot data the smoothing spline appears to try very hard
to interpolate the data. The estimates of the errors in the computations are ob-
tained by running the algorithm in both single and double precision on a Univac
1100 computer which has 10~8 accuracy in single precision. The algorithm in
[7] was generalised to cope with different V. Error estimates for this modified
algorithm were obtained in a similar fashion.
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TABLE I. Gallant data error estimates

p

2

3

4

V
T

h

e3eg"

I3

e4ej

e3ej +
e4ej

74 — e i e j

/ 4

A
0.0001
0.001
0.01
0.1
o.oooi
0.001
0.01
0.1
0.0001
0.001
0.01
0.1
0.0001
0.001
0.01
0.1
0.0001
0.001
0.01
0.1
O.OOOI
0.001
0.01
0.1
0.0001
0.001
0.01
0.1
0.0001
0.001
0.01
0.1
0.0001
0.001
0.01
0.1

Paige error

0.12 x 10-8

0.18 x 10"8

0.63 x 10~8

0.44 x 10~8

0.75 x 10-8

0.87 x 10~8

0.61 x 10-8

0.41 x 10-8

0.23 x 10~7

0.41 x 10-7

0.25 x 10-7

0.10 x 10~7

0.26 x 10-7

0.40 X 10- 7

0.22 x 10-7

0.84 x 10-7

0.23 x 10-7

0.31 x 10-7

0.20 x 10-7

0.87 X 10-8

0.80 x 10-7

0.31 x 10~7

0.13 x 10-6

0.46 x 10~6

0.39 X 10~7

0.27 x 10-7

0.10 x 10-6

0.39 x 10~6

0.38 x 10~7

0.22 x 10~7

0.10 x 10-6

0.39 x 10~6

0.33 x 10~7

0.25 x 10~7

0.13 x 10~6

0.30 x 10~6

Paige and Saunders error
0.24 x 10-6

0.20 x 10-6

0.31 x 10~7

0.41 x 10-7

0.14 x 10~6

0.11 x 10~6

0.43 x 10-7

0.34 x 10-7

0.32 x lO-5

0.20 x lO-5

0.31 x 10~6

0.36 x 10-7

0.30 x lO-5

0.20 x lO-5

0.31 x 10~6

0.36 x 10-7

0.13 x lO-5

0.33 x 10-6

0.24 x lO"6

0.28 x 10-7

0.53 x 10~3

0.19 x 10-4

0.37 x 10-3

0.27 x 10~3

0.14 x 10- 3

0.19 x lO-5

0.20 x 10~4

0.24 x 10~4

0.43 x 10~5
0.13 x 10~6

0.22 x lO-5

0.41 x 10~5

0.75 x 10~6

0.64 x 10-7

0.99 x 10~6

0.16 x lO-5

Clearly the results in the accompanying tables illustrate that the recursive
algorithm based on Paige's device [8] performs better than the algorithm based
on Paige and Saunders' method [9] for different V. Results are given for a
range of values of A which straddle the optimal A computed by the maximum
likelihood estimate procedure suggested in [11]. As predicted by the theory for
the Paige and Saunders algorithm, the accuracy improves when the continuity
conditions are relaxed, which corresponds to increasing the rank of V. This
does not happen when Paige's device is implemented. For the sunspot data
the optimal A is very large and is.more or less independent of the continuity
conditions. This is consistent with interpolating the data [11]. Evidence for
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TABLE 2. Sunspot data error estimates

55

A

0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0
0.1
1.0
10.0
100.0

Paige
0.27 x
0.14 x
0.39 x
0.13 x
0.18 x
0.11 x
0.91 x
0.11 x
0.21 x
0.83 x
0.26 x
0.60 x
0.10 x
0.52 x
0.19 x
0.37 x
0.10 x
0.37 x
0.10 x
0.99 x
0.55 x
0.39 x
0.81 x
0.28 x
0.38 x
0.32 x
0.87 x
0.23 x
0.33 x
0.24 x
0.73 x
0.12 x
0.33 x
0.24 x
0.49 x
0.57 x

error
lO-5

10~5
io-6

10"5
lO-5

lO"5

io-6

lO-5

io-"
io-"
lO-3

lO-3

io-"
io-"
10"3

lO-3

io-"
io-"
10"3

io-"
10"2
10"2
10"2
io-1

10~2
10"2
10"2
10"1

10"2

lO"2

10"2

io-1

10"2

10"2
10"2

10"2

Paige and Sa
0.27 x 10~"
0.18 x 10-"
0.14 x 10~5

0.17 x 1005

0.21 x 10~"
0.66 x 10~5

0.12 x 10~5
0.15 x 10~5
0.75a x 10"3

0.33 x 10~3

0.17 x 10~2
0.10 x lO-2

0.59 x 10~"
0.15 x 10~3

0.65 x 10~"
0.96 x 10~"
0.67 x 10~"
0.95 x 10~"
0.77 x 10~"
0.10 x 10~3

0.32 x 10l

0.88 x 10°
0.39 x 10-1

0.10 x 10°
0.26 x 10°
0.62 x 10-x

0.95 x 10- l

0.68 x 10-J

0.48 x 10-1

0.13 x 10" l

0.12 x 10"1

0.86 x lO-2

0.19 x 10- 1

0.81 x lO-2

0.44 x 10~2

0.33 x lO-2

oversmoothing with the Gallant data is provided by the optimal A decreasing
rapidly (from IO"2 to 10~6) as p is increased from 2 to 4.

In summary, the new algorithm proposed in this paper does appear to per-
form better than existing algorithms and has the additional advantage that the
continuity conditions can be relaxed when we possess o priori information which
suggests that having 2p — 2 continuous derivatives is too stringent a constraint.
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