Characterization of Metal-doped Mn₃O₄ Particles by Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy J.C. Park¹, H.S. Kim², J.S. Kim³, and O.S. Kwon³ Metal-doped manganese oxides have been used as precursors of cathode materials for rechargeable lithium batteries due to their high capacity. A core-shell-structured material has been designed to improve the cycle life and safety of lithium batteries [1]. In this study, Co or Al-doped manganese oxides with core-shell structure were synthesized by co-precipitation method involving the precipitation of hydroxide particles from cobalt sulfide solutions. The grain structure and composition variation of metal-doped Mn3O4 particles were studied by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS). We also probed the electronic structure of the precursor materials at the nanometer scale by means of scanning transmission electron microscopy and electron energy loss spectroscopy. Figure 1 shows cross-sectional STEM images of the Co or Al-doped manganese oxides obtained by coprecipitation process. The particles showed the core-shell structure with smaller grains inside and bigger grains outside, and they coalesce into bigger particles. The grain size inside the particles is \sim 20nm and outside \sim 5µm. In the case of Co-doped manganese oxides, the concentration of cobalt inside the particle is constant and outside increases towards the surface. In the case of Al-doped manganese oxides, the concentration of aluminum is constant inside and outside. EELS analysis probed that inside the particle, O K-edge shows the typical shape of O K-edge of Mn₃O₄ and outside, the first peak of O K-edge decreases. In the case of Co-doped manganese oxides, the ratio of the integrated intensities of the L₃ and L₂ white lines (L₃/L₂, the valency of the transition metals [2.3]) inside the particle was 2.8 of the typical value for Mn₃O₄ and outside 3.0 (Figure 2) It is found that the outer layer of higher cobalt concentration has lower oxidation state. In the case of Al-doped manganese oxides, the valency (L₃/L₂) of the transition metals inside the particle was 2.9 and outside 2.8 (Figure 3). ## References: - [1] Y.K. Sun et al., Nature Materials 8 (2009) p. 320. - [2] L.Laffont et al., Materials Characterization 61 (2010) p. 1268. - [3] H.K. Schmid, W. Mader, Micron **37** (2006) p. 426. ¹·Business Support Department, Gumi Electronics & Information Technology Research Institute, Gumi 730-853, South Korea ² Center for Materials Analysis, Research Institute for Advanced Materials, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-742, Korea ³·R&D Center, E&D Co, Ltd. #912, Daerung Techno town 12th, 14, Gasan-digital 2-ro, Geumcheon-gu, Seoul 153-778, Korea Figure 1. STEM images of Co-doped Mn₃0₄ particle (a) and Al-doped Mn₃0₄ particle (b). **Figure 2.** EELS spectra showing Mn- $L_{2,3}$ edges obtained in the inside (a) and the outside (b) of Codoped Mn₃O₄. The ratio of the integrated intensities of the L_3 and L_2 white lines inside the particle was 2.8 of the typical value for Mn₃O₄ and outside 3.0. **Figure 3.** EELS spectra showing Mn-L_{2,3} edges obtained in the inside (a) and the outside (b) of Aldoped Mn₃O₄. The valency (L_3/L_2) of the transition metals inside the particle was 2.9 and outside 2.8.