JACOBI SUMS, IRREDUCIBLE ZETA-POLYNOMIALS, AND CRYPTOGRAPHY

NEAL KOBLITZ

ABSTRACT. We find conditions under which the numerator of the zeta-function of the curve $y^2 + y = x^d$ over \mathbf{F}_p , where d = 2g + 1 is a prime, $d \neq p$, is irreducible over \mathbf{Q} . This leads to the generalized Mersenne problem of "almost primality" of the number of points on the jacobian of such a curve over an extension of \mathbf{F}_p , which has application to public key cryptography.

1. Introduction. Suppose one has a large abelian group G such that (i) #G is either prime, or "almost prime" (i.e., equal to a large prime number times a small factor), and (ii) the group law does not seem to permit a feasible solution of the discrete logarithm problem in G. One can then use G to construct secure Diffie-Hellman type cryptosystems and cryptographic protocols. This was explained in [3], where we argued that the jacobians of hyperelliptic curves defined over a finite field \mathbf{F}_q have the property (ii). In order for #G to be "almost prime," a necessary condition is that the numerator of the zeta-function of the curve be irreducible over **Q**. In that case, if α is a reciprocal root of that numerator, then the group of F_q -points on the jacobian has order $N_1 = \mathbf{N}(\alpha - 1)$ (where **N** denotes the absolute norm of an algebraic number). Moreover, the group of \mathbf{F}_{q^s} -points on the jacobian has order

(1)
$$N_s = \mathbf{N}(\alpha^s - 1) = N_1 \cdot \mathbf{N}\left(\frac{\alpha^s - 1}{\alpha - 1}\right),$$

in which the large second factor on the right might possibly be prime for prime s (not for composite $s = s_1s_2$, since then N_s is divisible by N_{s_1}). The question of primality of the second factor on the right in (1) is a natural generalization of the Mersenne problem (the case $\alpha = 2$).

The purpose of this paper is to give conditions for irreducibility of the numerator of the zeta-function in the case of the special family of hyperelliptic curves $y^2 + y = x^d$ defined over the prime finite field \mathbf{F}_p . Roughly speaking, we have irreducibility most of the time when the multiplicative order f of p modulo d is odd, and almost never when f is even. An important special case occurs when p generates the quadratic residues modulo $d \equiv 3 \pmod{4}$, in which case the condition for irreducibility is that $d \not\equiv 19 \pmod{24}$ and f be relatively prime to the class number of $\mathbf{Q}(\sqrt{-d})$.

Received by the editors April 25, 1989 and, in revised form, January 16, 1990.

AMS subject classification: 11L05, 11G20, 11G25, 11T71, 12E05.

[©] Canadian Mathematical Society 1991.

We conclude with examples showing reducibility when the conditions of the theorem fail and an example of a "twisted" curve for which the number of \mathbf{F}_2 -points on its jacobian is 3 times a 58-digit prime.

2. Number of points. For each positive integer g (the genus) we set d = 2g + 1and consider the hyperelliptic curve C_d : $y^2 + y = x^d$ defined over the field \mathbf{F}_p of p elements, where p is a prime not dividing d. If $p \neq 2$, the equation can alternately be written in the form $y^2 = x^d + \frac{1}{4}$. We also consider the *twisted curve* \tilde{C}_d with equation $y^2 + y = x^d + 1$ for p = 2 and $\beta y^2 = x^d + \frac{1}{4}$ for $p \neq 2$, where β is a quadratic nonresidue modulo p. Let $C_d(\mathbf{F}_{p^s})$ denote the set of points on C_d with coordinates in the extension field \mathbf{F}_{p^s} (including the point at infinity), and let $M_s = \#C_d(\mathbf{F}_{p^s})$ (for fixed d and p, and s = 1, 2, ...). Let $\mathbf{J}_d(\mathbf{F}_{p^s})$ denote the abelian group of \mathbf{F}_{p^s} -points on the jacobian variety of C_d , and let $N_s = \#\mathbf{J}_d(\mathbf{F}_{p^s})$. (For an explicit description of the elements and group law in \mathbf{J}_d , see [3] or [4].) We analogously define $\tilde{C}_d(\mathbf{F}_{p^s}), \tilde{M}_s, \tilde{\mathbf{J}}_d(\mathbf{F}_{p^s}), \tilde{N}_s$.

The *zeta-polynomial* $Z_d(T)$ is the polynomial whose reciprocal polynomial $Z_{jd}(T) = T^{2g}Z(1/T)$ is the numerator of the zeta-function of C_d . It can be defined by the power series identity

$$\log \left(Zj_d(T) \right) = \sum_{s=1}^{\infty} \frac{M_s - q^s - 1}{s} T^s,$$

or, equivalently,

$$Z_d(T) = \prod_{j=1}^{2g} (T - \alpha_j)$$
, where $M_s = q^2 + 1 - \sum_{j=1}^{2g} \alpha_j^s$

By Weil's theorem, the roots α_j have absolute value \sqrt{p} in any complex imbedding, and they occur in complex conjugate pairs. We shall index them so that $\alpha_{j+g} = \bar{\alpha}_j, j = 1, \dots, g$. Once $Z_d(T)$ is known, N_s is determined by the formula

(2)
$$N_s = \prod_{j=1}^{g} |1 - \alpha_j^s|^2.$$

The zeta-polynomial $\tilde{Z}_d(T)$ of the twisted curve \tilde{C}_d is related to $Z_d(T)$ in a very simple way:

(3)
$$\tilde{Z}_d(T) = Z_d(-T) = \prod_{j=1}^{2g} (T + \alpha_j)$$

this follows from the observation that $\tilde{M}_s = M_s$ for s even and $\tilde{M}_s = 2q + 2 - M_s$ for s odd.

The zeta-polynomial of the curve C_d or \tilde{C}_d can be expressed in terms of Jacobi sums. We shall be interested only in the case when *d* is prime. (If *d* is composite, then $Z_d(T)$ is always reducible.) Let $\zeta_d = e^{2\pi i/d}$, and $K_d = \mathbf{Q}(\zeta_d)$. Given *d* and *p*, let \mathfrak{p} be a fixed prime ideal of K_d lying over *p*, and let *f* be the residue degree of \mathfrak{p} (the smallest positive integer such that $d|p^f - 1$), so that $O_{K_d}/\mathfrak{p} \cong \mathbf{F}_{p^f}$. Let χ be the *d*-th power residue symbol modulo \mathfrak{p} , i.e., χ is the character on $(O_{K_d}/\mathfrak{p})j$ with values in the *d*-th roots of unity for which

$$\chi(a \mod \mathfrak{p}) \equiv a^{(p^t-1)/d} \pmod{\mathfrak{p}}$$
 for $a \in O_{K_d}$

For j = 1, ..., d - 1 we define the Jacobi sum $J_i \in K_d$ as follows:

(4)
$$J_j = \sum_{a \in \mathcal{O}_{\mathcal{K}_d}/\mathfrak{p}, a \neq 0, 1} \chi^j(a) \chi^j(1-a).$$

We list some elementary properties of the J_j . If we let $\langle \nu \rangle$ denote the representative between 0 and d - 1 of an integer ν modulo d, then we have

(5)
$$J_{\langle p^i j \rangle} = J_j, \quad i = 0, \dots, f-1.$$

In addition, if σ_{ν} , $\nu = 1, ..., d-1$, denotes the automorphism of K_d for which $\sigma_{\nu}(\zeta_d) = \zeta_d^{\nu}$, then clearly

(6)
$$\sigma_{\nu}(J_j) = J_{\langle \nu j \rangle}.$$

Finally, J_i has absolute value $p^{f/2}$ in any complex embedding.

We shall also need the Stickelberger relation, which in this situation says that the prime ideal decomposition of J_i in K_d is

(7)
$$(J_j) = \mathfrak{p}^{\Theta_j}, \text{ where } \Theta_j = \sum_{\nu=1}^{d-1} \left(\frac{\langle 2\nu j \rangle + 2\langle -\nu j \rangle}{d} - 1 \right) \sigma_{\nu}^{-1}.$$

(This just says that the coefficient of σ_{ν}^{-1} is equal to 0 if $\langle -\nu j \rangle < d/2$ and to 1 if $\langle -\nu j \rangle > d/2$.)

Let k = (d-1)/f = 2g/f be the order of the quotient group of $(\mathbf{Z}/d\mathbf{Z})^*$ by the subgroup generated by p. Let $j_{\nu} \in \mathbf{Z}/d\mathbf{Z}, \nu = 1, ..., k$, be representatives of this quotient group.

The zeta-polynomial $Z_d(T)$ is then given by the formula (see [9])

(8)
$$Z_d(T) = \prod_{\nu=1}^k (T^f + J_{j\nu}).$$

3. Irreducibility theorem.

THEOREM. Let $Z_d(T)$ be the zeta-polynomial of $y^2 + y = x^d$ over \mathbf{F}_p , where d = 2g+1 is prime, $d \neq p$, and let f be the multiplicative order of p modulo d.

(A) If f is even, then $Z_d(T)$ is irreducible over **Q** if and only if either d = 3 or else $d \ge 5$ is a Fermat prime, $p \ne 2$, and f = 2g.

(B) If f is odd, then $Z_d(T)$ is irreducible over **Q** unless one of the following two conditions holds:

(i) 3|f and -2 is a power of p modulo d;

(ii) f is not prime to the minus part of the class number of the decomposition field of p (the fixed field of $\sigma_p \in \text{Gal}(K_d/\mathbb{Q})$).

NEAL KOBLITZ

PROOF. If d = 3, then the zeta-polynomial is quadratic, and so is irreducible because it cannot have a rational root (the roots have absolute value \sqrt{p}). In what follows suppose $d \ge 5$.

First suppose that f is even, i.e., that -1 is a power of p modulo d. By Lemma 1.1 of [2] we then have $Z_d(T) = (T^f + p^{f/2})^k$, where k = 2g/f. Hence, $Z_d(T)$ is reducible if f < 2g. Now let f = 2g, in which case $Z_d(T) = T^{2g} + p^g$. If d is not a Fermat prime, then g is divisible by an odd number $\nu > 1$, and so $T^{2g/\nu} + p^{g/\nu}$ is a factor of $Z_d(T)$. If d is a Fermat prime and p = 2, then d = 5 (otherwise 2 would not be a primitive root modulo d), in which case $Z_d(T) = T^4 + 4 = (T^2 + 2T + 2)(T^2 - 2T + 2)$. Thus, $Z_d(T)$ is reducible unless the conditions in (A) hold. Under the conditions in (A), $Z_d(T)$ has the factorization

$$\prod_{0 < j < 4g, j \text{ odd}} (T - \zeta^j \sqrt{p}),$$

where ζ is a primitive 4g-th root of unity. Since $p \neq 2$, the fields $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\zeta)$ are linearly disjoint. Since the different primitive 4g-th roots of unity $\zeta^{j}(j \text{ odd})$ are permuted by Gal ($\mathbf{Q}(\zeta)/\mathbf{Q}$) (here we are using the fact that d = 2g+1 is a Fermat prime), it follows that the roots of $Z_d(T)$ are distinct conjugates of $\zeta \sqrt{p}$, i.e., $Z_d(T)$ is irreducible.

Next suppose that f is odd.

LEMMA. If f is odd, then the $J_{i\nu}$ are distinct, $\nu = 1, ..., k$.

PROOF. (compare with § 2 of [5] and Lemma 1.6 of [2]). Suppose that $J_j = J_{j'}$. We must show that $j, j' \in (\mathbb{Z}/d\mathbb{Z})^*$ are in the same coset of the subgroup *P* of powers of *p*. For $\nu \in (\mathbb{Z}/d\mathbb{Z})^*$, let τ_{ν} denote the projection of σ_{ν} onto the quotient *G* of Gal (K_d/\mathbb{Q}) by the decomposition group of \mathfrak{p} , i.e., $\tau_{p^i\nu} = \tau_{\nu}, i = 0, \dots, f-1$. We shall identify *G* with $(\mathbb{Z}/d\mathbb{Z})^*/P$. Since $J_j = J_{j'}$, then by (7) we must have the following relation in the group algebra $\mathbb{Z}[G]$:

(9)
$$\sum_{\nu=1}^{d-1} \left(\frac{\langle 2\nu j \rangle + 2\langle -\nu j \rangle}{d} - 1 \right) \tau_{\nu}^{-1} = \sum_{\nu=1}^{d-1} \left(\frac{\langle 2\nu j' \rangle + 2\langle -\nu j' \rangle}{d} - 1 \right) \tau_{\nu}^{-1}$$

We recall the definition of the first Bernoulli polynomial $B_1(x) = x - \frac{1}{2}$ and the generalized Bernoulli number (for χ a character of $(\mathbf{Z}/d\mathbf{Z})^*$)

(10)
$$B_{1,\chi} = \sum_{\nu=1}^{d-1} B_1(\nu / d) \chi(\nu).$$

It is well known that $B_{1,\chi} \neq 0$ if χ is an *odd* character.

Now let χ be any odd character which is trivial on the subgroup *P*, i.e., such that $\chi(p) = 1$. Because *f* is odd — which is equivalent to $-1 \notin P$ — such χ exist (there are k/2 = g/f of them). Applying χ to the identity (9) and using (10), we obtain

$$\chi(2j)B_{1,\bar{\chi}} + 2\chi(-j)B_{1,\bar{\chi}} = \chi(2j')B_{1,\bar{\chi}} + 2\chi(-j')B_{1,\bar{\chi}}.$$

Dividing by $B_{1,\bar{\chi}}$ gives

$$\chi(2j) + 2\chi(-j) = (\chi(2j) + 2\chi(-j))\chi(j'/j)$$

Since $\chi(2j) + 2\chi(-j) \neq 0$, it follows that $\chi(j'/j) = 1$.

But then also $\chi'(j'/j) = 1$ for any even character χ' which is trivial on P, since we can take an arbitrary odd character χ and express χ' as the ratio of the two odd characters $\chi'\chi$ and χ . We conclude that $\chi(j'/j) = 1$ for all characters of $(\mathbb{Z}/d\mathbb{Z})^*/P$, and hence $j'/j \in P$, as desired.

We now return to the proof of the theorem. It follows from (6) and the lemma that the $J_{j\nu}$ in (8) are a set of distinct conjugates over **Q**. Let $K_{d,p} \subset K_d$ denote the decomposition field of p, i.e., the fixed field of $\sigma_p \in \text{Gal}(K_d/\mathbf{Q})$. According to the theory of Kummer extensions (see, e.g., Theorem 9.1 of [6]) $Z_d(T)$ is irreducible if and only if for any prime l|f none of the J_j is an *l*-th power in $K_{d,p}$. It is obviously enough to verify this for J_1 , and for this it suffices to show that, if neither of the conditions (i), (ii) in the theorem holds, then for any l|f the element

(11)
$$\Theta = \sum_{\nu=1}^{d-1} \left(\frac{\langle 2\nu \rangle + 2\langle -\nu \rangle}{d} - 1 \right) \tau_{\nu}^{-1}$$

is not divisible by *l* in the group algebra $\mathbb{Z}[\text{Gal}(K_{d,p}/\mathbb{Q})]$. Suppose *l* divided this element. We proceed as in the proof of the lemma, letting χ be an arbitrary odd character of Gal $(K_{d,p}/\mathbb{Q}) \approx (\mathbb{Z}/d\mathbb{Z})^*/P$. Applying χ to (11), we find that *l* divides $(2+\chi(-2))B_{1,\bar{\chi}}$ in the ring $\mathbb{Z}[\chi]$. If condition (i) does not hold, then for some χ we have $l \nmid (2+\chi(-2))$, and so *l* is not prime to $B_{1,\bar{\chi}}$. However, up to a power of 2 (and a factor of *d* if f = 1) the minus part h^- of the class number of $K_{d,p}$ is equal to the product of the $|B_{1,\chi}|$ over the g/f odd characters χ of Gal $(K_{d,p}/\mathbb{Q})$ (see [7], p. 80). Hence $l|h^-$, and the theorem is proved.

COROLLARY 1. Suppose that d = 2g + 1 is a prime $\equiv 3 \pmod{4}$, and p has order g modulo d. Let h_d denote the class number of $\mathbb{Q}(\sqrt{-d})$, and let $\epsilon_d = 2 - \binom{2}{d}$. Then $Z_d(T)$ is given by

$$Z_d(T) = (T^g - p^{(g-\epsilon_d h_d)/2}(a + b\sqrt{-d}))(T^g - p^{(g-\epsilon_d h_d)/2}(a - b\sqrt{-d})),$$

where $a \pm b\sqrt{-d}$ is the unique integer of $\mathbb{Q}(\sqrt{-d})$ such that $a^2 + b^2d = p^{\epsilon_d h_d}$, $p \nmid a$, $p^{(g-\epsilon_d h_d)/2}a \equiv 1 \pmod{d}$. In this case $Z_d(T)$ is irreducible over \mathbb{Q} unless either (i) $d \equiv 19 \pmod{24}$, or else (ii) g.c.d. $(g, h_d) > 1$.

This corollary follows from the theorem if we use Stickelberger's relation and the formula $\sum_{\nu=1}^{(d-1)/2} \left(\frac{\nu}{d}\right) = (2 - \left(\frac{2}{d}\right))h_d$ (see, e.g., [1], p. 346).

REMARK. Part (2) of the theorem stated without proof in §4 of [4] is incorrect; it is corrected in Corollary 1 above.

COROLLARY 2. For any fixed prime $d \ge 3$ there are infinitely many primes p such that the zeta-polynomial of $y^2 + y = x^d$ over \mathbf{F}_p is irreducible over \mathbf{Q} .

In fact, it suffices to take $p \equiv 1 \pmod{d}$.

CONJECTURE. For any fixed prime p there are infinitely many primes d such that the zeta-polynomial of $y^2 + y = x^d$ over \mathbf{F}_p is irreducible over \mathbf{Q} .

REMARK. This conjecture would follow from the following variant of a classical conjecture (see §1.12 of [8]): There are infinitely many primes d = 2g + 1 such that g is prime and such that $d \equiv 7 \pmod{8}$ in the case p = 2, $(\frac{p}{d}) = (\frac{-d}{p}) = 1$ in the case $p \neq 2$. Namely, if d satisfies these conditions, then for J_1 to be a g-th power in $\mathbf{Q}(\sqrt{-d})$ there would have to be an integer of $\mathbf{Q}(\sqrt{-d})$ of norm p, and this is impossible for d > 4p.

COROLLARY 3. The theorem and Corollaries 1 and 2 hold with C_d : $y^2 + y = x^d$ replaced by the twisted curve \tilde{C}_d .

This follows immediately from (3).

4. Examples.

1. Let d = 19, p = 5. Then Corollary 1 applies, $h_{19} = 1$, and condition (i) holds. In this case $J_1 = (5(\frac{1+\sqrt{-19}}{2}))^3$, and $Z_{19}(T)$ is reducible.

2. Let d = 71, p = 107. Then condition (ii) of Corollary 1 holds (in fact, $h_{71} = 7$). In this case $J_1 = (107^2(-6 + \sqrt{-71}))^7$, and $Z_{71}(T)$ is reducible. However, if we take p = 2, which is also a generator of the quadratic residues modulo 71, we obtain an irreducible zeta-polynomial, because there is no integer of $\mathbf{Q}(\sqrt{-71})$ of norm 2.

3. Let p = 2. Here is a list of all d < 200 for which $Z_d(T)$ is irreducible: 3, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199. In fact, in this range $Z_d(T)$ is irreducible in all cases when 2 has odd order modulo d.

4. Let p = 2, d = 7. Then $Z_7(T) = T^6 - 2T^3 + 8$ is irreducible, and for prime *s* the number $N_s = #(\mathbf{J}_7(\mathbf{F}_{2^s}))$ may possibly equal $N_1 = 7$ times a large prime. For example,

 $N_{47} = 7 \cdot 39\ 82275\ 92830\ 90398\ 46698\ 24190\ 47946\ 07809\ 61207.$

Thus, the jacobian of the curve $y^2 + y = x^7$ over $\mathbf{F}_{2^{47}}$ may be useful in cryptographic applications. One could generalize the Mersenne problem by conjecturing that N_s/N_1 is prime infinitely often (see (1)).

5. The number of \mathbf{F}_p -points on the jacobian of C_d is always divisible by d; however, the number of points on the jacobian of the twisted curve \tilde{C}_d is not. Thus, for d large it is *a priori* possible for the number of \mathbf{F}_p -points on the latter jacobian to be a prime number or a small factor times a large prime. For example, if we take p = 2, d = 383, then we have:

$$g = 191, \quad h_{383} = h(\mathbf{Q}(\sqrt{-383})) = 17, \quad J_1 = 2^{87} \left(\frac{711 + 7\sqrt{-383}}{2}\right),$$

$(\tilde{\mathbf{J}}_{383}(\mathbf{F}_2)) = 3P,$

where *P* is a 58-digit prime (its primality, and also the primality of the 42-digit factor of N_{47} in example 4, were kindly verified for me by A. Odlyzko). Explicitly,

$$P = \left((1 - 711 \cdot 2^{86})^2 + 49 \cdot 383 \cdot 2^{172} \right) / 3 =$$

= 104 61836 22564 44679 39726 31570 49793 70956 86563 18343 34525 30347.

Thus, the jacobian of the curve $v^2 + v = u^{383} + 1$ over \mathbf{F}_2 might be suitable for discrete log cryptosystems.

REFERENCES

- 1. Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
- 2. B. H. Gross and D. E. Rohrlich, Some results on the Mordell-Weil group of the jacobian of the Fermat curve, Invent. Math. 44 (1978), 201–224.
- 3. N. Koblitz, Hyperelliptic cryptosystems, J. Cryptology 1 (1989), 139-150.
- 4. N. Koblitz, A family of jacobians suitable for discrete log cryptosystems, to appear in Proc. Crypto '88.
- 5. N. Koblitz and D. E. Rohrlich, Simple factors in the jacobian of a Fermat curve, Can. J. Math. 30 (1978), 1183–1205.
- 6. S. Lang, Algebra, 2nd ed. Addison-Wesley, Reading MA, 1984.
- 7. S. Lang, Cyclotomic Fields, Springer-Verlag, New York, 1978.
- 8. D. Shanks, Solved and Unsolved Problems in Number Theory, 3rd ed., Chelsea, New York, 1985.
- 9. A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508.

Dept. of Mathematics GN-50 Univ. of Washington Seattle, WA 98195 USA