A GENERALIZATION OF FINAL RANK OF PRIMARY ABELIAN GROUPS

DOYLE O. CUTLER AND PAUL F. DUBOIS

Let G be a p-primary Abelian group. Recall that the final rank of G is $\inf _{n \in \omega}\left\{r\left(p^{n} G\right)\right\}$, where $r\left(p^{n} G\right)$ is the rank of $p^{n} G$ and ω is the first limit ordinal. Alternately, if Γ is the set of all basic subgroups of G, we may define the final rank of G by $\sup _{B \in \Gamma}\{r(G / B)\}$. In fact, it is known that there exists a basic subgroup B of G such that $r(G / B)$ is equal to the final rank of G. Since the final rank of G is equal to the final rank of a high subgroup of G plus the rank of $p^{\omega} G$, one could obtain the same information if the definition of final rank were restricted to the class of p-primary Abelian groups of length ω.

In this paper we show the existence of appropriate generalizations of these two definitions of final rank; and, when the length of G is an accessible limit ordinal (the limit of a countable increasing sequence of lesser ordinals), we show that the two resulting cardinals are indeed the same. The notation is pretty close to that of [1] or [3]. We use $\langle. .$.$\rangle for "subgroup generated by . ..",$ and ordinals are in the sense of von Neumann.

Let G be a reduced p-primary Abelian group. Let

$$
p G=\{x \in G \mid x=p y \text { for some } y \in G\} .
$$

Inductively we define

$$
p^{\beta+1} G=p\left(p^{\beta} G\right) \quad \text { and } \quad p^{\alpha} G=\bigcap_{\beta \in \alpha} p^{\beta} G
$$

for α a limit ordinal. A subgroup H of G is called p^{α}-pure in G if

$$
0 \rightarrow H \rightarrow G \rightarrow G / H \rightarrow \mathbf{0}
$$

represents an element of $p^{\alpha} \operatorname{Ext}(G / H, H)$. For α a limit ordinal let

$$
\Gamma_{\alpha}=\left\{H \mid H \text { is a } p^{\alpha} \text {-pure subgroup of } G \text { and } G / H \text { is divisible }\right\} .
$$

Then the following two generalizations of final rank can be defined:

$$
\begin{align*}
r_{\alpha}(G) & =\sup _{H \in \Gamma_{\alpha}}\{r(G / H)\} \tag{1}\\
s_{\alpha}(G) & =\inf _{\beta \in \alpha}\left\{r\left(p^{\beta} G[p]\right)\right\} . \tag{2}
\end{align*}
$$

Received November 24, 1969 and in revised form, September 15, 1970. The research of the second-named author was supported by an NSF Graduate Fellowship, which the author gratefully acknowledges.

Theorem 1. Let G be a reduced p-primary Abelian group. Then $r_{\alpha}(G) \leqq s_{\alpha}(G)$.
Proof. For $H \in \Gamma_{\alpha}$, the following hold (see [4]):
(a) $p^{\beta} G \cap H=p^{\beta} H$ for all $\beta \in \alpha$,
(b) $\left\langle p^{\beta} G, H\right\rangle=G$ for all $\beta \in \alpha$.

Thus $r(G / H)=r\left(\left\langle p^{\beta} G, H\right\rangle / H\right)=r\left(p^{\beta} G / p^{\beta} H\right)$ for all $\beta \in \alpha$. Now (a) implies that $p^{\beta} H$ is pure in $p^{\beta} G$. Thus, if $\left\{\bar{x}_{\bar{s}}\right\}_{\zeta \in A}$ is a basis of ($\left.p^{\beta} G / p^{\beta} H\right)[p]$, we can choose $x_{\xi} \in p^{\beta} G[p]$ so that $x_{\xi}+p^{\beta} H=\bar{x}_{\xi}$. Then $\left\{x_{\xi}\right\}_{\xi \in A}$ is linearly independent and so

$$
r\left(p^{\beta} G / p^{\beta} H\right)=r\left(\left(p^{\beta} G / p^{\beta} H\right)[p]\right) \leqq r\left(p^{\beta} G[p]\right)
$$

for all $\beta \in \alpha$. Therefore $r(G / H) \leqq s_{\alpha}(G)$ for each $H \in \Gamma_{\alpha}$. Hence $r_{\alpha}(G) \leqq s_{\alpha}(G)$.
Theorem 2. Let G be a reduced p-primary Abelian group of length α, where $\alpha=\bigcup_{i \epsilon \omega} \alpha_{i}\left(\alpha_{i} \in \alpha_{i+1} \in \alpha\right.$ for all $\left.i \in \omega\right)$. Then $r_{\alpha}(G) \geqq s_{\alpha}(G)$.

Proof. Let G_{i} be a chain of $p^{\alpha} G$-high subgroups of G; that is, $G_{i} \subseteq G_{i+1}$ for all $i \in \omega$ and G_{i} is maximal with respect to $G_{i} \cap p^{\alpha i} G=0$. Define $P_{0}=G_{0}[p]$, and for $i>0$ choose P_{i} such that $G_{i}[p]=G_{i-1}[p] \oplus P_{i}$. Note that for all $\beta \in \alpha$,

$$
G[p] \subseteq\left\langle\sum_{i \in \omega} P_{i},\left(p^{\beta} G\right)[p]\right\rangle ;
$$

i.e., $\sum_{i \in \omega} P_{i}$ is a dense subsocle of $G[p]$ in the relative p^{α}-topology.

Note that $\inf _{\beta \in \alpha}\left|p^{\beta} G[p]\right|=\boldsymbol{N} \geqq \boldsymbol{\aleph}_{0}$. Either $\lim _{k \rightarrow \infty}\left|\sum_{i=k}^{\infty} P_{i}\right|=\boldsymbol{N}$ or $\lim _{k \rightarrow \infty}\left|\sum_{i=k}^{\infty} P_{i}\right|<\boldsymbol{N}$.

Case I. $\lim _{k \rightarrow \infty}\left|\sum_{i=k}^{\infty} P_{i}\right|<\boldsymbol{X}$. Since $\left|\sum P_{i}\right|=\sum\left|P_{i}\right|$ and since the cardinals are well-ordered, there exists an $i_{0} \in \omega$ such that

$$
\left|\sum_{i=i 0}^{\infty} P_{i}\right|=\lim _{k \rightarrow \infty}\left|\sum_{i=k}^{\infty} P_{i}\right| .
$$

Let K be a neat subgroup of G such that $K[p]=\sum_{i=0}^{\infty} P_{i}$. (We need only choose K containing $\sum_{i=0}^{\infty} P_{i}$ and maximal with respect to the property of being disjoint from a complementary summand of $\sum_{i=0}^{\infty} P_{i}$ in $G[p]$.) Since $K[p]$ is dense in $G[p]$ with respect to the relative p^{α}-topology, we have, by [4, Theorem 2.9], that K is a p^{α}-pure subgroup of G. Note that G / K is divisible since it is easy to show that $\left\langle K, p^{\beta} G\right\rangle=G$ for all $\beta \in \alpha$. From [4, p. 196], we have that K is isotype in G. Thus

$$
G / K=\left\langle p^{i_{0}} G, K\right\rangle / K \cong p^{i_{0}} G /\left(p^{i_{0}} G \cap K\right)=p^{i_{0}} G / p^{i_{0}} K .
$$

Now $\left|p^{i_{0}} K[p]\right|=\left|\sum_{i=i_{0}}^{\infty} P_{i}\right|<\boldsymbol{N}$. Choose L such that

$$
\left(p^{i_{0}} G\right)[p]=L \oplus p^{i_{0}} K[p] .
$$

Since $\left|p^{i 0} G[p]\right| \geqq \boldsymbol{X},|L| \geqq \boldsymbol{N}$. Then if $\left\{x_{\xi}\right\}_{\xi \in A}$ is a basis of $L,\left\{x_{\xi}+p^{{ }^{i} 0} K\right\}_{\xi \in A}$ is linearly independent and hence $|G / K|=\left|p^{i 0} G / p^{i_{0}} K\right| \geqq \boldsymbol{\aleph}$, as required.

Case II. $\lim _{k \rightarrow \infty}\left|\sum_{i=k}^{\infty} P_{i}\right|=\boldsymbol{\aleph}$. It may happen that $\left|\sum_{i=0}^{\infty} P_{i}\right|=\boldsymbol{\aleph}$ but $\left|P_{i}\right|<\mathcal{X}$ for all $i \in \omega$. Thus we proceed to pick out a subsocle S of $\sum_{i \in \omega} P_{i}$ to obtain

$$
\left|\sum_{i \in \omega} P_{i} / S\right|=\mathcal{N} \quad \text { and } \quad\left\langle S, p^{\beta} G\right\rangle \supseteq \sum_{i \in \omega} P_{i} \quad \text { for all } \beta \in \alpha .
$$

Letting K be neat such that $K[p]=S$ will give a p^{α}-pure subgroup with G / K divisible and of cardinality $\boldsymbol{\kappa}$.

Let $\left\{R_{j}\right\}_{j \in \omega}$ be a subsequence of $\left\{P_{i}\right\}_{i \in \omega}$ with the property that $\left|R_{j}\right| \leqq\left|R_{j+1}\right|$ for all $j \in \omega$ and $\sum_{j \in \omega}\left|R_{j}\right|=\boldsymbol{\aleph}$. Note that if $\left|R_{j}\right|$ is now finite for all $j \in \omega$, then $\alpha=\beta+\omega$ and we will choose the K in the following to be a neat subgroup supported by a socle consisting of the direct sum of the socle of a $p^{\beta} G$-high subgroup of G and the socle of a lower basic subgroup of $p^{\beta} G$. Thus we may assume that $\left|R_{j}\right|$ is infinite for all $j \in \omega$.

Define $Q_{n}{ }^{r}, r, n \in \omega$ as follows. Let $Q_{0}{ }^{0}=R_{0}$ and $Q_{n}{ }^{r}=0$ whenever $r>n$. Inductively let $R_{n}=Q_{n}{ }^{0} \oplus \ldots \oplus Q_{n}{ }^{n}$, where $\left|Q_{n}{ }^{j}\right|=\left|Q_{n-1}{ }^{j}\right|$ for $0 \leqq j<n$, and $Q_{n}{ }^{n}=0$ if $\left|R_{n}\right|=\left|R_{n-1}\right|$. This can be done by defining, for each $j \in \omega, \lambda_{j}$ to be the least ordinal whose cardinal is $\operatorname{dim} R_{j}$ (as a vector space over the integers $\bmod p)$, choosing a basis $\left\{y_{\lambda}\right\}_{\lambda \in \lambda_{n}}$ for R_{n}, and defining

$$
Q_{n}{ }^{i}=\left\langle\left\{y_{\lambda} \mid\left(\lambda_{i-1}=\lambda \text { or } \lambda_{i-1} \in \lambda\right) \text { and } \lambda \in \lambda_{i}\right\}\right\rangle \text {, where } \lambda_{-1}=0 \text {. }
$$

Let $\Lambda=\left\{\operatorname{dim} R_{i} \mid i \in \omega\right\}$. For each $\mu \in \Lambda$ let k_{μ} be the least element of ω such that $\sum_{i=0}^{k_{\mu}}\left|R_{i}\right|=\mu$. Then $R_{k_{\mu}}$ is the first member of the sequence with dimension μ. Thus $\operatorname{dim}\left(Q_{k_{\mu}}{ }^{k_{\mu}}\right)=\mu$. Let $Q_{\mu}=\sum_{n=k_{\mu}}^{\infty} Q_{n}{ }^{k_{\mu}}$. Let $\left\{x_{n}{ }^{\beta}\right\}_{\beta \in \mu}$ be a basis of $Q_{k_{\mu}+n^{k},}{ }^{k_{\mu}}, n \in \omega$. Let $Q_{\mu}{ }^{\beta}=\sum_{n \in \omega}\left\langle x_{n}{ }^{\beta}\right\rangle$ (note that $\sum_{\beta \epsilon \mu} Q_{\mu}{ }^{\beta}=Q_{\mu}$). Let $S_{\mu}{ }^{\beta} \subseteq Q_{\mu}{ }^{\beta}$ be generated by all elements of the form $\sum_{i=a}^{2 a} x_{i}{ }^{\beta}, a \in \omega$. We show below that $Q_{\mu}{ }^{\beta} \subseteq\left\langle S_{\mu}{ }^{\beta}, p^{\gamma} G\right\rangle$ for all $\gamma \in \alpha$, and $\left|Q_{\mu}{ }^{\beta} / S_{\mu}{ }^{\beta}\right|=\boldsymbol{X}_{0}$. Hence if $S_{\mu}=\sum_{\beta \in \mu} S_{\mu}{ }^{\beta}$, then

$$
\left|\frac{Q_{\mu}}{S_{\mu}}\right|=\left|\frac{\sum_{\beta \in \mu} Q_{\mu}{ }^{\beta}}{\mid \sum_{\beta \in \mu} S_{\mu}^{\beta}}\right|=\left|\sum_{\beta \in \mu} \frac{Q_{\mu}{ }^{\beta}}{S_{\mu}^{\beta}}\right|=\mathbf{X}_{0} \cdot \mu=\mu .
$$

Let $Q=\left\langle\left\{S_{\mu}\right\}_{\mu \in \mathrm{A}},\left\{P_{i} \mid i \in \omega\right.\right.$ and $P_{i} \neq R_{j}$ for all $\left.\left.j \in \omega\right\}\right\rangle$.
Thus by construction we have

$$
\left|\frac{\sum_{i=0}^{\infty} P_{i}}{Q}-\left|=\left|\frac{\sum_{\mu \in \Lambda} Q_{\mu}}{\sum_{\mu \in \Lambda} S_{\mu}}\right|=\left|\sum_{\mu \in \Lambda} \frac{Q_{\mu}}{S_{\mu}}\right|=\sum_{\mu \in \Lambda} \mu=\boldsymbol{\kappa}\right.\right.
$$

Let K be a neat subgroup of G with $K[p]=Q$. If $\gamma \in \alpha$, then

$$
\begin{aligned}
\left\langle Q,\left(p^{\gamma} G\right)[p]\right\rangle & =\left\langle\sum_{P \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} S_{\mu},\left(p^{\gamma} G\right)[p]\right\rangle \\
& =\left\langle\sum_{P i \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} \sum_{\beta \in \mu} S_{\mu}{ }^{\beta},\left(p^{\gamma} G\right)[p]\right\rangle \\
& =\left\langle\sum_{P i \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} \sum_{\beta \in \mu} Q_{\mu}{ }^{\beta},\left(p^{\gamma} G\right)[p]\right\rangle \\
& =\left\langle\sum_{P i \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} Q_{\mu},\left(p^{\gamma} G\right)[p]\right\rangle \\
& =\left\langle\sum_{i \in \omega} P_{i},\left(p^{\gamma} G\right)[p]\right\rangle \\
& =G[p] .
\end{aligned}
$$

Since G / K is divisible, we then have that K is p^{α}-pure in G. Again by the construction we have $|G / K|=\boldsymbol{\aleph}$, as desired.

Finally we will show that $Q_{\mu}{ }^{\beta} \subseteq\left\langle S_{\mu}{ }^{\beta}, p^{\gamma} G\right\rangle$ for $\gamma \in \alpha$. Let γ be given and find $m \in \omega$ such that $\gamma \in \alpha_{m}$. Then, given $x_{\tau}{ }^{\beta} \in Q_{\mu}{ }^{\beta}$, we have

$$
x_{r}^{\beta}-\sum_{i=2^{m+1}(r+1)-1}^{2^{m+1}(r+2)-2} x_{i}^{\beta}=\sum_{i=0}^{m} \sum_{j=2^{i}(r+1)-1}^{2^{i+1}(r+1)-2} x_{j}^{\beta}-\sum_{i=0}^{m} \sum_{j=2 i^{2}(r+2)-1}^{2^{i+1}(r+2)-2} x_{j}^{\beta} .
$$

Each member of the sum on the right side is an element of $S_{\mu}{ }^{\beta}$. The left side is $x_{r}{ }^{\beta}-z$, where $z \in p^{\alpha_{m}} G \subseteq p^{\gamma} G$. It follows that

$$
Q_{\mu}{ }^{\beta}=\sum_{r \in \omega}\left\langle x_{r}{ }^{\beta}\right\rangle \subseteq\left\langle S_{\mu}{ }^{\beta}, p^{\gamma} G\right\rangle
$$

Note that $\left|Q_{\mu}{ }^{\beta} / S_{\mu}{ }^{\beta}\right|=\boldsymbol{\aleph}_{0}$ as follows. Suppose that n is odd. If $x_{n}{ }^{\beta}$ is in $S_{\mu}{ }^{\beta}$ we can write

$$
x_{n}^{\beta}=\sum_{i=1}^{m} c_{i} \sum_{j=a_{i}}^{2 a_{i}} x_{j}^{\beta},
$$

where $0<c_{i}<p$ and $i<j \Rightarrow a_{i}<a_{j}$. Then $x_{2 a_{m}}{ }^{\beta}$ appears only in the last term and $n \neq 2 a_{m}$. Thus $c_{m} x_{2 a_{m}}{ }^{\beta}=0 \Rightarrow p \mid c_{m}$, a contradiction. Hence $x_{n}{ }^{\beta} \in S_{\mu}{ }^{\beta}$ for n odd. We claim that $\left\{x_{2_{n+1}}{ }^{\beta}+S_{\mu}{ }^{\beta}\right\}_{n \in \omega}$ is linearly independent. If $x_{2 n+1}{ }^{\beta}-x_{2 k+1}{ }^{\beta} \in S_{\mu}{ }^{\beta}$, then, supposing $n \geqq k$, we have

$$
x_{2 n+1}^{\beta}=x_{2 k+1}^{\beta}+\sum_{i=1}^{m} c_{i} \sum_{j=a_{i}}^{2 a_{i}} x_{j}^{\beta}
$$

with $0 \leqq c_{i}<p$, and $i<j \Rightarrow a_{i}<a_{j}$. Once again we see that $p \mid c_{m}$, and thus $x_{2 n+1}{ }^{\beta}=x_{2 k+1}{ }^{\beta}$. Hence $\left|Q_{\mu}{ }^{\beta} / S_{\mu}{ }^{\beta}\right|=\boldsymbol{\aleph}_{0}$. This completes the proof.

Theorem 3. Let G be a reduced p-primary Abelian group and let α be an accessible limit ordinal. Then $r_{\alpha}(G)=s_{\alpha}(G)$.

Proof. This follows from Theorems 1 and 2 and the fact that if H is a $p^{\alpha} G$-high subgroup of G then $r_{\alpha}(G)=r_{\alpha}(H)+r\left(p^{\alpha} G\right)$ and

$$
s_{\alpha}(G)=s_{\alpha}(H)+r\left(p^{\alpha} G\right) .
$$

One application of Theorem 3 is as follows. Let G be a reduced p-group of length α, α an accessible limit ordinal. Let H be a p-group and B a basic subgroup of H. Then a necessary and sufficient condition that there exist a group K such that $K / p^{\alpha} K \cong G$ and $p^{\alpha} K \cong H$ is that $r(B) \leqq s_{\alpha}(G)$. (Note that $s_{\alpha}(G)$ can be replaced by $r_{\alpha}(G)$ with no restriction on the limit ordinal α. See [2, Proposition 1.7].)

References

1. Laszlo Fuchs, Abelian groups (Publishing House of the Hungarian Academy of Sciences, Budapest, 1958).
2. Paul Hill and Charles Megibben, Direct sums of countable groups and generalizations, pp. 183-206 in Studies on abelian groups (Études sur les groupes abéliens) Symposium on the Theory of Abelian Groups, Montpelier University, June 1967, Edited by Bernard Charles (Springer-Verlag, Berlin, Dunod, Paris, 1968).
3. I. Kaplansky, Infinite abelian groups (Univ. Michigan Press, Ann Arbor, Michigan 1954; rev. ed., 1968).
4. R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182-212.

University of California, Davis, California;
University of Alberta, Edmonton, Alberta

