A GENERALIZATION OF FINAL RANK OF PRIMARY ABELIAN GROUPS

DOYLE O. CUTLER AND PAUL F. DUBOIS

Let G be a p-primary Abelian group. Recall that the final rank of G is $\inf_{n \in \omega} \{r(p^n G)\}$, where $r(p^n G)$ is the rank of $p^n G$ and ω is the first limit ordinal. Alternately, if Γ is the set of all basic subgroups of G, we may define the final rank of G by $\sup_{B \in \Gamma} \{r(G/B)\}$. In fact, it is known that there exists a basic subgroup B of G such that r(G/B) is equal to the final rank of G. Since the final rank of G is equal to the final rank of a high subgroup of G plus the rank of $p^{\omega}G$, one could obtain the same information if the definition of final rank were restricted to the class of p-primary Abelian groups of length ω .

In this paper we show the existence of appropriate generalizations of these two definitions of final rank; and, when the length of G is an accessible limit ordinal (the limit of a countable increasing sequence of lesser ordinals), we show that the two resulting cardinals are indeed the same. The notation is pretty close to that of [1] or [3]. We use $\langle \ldots \rangle$ for "subgroup generated by \ldots ", and ordinals are in the sense of von Neumann.

Let G be a reduced p-primary Abelian group. Let

$$pG = \{x \in G | x = py \text{ for some } y \in G\}.$$

Inductively we define

$$p^{\beta+1}G = p(p^{\beta}G)$$
 and $p^{\alpha}G = \bigcap_{\beta \in \alpha} p^{\beta}G$

for α a limit ordinal. A subgroup H of G is called p^{α} -pure in G if

$$0 \to H \to G \to G/H \to 0$$

represents an element of $p^{\alpha} \operatorname{Ext}(G/H, H)$. For α a limit ordinal let

 $\Gamma_{\alpha} = \{H | H \text{ is a } p^{\alpha}\text{-pure subgroup of } G \text{ and } G/H \text{ is divisible} \}.$

Then the following two generalizations of final rank can be defined:

(1)
$$r_{\alpha}(G) = \sup_{H \in \Gamma_{\alpha}} \{r(G/H)\}$$

(2)
$$s_{\alpha}(G) = \inf_{\beta \in \alpha} \{ r(p^{\beta}G[p]) \}.$$

Received November 24, 1969 and in revised form, September 15, 1970. The research of the second-named author was supported by an NSF Graduate Fellowship, which the author gratefully acknowledges.

THEOREM 1. Let G be a reduced p-primary Abelian group. Then $r_{\alpha}(G) \leq s_{\alpha}(G)$.

Proof. For $H \in \Gamma_{\alpha}$, the following hold (see [4]):

(a) $p^{\beta}G \cap H = p^{\beta}H$ for all $\beta \in \alpha$,

(b) $\langle p^{\beta}G, H \rangle = G$ for all $\beta \in \alpha$.

Thus $r(G/H) = r(\langle p^{\beta}G, H \rangle / H) = r(p^{\beta}G/p^{\beta}H)$ for all $\beta \in \alpha$. Now (a) implies that $p^{\beta}H$ is pure in $p^{\beta}G$. Thus, if $\{\bar{x}_{\xi}\}_{\xi \in A}$ is a basis of $(p^{\beta}G/p^{\beta}H)[p]$, we can choose $x_{\xi} \in p^{\beta}G[p]$ so that $x_{\xi} + p^{\beta}H = \bar{x}_{\xi}$. Then $\{x_{\xi}\}_{\xi \in A}$ is linearly independent and so

$$r(p^{\beta}G/p^{\beta}H) = r((p^{\beta}G/p^{\beta}H)[p]) \leq r(p^{\beta}G[p])$$

for all $\beta \in \alpha$. Therefore $r(G/H) \leq s_{\alpha}(G)$ for each $H \in \Gamma_{\alpha}$. Hence $r_{\alpha}(G) \leq s_{\alpha}(G)$.

THEOREM 2. Let G be a reduced p-primary Abelian group of length α , where $\alpha = \bigcup_{i \in \omega} \alpha_i \ (\alpha_i \in \alpha_{i+1} \in \alpha \text{ for all } i \in \omega)$. Then $r_{\alpha}(G) \geq s_{\alpha}(G)$.

Proof. Let G_i be a chain of $p^{\alpha}G_i$ -high subgroups of G; that is, $G_i \subseteq G_{i+1}$ for all $i \in \omega$ and G_i is maximal with respect to $G_i \cap p^{\alpha}G = 0$. Define $P_0 = G_0[p]$, and for i > 0 choose P_i such that $G_i[p] = G_{i-1}[p] \oplus P_i$. Note that for all $\beta \in \alpha$,

$$G[p] \subseteq \left\langle \sum_{i \in \omega} P_i, (p^{\beta}G)[p] \right\rangle;$$

i.e., $\sum_{i \in \omega} P_i$ is a dense subsocle of G[p] in the relative p^{α} -topology.

Note that $\inf_{\beta \in \alpha} |p^{\beta}G[p]| = \aleph \ge \aleph_0$. Either $\lim_{k \to \infty} |\sum_{i=k}^{\infty} P_i| = \aleph$ or $\lim_{k \to \infty} |\sum_{i=k}^{\infty} P_i| < \aleph$.

Case I. $\lim_{k\to\infty} |\sum_{i=k}^{\infty} P_i| < \aleph$. Since $|\sum P_i| = \sum |P_i|$ and since the cardinals are well-ordered, there exists an $i_0 \in \omega$ such that

$$\left|\sum_{i=i_0}^{\infty} P_i\right| = \lim_{k \to \infty} \left|\sum_{i=k}^{\infty} P_i\right|.$$

Let K be a neat subgroup of G such that $K[p] = \sum_{i=0}^{\infty} P_i$. (We need only choose K containing $\sum_{i=0}^{\infty} P_i$ and maximal with respect to the property of being disjoint from a complementary summand of $\sum_{i=0}^{\infty} P_i$ in G[p].) Since K[p] is dense in G[p] with respect to the relative p^{α} -topology, we have, by [4, Theorem 2.9], that K is a p^{α} -pure subgroup of G. Note that G/K is divisible since it is easy to show that $\langle K, p^{\beta}G \rangle = G$ for all $\beta \in \alpha$. From [4, p. 196], we have that K is isotype in G. Thus

$$G/K = \langle p^{i_0}G, K \rangle / K \cong p^{i_0}G / (p^{i_0}G \cap K) = p^{i_0}G / p^{i_0}K.$$

Now $|p^{i_0}K[p]| = |\sum_{i=i_0}^{\infty} P_i| < \aleph$. Choose L such that

$$(p^{i_0}G)[p] = L \oplus p^{i_0}K[p].$$

Since $|p^{i_0}G[p]| \ge \mathbf{X}$, $|L| \ge \mathbf{X}$. Then if $\{x_{\xi}\}_{\xi \in A}$ is a basis of L, $\{x_{\xi} + p^{i_0}K\}_{\xi \in A}$ is linearly independent and hence $|G/K| = |p^{i_0}G/p^{i_0}K| \ge \mathbf{X}$, as required.

Case II. $\lim_{k\to\infty} |\sum_{i=k}^{\infty} P_i| = \aleph$. It may happen that $|\sum_{i=0}^{\infty} P_i| = \aleph$ but $|P_i| < \aleph$ for all $i \in \omega$. Thus we proceed to pick out a subsocle S of $\sum_{i\in\omega} P_i$ to obtain

$$\left|\sum_{i\in\omega} P_i/S\right| = \aleph \quad \text{and} \quad \langle S, p^\beta G \rangle \supseteq \sum_{i\in\omega} P_i \quad \text{for all } \beta \in \alpha.$$

Letting K be neat such that K[p] = S will give a p^{α} -pure subgroup with G/K divisible and of cardinality **X**.

Let $\{R_j\}_{j\in\omega}$ be a subsequence of $\{P_i\}_{i\in\omega}$ with the property that $|R_j| \leq |R_{j+1}|$ for all $j \in \omega$ and $\sum_{j\in\omega} |R_j| = \mathbb{X}$. Note that if $|R_j|$ is now finite for all $j \in \omega$, then $\alpha = \beta + \omega$ and we will choose the K in the following to be a neat subgroup supported by a socle consisting of the direct sum of the socle of a $p^{\beta}G$ -high subgroup of G and the socle of a lower basic subgroup of $p^{\beta}G$. Thus we may assume that $|R_j|$ is infinite for all $j \in \omega$.

Define Q_n^r , $r, n \in \omega$ as follows. Let $Q_0^0 = R_0$ and $Q_n^r = 0$ whenever r > n. Inductively let $R_n = Q_n^0 \oplus \ldots \oplus Q_n^n$, where $|Q_n^j| = |Q_{n-1}^j|$ for $0 \leq j < n$, and $Q_n^n = 0$ if $|R_n| = |R_{n-1}|$. This can be done by defining, for each $j \in \omega, \lambda_j$ to be the least ordinal whose cardinal is dim R_j (as a vector space over the integers mod p), choosing a basis $\{y_\lambda\}_{\lambda \in \lambda_n}$ for R_n , and defining

$$Q_n{}^i = \langle \{y_\lambda \mid (\lambda_{i-1} = \lambda \text{ or } \lambda_{i-1} \in \lambda) \text{ and } \lambda \in \lambda_i \rangle \rangle$$
, where $\lambda_{-1} = 0$.

Let $\Lambda = \{\dim R_i | i \in \omega\}$. For each $\mu \in \Lambda$ let k_{μ} be the least element of ω such that $\sum_{i=0}^{k_{\mu}} |R_i| = \mu$. Then $R_{k_{\mu}}$ is the first member of the sequence with dimension μ . Thus $\dim(Q_{k_{\mu}}{}^{k_{\mu}}) = \mu$. Let $Q_{\mu} = \sum_{n=k_{\mu}}^{\infty} Q_n{}^{k_{\mu}}$. Let $\{x_n{}^{\beta}\}_{\beta\in\mu}$ be a basis of $Q_{k_{\mu}+n}{}^{k_{\mu}}$, $n \in \omega$. Let $Q_{\mu}{}^{\beta} = \sum_{n \in \omega} \langle x_n{}^{\beta} \rangle$ (note that $\sum_{\beta\in\mu} Q_{\mu}{}^{\beta} = Q_{\mu}$). Let $S_{\mu}{}^{\beta} \subseteq Q_{\mu}{}^{\beta}$ be generated by all elements of the form $\sum_{i=a}^{2a} x_i{}^{\beta}$, $a \in \omega$. We show below that $Q_{\mu}{}^{\beta} \subseteq \langle S_{\mu}{}^{\beta}, p{}^{\gamma}G \rangle$ for all $\gamma \in \alpha$, and $|Q_{\mu}{}^{\beta}/S_{\mu}{}^{\beta}| = \aleph_0$. Hence if $S_{\mu} = \sum_{\beta\in\mu} S_{\mu}{}^{\beta}$, then

$$\left|\frac{Q_{\mu}}{S_{\mu}}\right| = \left|\frac{\sum\limits_{\beta \in \mu} Q_{\mu}^{\beta}}{\sum\limits_{\beta \in \mu} S_{\mu}^{\beta}}\right| = \left|\sum\limits_{\beta \in \mu} \frac{Q_{\mu}^{\beta}}{S_{\mu}^{\beta}}\right| = \aleph_{0} \cdot \mu = \mu.$$

Let $Q = \langle \{S_{\mu}\}_{\mu \in \Lambda}, \{P_i | i \in \omega \text{ and } P_i \neq R_j \text{ for all } j \in \omega \} \rangle$. Thus by construction we have

$$\left|\frac{\sum_{i=0}^{\infty} P_i}{Q}\right| = \left|\frac{\sum_{\mu \in \Lambda} Q_{\mu}}{\sum_{\mu \in \Lambda} S_{\mu}}\right| = \left|\sum_{\mu \in \Lambda} \frac{Q_{\mu}}{S_{\mu}}\right| = \sum_{\mu \in \Lambda} \mu = \aleph.$$

1120

Let K be a neat subgroup of G with K[p] = Q. If $\gamma \in \alpha$, then

$$\begin{split} \langle Q, (p^{\gamma}G)[p] \rangle &= \left\langle \sum_{P_{i} \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} S_{\mu}, (p^{\gamma}G)[p] \right\rangle \\ &= \left\langle \sum_{P_{i} \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} \sum_{\beta \in \mu} S_{\mu}^{\beta}, (p^{\gamma}G)[p] \right\rangle \\ &= \left\langle \sum_{P_{i} \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} \sum_{\beta \in \mu} Q_{\mu}^{\beta}, (p^{\gamma}G)[p] \right\rangle \\ &= \left\langle \sum_{P_{i} \neq R_{j}} P_{i}, \sum_{\mu \in \Lambda} Q_{\mu}, (p^{\gamma}G)[p] \right\rangle \\ &= \left\langle \sum_{i \in \omega} P_{i}, (p^{\gamma}G)[p] \right\rangle \\ &= G[p]. \end{split}$$

Since G/K is divisible, we then have that K is p^{α} -pure in G. Again by the construction we have $|G/K| = \mathbf{X}$, as desired.

Finally we will show that $Q_{\mu}{}^{\beta} \subseteq \langle S_{\mu}{}^{\beta}, p^{\gamma}G \rangle$ for $\gamma \in \alpha$. Let γ be given and find $m \in \omega$ such that $\gamma \in \alpha_m$. Then, given $x_r{}^{\beta} \in Q_{\mu}{}^{\beta}$, we have

$$x_{r}^{\beta} - \sum_{i=2^{m+1}(r+1)-1}^{2^{m+1}(r+2)-2} x_{i}^{\beta} = \sum_{i=0}^{m} \sum_{j=2^{i}(r+1)-1}^{2^{i+1}(r+1)-2} x_{j}^{\beta} - \sum_{i=0}^{m} \sum_{j=2^{i}(r+2)-1}^{2^{i+1}(r+2)-2} x_{j}^{\beta}.$$

Each member of the sum on the right side is an element of S_{μ}^{β} . The left side is $x_r^{\beta} - z$, where $z \in p^{\alpha_m}G \subseteq p^{\gamma}G$. It follows that

$$Q_{\mu}^{\ \beta} = \sum_{\tau \in \omega} \langle x_{\tau}^{\ \beta} \rangle \subseteq \langle S_{\mu}^{\ \beta}, p^{\gamma}G \rangle.$$

Note that $|Q_{\mu}^{\beta}/S_{\mu}^{\beta}| = \aleph_0$ as follows. Suppose that *n* is odd. If x_n^{β} is in S_{μ}^{β} we can write

$$x_n^{\ \beta} = \sum_{i=1}^m c_i \sum_{j=a_i}^{2a_i} x_j^{\ \beta},$$

where $0 < c_i < p$ and $i < j \Rightarrow a_i < a_j$. Then $x_{2a_m}{}^{\beta}$ appears only in the last term and $n \neq 2a_m$. Thus $c_m x_{2a_m}{}^{\beta} = 0 \Rightarrow p | c_m$, a contradiction. Hence $x_n{}^{\beta} \in S_{\mu}{}^{\beta}$ for n odd. We claim that $\{x_{2n+1}{}^{\beta} + S_{\mu}{}^{\beta}\}_{n \in \omega}$ is linearly independent. If $x_{2n+1}{}^{\beta} - x_{2k+1}{}^{\beta} \in S_{\mu}{}^{\beta}$, then, supposing $n \geq k$, we have

$$x_{2n+1}^{\ \ \beta} = x_{2k+1}^{\ \ \beta} + \sum_{i=1}^{m} c_i \sum_{j=a_i}^{2a_i} x_j^{\ \beta}$$

with $0 \leq c_i < p$, and $i < j \Rightarrow a_i < a_j$. Once again we see that $p|c_m$, and thus $x_{2n+1}^{\beta} = x_{2k+1}^{\beta}$. Hence $|Q_{\mu}^{\beta}/S_{\mu}^{\beta}| = \aleph_0$. This completes the proof.

THEOREM 3. Let G be a reduced p-primary Abelian group and let α be an accessible limit ordinal. Then $r_{\alpha}(G) = s_{\alpha}(G)$.

Proof. This follows from Theorems 1 and 2 and the fact that if H is a $p^{\alpha}G$ -high subgroup of G then $r_{\alpha}(G) = r_{\alpha}(H) + r(p^{\alpha}G)$ and

$$s_{\alpha}(G) = s_{\alpha}(H) + r(p^{\alpha}G).$$

One application of Theorem 3 is as follows. Let G be a reduced p-group of length α , α an accessible limit ordinal. Let H be a p-group and B a basic subgroup of H. Then a necessary and sufficient condition that there exist a group K such that $K/p^{\alpha}K \cong G$ and $p^{\alpha}K \cong H$ is that $r(B) \leq s_{\alpha}(G)$. (Note that $s_{\alpha}(G)$ can be replaced by $r_{\alpha}(G)$ with no restriction on the limit ordinal α . See [2, Proposition 1.7].)

References

- 1. Laszlo Fuchs, *Abelian groups* (Publishing House of the Hungarian Academy of Sciences, Budapest, 1958).
- Paul Hill and Charles Megibben, Direct sums of countable groups and generalizations, pp. 183-206 in Studies on abelian groups (Études sur les groupes abéliens) Symposium on the Theory of Abelian Groups, Montpelier University, June 1967, Edited by Bernard Charles (Springer-Verlag, Berlin, Dunod, Paris, 1968).
- I. Kaplansky, Infinite abelian groups (Univ. Michigan Press, Ann Arbor, Michigan 1954; rev. ed., 1968).
- 4. R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182-212.

University of California, Davis, California; University of Alberta, Edmonton, Alberta