
Genet. Res., Camb. (1989), 53, pp. 207-214 Printed in Great Britain 207

Age differences between distributions of genotypes among
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Summary

The number of children produced by a modern woman is usually below her total reproductive
capacity and is determined by circumstances other than natural selection. It is, therefore,
practically impossible to detect differences in natural fertilities associated with different types (e.g.
phenotypes, genotypes) of women. This does not mean, however, that natural selection at the
reproductive level cannot at all be detected today. If women of a particular type have high natural
fertility, this usually means that they reproduce (become pregnant) at a higher rate than women of
a type with lower natural fertility. Hence, when there is a limit on the number of children, women
of the first type will reach the limit at an earlier age than women of the second type. As a result,
types that have a higher natural fertility should be overrepresented among pregnant women of
younger ages and, consequently, underrepresented among older ones, as compared to types with a
lower natural fertility. Based on this notion, a model of age-related differences between
distributions of types among pregnant women is suggested. The model is applied to data on
MNSs-blood group and PGMj (phosphoglucomutase) types in a sample of pregnant women and
an evidence of natural selection at the reproduction level associated with these genetic markers is
obtained.

1. Introduction

The notion that natural selection played an important
role in the evolution of man hardly needs a proof.
However, except for cases of extremely high mortality
and extremely low fertility, it may seem practically
impossible to find today a direct evidence of natural
selection. Indeed, mortality in a modern society is
often controlled not as much by natural selection as
by advantages in medicine and health care. The
number of children produced by a modern woman is
usually below her reproductive capacity and it is also
not controlled by natural selection. For example,
according to data by the Istituto Centrale di
Statistica, Italy (Indagine sui Nuclei Familiari, 1982),
the average number of children among married Italian
women between 45 and 49 years of age with at least
one child, i.e. not sterile, is 1-92. It is a safe bet that
this number is determined by circumstances other
than natural selection on the woman's genotype.

There is a way, however, to detect even relatively
weak natural selection at the reproductive level
associated with the genotype (or any other charac-
teristic of a woman) even in our days. Consider, for
* Corresponding author.

example, women of two types, A and B. Imagine that
under conditions when reproduction is not limited by
factors other than natural selection, a woman of type
A produces more children than a woman of type B.
This means, of course, that women of the first type
reproduce faster than those of the second type. In
reality, however, women have a limit on the number
of children that they are going to have. Assuming that
the limit is the same for both types, women
reproducing faster will reach the limit at younger ages,
whereas slower-reproducing women will reach the
limit at older ages. Therefore, the relative proportion
of type A with respect to type B should be higher
among younger pregnant women than among older
ones. Thus, differences between distributions of types
among pregnant women of different ages may
represent an evidence of natural selection at the
reproductive level. To make not only verbal but also
quantitative arguments, we propose the following
model.

2. The model of pregnancy age differences

The purpose of the model is to estimate differences in
the natural fertility between women of diverse types
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on the basis of the proportions of the types among
pregnant women of different ages. The natural fertility
is defined as the expected number of children that a
woman of a particular type would have produced
during her lifetime if she did not have a limit on the
number of children. The model is based on the
following assumptions:

- There are several types of women. The types can be
phenotypes, genotypes or any other distinctive
characteristics. The distribution of types in the
general population of women, i.e. the probability
that a woman is of a particular type /, will be
denoted z(i).

- Women have a limit on the number of children that
they are going to have. The limiting number need
not be the same for all women, but it does not
depend on the woman's type. The proportion
among women of those who are going to have N
children will be denoted J(N). Since the number of
children that a woman is going to have is usually
below her natural reproductive capacity, it can be
assumed that the total number of children by a
woman during her lifetime is equal to the limit on
the number of children that she was going to have.
Therefore,/(A0 should be well approximated by the
distribution of the number of children among
women beyond the age of reproduction.

- The distribution of ages among women in the
general population is independent of the woman's
type.

- The ' fertility period' during which a woman is
capable of producing a child is the same for all
women. This period is divided into equidistant
' reproduction intervals' (e.g. 1 year, 2 years) during
which a woman can become pregnant, but no more
than once. The age of a woman expressed in such
intervals will be called her ' reproductive age', /. The
minimum reproductive age is always 1, whereas the
maximum, t*, depends on the length of the fertility
period and the reproduction interval. If, for
example, the fertility period is between 18 and 41
years of age and the reproduction interval is 2 years,
the maximum reproductive age is 12 and the
reproductive age of, say, a 25-year-old woman is 4.
The distribution of reproductive ages, x(t), can be
calculated from the actual age distribution among
women.

- The probability of becoming pregnant during a
reproduction interval, which we shall call the
'reproductive rate', does not depend on the
woman's age. It may depend, however, on her type,
and the reproductive rate of type / women will be
denoted p(. The natural fertility of a type i woman,
i.e. the expected number of children she would have
had during her lifetime if there were no limit on the
number of children, is computed as ptt*.

- Abortions as well as multiple births are not
considered and mortality among children is

neglected. Hence, any pregnancy is assumed to
result in one living child and the number of
pregnancies that a woman has had is equal to the
number of children produced by her.

Based on the above assumptions, we shall now
proceed to developing the model. Let P(N(t) be the
probability for a woman of reproductive age t to be
pregnant, given also that she is of type / and is going
to have N children:

= Pr{pregn\t,i,N}- (1)

Under the assumptions of the model, this probability
is equal to

= />, S (2)

where C denotes a binomial coefficient. Indeed, a
woman who is going to have N children will be
pregnant at a reproductive age t, if she has no more
than N~ 1 children (pregnancies) by the age t— 1 (the
probability of this is the sum of the binomial
probabilities) and becomes pregnant during the
reproduction interval t (the probability of this is p().

We shall consider only two age groups among
pregnant women: 'younger' combining women of
ages below a specified age Tand 'older' consisting of
women whose age is equal or above T. The model can
be easily extended to more than two age groups, but
it should be kept in mind that the statistical significance
of results goes down when the number of groups
increases. Let Q[ and Q" denote the probabilities that
a woman of type / is pregnant and that she belongs to
the first or the second age group, respectively:

e; = />r{<r,pregn|i}, (3 a)

Q'i = Pi"{~^- T,pregn|/}. (3b)

These probabilities represent the average of PiN(t)
over the corresponding reproductive ages as well as
over all limiting numbers of children, and the following
expressions for them are straightforward:

(4 a)

(4 b)

Let there be / different types among women and
assume that data on the distribution of types among
pregnant women are available in the form of a 1x2
table with entries in rth row, cn and ci2, representing
the proportions among pregnant women of those
whose type is / and who belong to ' younger' or ' older'
age group, respectively:

cn = Pr {i, < T\ pregn}, (5 a)

ctI = Pr{i,^T\pregn}. (5 b)
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According to the probability theory, these proportions
can be expressed as

ci2 = Q: ;+en

/ = 1,2,...,/), (6a)

0 = 1,2,...,/),

where z(i) is the distribution of types in the general
population of women (pregnant or not). Combined
together, equations (2), (4) and (6) represent a system
of equations for calculating the reproductive rates of
women from a data set containing proportions of
different types and ages among pregnant women.

It should be noted that, since 2 , (ctl + ci2) = •> t h e

number of independent values among cn and cf2 is
21— 1 and, hence, there are only 21— 1 equations for
determining parameters of the model. The age
distribution among women as well as the distribution
of the limiting number of children among them are
assumed to be independent of their types, and, hence,
obtainable from a data source external to the model.
Therefore, as far as the model is concerned, x(t) and
J{N) are fixed, and the total number of unknown
parameters depends on whether the distribution of
types in the general population of women can be
estimated independently of the model or not. If it can,
then z(/) is also fixed and the model has only /
unknown parameters: the rates of reproduction, pv

Since the number of equations in this case is greater
than the number of variables, a least square fitting of
the system of equations (2), (4) and (6) can be
employed to obtain the rates of reproduction.

It happens quite often, however, that a woman's
type cannot be detected, unless she is pregnant and
finds herself in a hospital where she is given a
necessary test. In such a case, the distribution of types
in the general population of women cannot be
estimated and, hence, z(i) are unknown parameters of
the model. Given that £z(0 = 1, the total number of
variables in the system of equations in this case is
21— 1. Since this is equal to the number of equations,
the rates of reproduction together with the distribution
of types among women are obtained as a solution of
the system of equations (2), (4) and (6). Finding the
solution can be facilitated by dividing cn over c(2 in
(6):

= e;/er- (7)

It is seen that (7) does not contain z(/). It is also seen
from (4) and (2) that parameters Q\ and Q" for a
particular type / are completely determined by the
reproductive rate of this type, and, consequently, an
equation in (7) for a given / includes only pt and does
not include the reproductive rates of other types.
Thus, (7) represents a set of/separate equation in one
variable, and the reproductive rate of any particular
type can be obtained by solving just one of these
equations for the corresponding /. Given that
equations in (7) are highly nonlinear, it may not be

possible to find an analytical solution, and numerical
methods may have to be employed.

After having calculated the reproductive rates, the
distribution of types in the general population of
women, z(/), is obtained by substituting p, into
equations (6) and solving them. The solution can be
represented in the following form:

0 = 1 , 2 , . . . 7-1),
(8)

= 1-2

where

(9)

Indeed, it follows from (6a) that for any i andy,

z(i)/z(J) = aja,, (10)

and it is not difficult to verify that (8) is the solution
of this system of linear equations.

Let us point out in conclusion that the data required
to fit the model are relatively easy to obtain. The
distribution of ages and of the limiting number of
children can be taken from a source which need not be
related to the studied types of women (e.g. census).
Only data on the distribution of types among pregnant
women are required, whereas similar data for the
general population are not necessary. Moreover, the
model can predict the distribution of types in the
general population of women based exclusively on the
pregnancy data. This represents an important
advantage, since, as has already been mentioned, it is
often quite difficult (sometimes even impossible) to
administer to women in a general population a test
determining their type, especially if it is related to a
genetic marker, whereas such tests are almost routinely
given to pregnant women.

3. Results for MNS and PGM, genotypes

Let us apply the model to MNS and PGM, genetic
markers in a sample of 212 pregnant women from
Rome, Italy. All women in the sample had a normal
(without complications) pregnancy, were admitted to
a hospital for delivery and gave birth to a healthy
child. For the purpose of applying the model, we
divided the women in two age groups with 30 years
being the cutting age between 'younger' and 'older'
ones. The two genetic markers have been a subject of
studies by our group for a number of years in
connection with complications of pregnancy, such as
diabetes and habitual abortions, and the sample of 212
normal pregnancies served as a control in these
studies (Bottini el al. 1985, 1987; Gloria-Bottini el al.
1986).

In order to use the model, it is necessary to know
the age distribution and the distribution of the limiting
number of children for reproducing women in the
general population from which our sample is derived.
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Table 1. Age distribution among 18-41 years old
married women

Table 3. Distribution of MNS phenotypes among
pregnant women of two age groups

Age Age Phenotype Younger Older

18
19
20
21
22
23
24
25
26
27
28
29

0005
0009
0015
0021
0027
0032
0037
0042
0044
0046
0047
0048

30
31
32
33
34
35
36
37
38
39
40
41

0050
0052
0055
0058
0057
0056
0045
0048
0048
0049
0051
0055

Table 2. Distribution of the number of children
among 45—49 years old married women with at least
one child

N f{N)

1 0-417
2 0-348
3 0136
4 0099

Table 1 shows the distribution of ages among married
women between 18 and 41 years of age residing in
Italy in 1985. The table is adapted from 'Censimento
Generale della Populazione, 25 Ottobre 1981' (1985).
The distribution of reproductive ages, x(t), is easily
obtained from Table 1 for any given length of
reproduction interval. It should be pointed out,
however, that this length represents an additional
parameter in the model that has not been discussed
yet. Since we do not know the actual value of this
parameter, we have fitted the model using three
different reproduction intervals: 1, 2 and 3 years. The
maximum reproductive age, t*, was, respectively, 24,
12 and 8, and the reproductive age T corresponding to
the 'cutting age' of 30 years was 13, 7 and 5,
respectively.

Table 2 shows the distribution of the number of
children among married Italian women between 45
and 49 years of age having at least one child. The table
is adapted from ' Indagine sui Nuclei Familari' (1982).
As we have already pointed out, such a distribution
should well approximate the distribution of the limit
on the number of children, f{N). Only women with at
least one child were included in Table 2, since a
woman remaining childless by the age of 45 may for
all purposes be considered as having zero fertility,
whereas the model is applicable only to reproducing
women. The distribution of the number of children
among women having 4 or more children was not
known to us because such women were grouped

MMSS
MMSs
MMss
MNSS
MNSs
MNss
NNSS
NNSs
NNss

Number

0096
0184
0096
0059
0154
0154
0029
0051
0176

136

0118
0053
0-224
0066
0184
0158
0039
0039
0118

76

together in the original data source. For this reason,
we considered 4 as the highest limit on the number of
children, and the proportion of women having such
limit was taken to be as in the last row of Table 2.
Unmarried and divorced women as well as widows
were not included in either Table 1 or Table 2 because
their pattern of reproduction may differ from that of
married women.

Table 3 shows the proportions of MNS blood
group phenotypes among 'younger' and 'older'
women in our sample. This blood group is controlled
by two closely linked loci on chromosome 4, and
exhibits 9 distinct phenotypes (Race & Sanger, 1975;
Turner, 1969). Large differences are noticeable
between the proportions of MMSs and MMss
genotypes among younger and older women in the
sample (similar differences, although less pronounced,
are also present in two other samples of pregnant
women: those with habitual abortions and with
diabetes). The two first columns in Table 4 show the
distributions of only three geneotypic classes; MMSS,
MMSs and the 'other' which combines the rest of the
genotypes. The x2 value for the reduced number of
genotypes is only slightly lower than that for the total
number (11-74 in Table 4 vs. 13-64 in. Table 3)
indicating that practically all differences in the age of
pregnancy attributable to the MNS system are
accounted for by only three genotypic classes: MMSs,
MMss and other. For this reason, we shall apply the
model to only these three classes.

Data in Table 4 can be rearranged into the following
3 x 2 table:

MMSs
MMss
Other

<30
0118
0061
0-462

^ 3 0

0019
0080
0-259

(11)

where the entries are the proportions among all
women in the sample of those having a corresponding
genotype and belonging to a corresponding age
group, i.e. they represent cn and ci2 in (5). Starting
from this table and making use of data in Tables 1 and
2, calculations discussed in the previous section can be
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Table 4. Distribution of MMSs, MMss and 'other'
genotypes among pregnant women of two age groups
and among girls

Table 6. Distribution of PGM1 genotypes among
pregnant women of two age groups and in the general
population

Genotype

MMSs
MMss
Other

Number

Younger

0184
0096
0-720

136

Older

0053
0-224
0-723

76

Girls

0150
0123
0-727

187

Genotype

1
1-2

Number

Pregnant

Younger

0-461
0-432
0107

130

Older

0-595
0-391
0014

74

population

0-513
0-399
0087

388

carried out. Results of such calculations conducted
with 1-, 2- and 3-year reproduction intervals are
presented in Table 5. The reproductive rates of
genotypes are given in the first column of the table.
The second column shows the relative values of the
reproductive rate of a genotype with respect to that of
MMSs genotype. The column denoted NF(i) presents
the natural fertilities of corresponding genotypes, i.e.
the expected number of children that women would
have had during their lifetime if there were no limits
on the number of produced children. It is computed as
NF(i) = p(t*. The last column in Table 5 gives the
proportions of genotypes predicted by the model for
the general population of women.

It is seen that the reproductive rate of a genotype is
strongly affected by the length of the reproduction
interval. This should not come as a surprise, given
that the reproductive rate represents the probability
for a woman to be pregnant during a particular time
interval and, therefore, it must depend on the length of
the interval. Since the length of the reproduction
interval for women in our sample is not known, we
cannot estimate with a reasonable accuracy the
reproductive rates. Recall, however, that our goal is
not to estimate these rates, but rather to find an
evidence of fertility selection associated with the

Table 5. Parameters of MMSs, MMss and 'other'
genotypes estimated from the model

Genotype (/)

Reproduction

(1) MMSs
(2) MMss
(3) Other

Reproduction

(1) MMSs
(2) MMss
(3) Other

Reproduction

(1) MMSs
(2) MMss
(3) Other

Pt

interval

0-331
0050
0184

interval

0-587
0100
0-349

interval

0-786
0148
0-499

Pi/Pi

= 1 year
—
0152
0-554

= 2 years
—
0170
0-594

= 3 years
—
0188
0-634

NF(i)

7-946
1-205
4-405

7048
1195
4188

6-292
1185
3-989

z(i)

0157
0198
0-645

0154
0199
0-647

0150
0-201
0-648

genotypes. For this, we only need to know the relative
natural fertilities. Since the maximum reproductive
age is assumed to be the same for women of all types,
the relative values of natural fertilities are the same as
those of the reproductive rates and are shown in the
second column of Table 5. Even though these values
are also affected by the length of the reproduction
interval, the effect is much smaller than on pt.

Pregnant women in our sample were also tested for
phosphoglucomutase - locus 1 (PGMJ genotypes.
PGMt is one of the four loci that are known to
determine distinct sets of phosphoglucomutase
isozymes (Hopkinson & Harris, 1968; Spencer et al.
1964). It has two alleles, PGMJ, PGM*, and exhibits
three genotypes denoted as 1 for the first homozygote,
1-2 for the heterozygote and 2 for the second
homozygote. The proportions of PGM j genotypes in
the two age groups in our sample are shown in the first
two columns of Table 6 (the number of women tested
for PGMj was slightly below the number of those
tested for MNS: 204 vs. 212).

The difference in the proportions between the two
age groups is statistically significant (P < 0-03). The
table of elements c(1 and ct2 is obtained from Table 6
as:

<30

1
1-2
2

0-294
0-275
0068

0-216
0142
0005

pt, reproductive rate;
distribution of types.

NF(i), natural fertility; z(f),

(12)

Since women tested for PGMj are the same
individuals who were tested for MNS, the age
distribution as well as the distribution of the limiting
number of children are the same as those used in the
calculations for MNS and shown in Tables 1 and 2.
The results produced by the model for the PGMj data
are presented in Table 7, the composition of which is
the same as of Table 5. The second column represents
the relative values of reproductive rates (natural
fertilities) with respect to that of the first homozygote.

Even though we do not know the actual length of
the reproduction interval for women in our sample, a
good guess is that it is somewhere between 1 and 3
years, and, therefore, the relative values of the
reproductive rates for the MNS and PGMX genotypes
are between those corresponding to the shortest and
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Table 7. Parameters of PGMl genotypes estimated
from the model

Genotype (/)

Reproduction

(1) 1
(2) 1-2
(3) 2
Reproduction

(1) 1
(2) 1-2
(3) 2
Reproduction

(1) 1
(2) 1-2
(3) 2

P, Pt/Pi

interval = 1 year

0145 —
0195 1-340
0-406 2-797

interval = 2 years

0-280 —
0-368 1-315
0-690 2-462

interval = 3 years

0-406 —
0-524 1-292
0-885 2183

NF(i)

3-486
4-670
9-751

3-362
4-421
8-279

3-245
4194
7-082

z(/)

0-489
0-406
0105

0-492
0-408
0100

0-496
0-409
0095

p(, reproductive rate; NF(i), natural fertility; Z(J'), distribution
of types.

the longest reproduction interval in the second
column of Table 5 for MNS and Table 7 for PGM,

4. Testing the validity of the model

There is no way, of course, to test directly predictions
of the model concerning the reproductive rates or
natural fertilities, since they will always remain
unknown to us. There are, however, other ways to
evaluate the validity of the model.

Notice that distribution z(i) should not be affected
by the length of the reproduction interval. Indeed, this
is a distribution in the general population of women
(pregnant or not), and, as such, it is not supposed to
depend on how frequently women become pregnant.
Thus, if the model is valid, it should predict similar
distributions z{i) for any length of the reproduction
interval. It is seen from the last column in Tables 5
and 7 that this is, indeed, the case. The predicted
distributions of genotypes corresponding to different
reproduction intervals are very similar.

Another test of the validity of the model comes
from a comparison between the predicted distribution
z(0 and the actual proportions of genotypes among
women in the general population. Unfortunately, we
do not have data on the proportions of MNS
genotypes in the general population of women from
which our sample is derived. We do have, however,
data on the corresponding proportions in a sample of
187 girls of ages from newborn to 12 years old. The
majority of girls in the sample were clinically normal
and came to the attention of doctors because of
diabetes or ischemia in one of their parents. The rest
of the sample consisted of 24 girls with neonatal
jaundice not related to ABO or Rh incompatibility, 52
with bronchial asthma and 11 with obesity. Neither of
the listed conditions is known to be associated with

MNSs blood group, and, therefore, the distribution of
genotypes among the girls should not be very different
from that among women in the general population.
Comparing the last columns in Tables 4 and 5, it is
seen that for any length of the reproduction interval
the proportions of genotypes predicted by the model
are not far from those among the girls. As for the
predicted distribution z(i) of PGM, genotypes, we can
compare it with the proportions reported by Modiano
et al. (1970) for a sample of 388 women from a
population similar to the one from which our sample
was derived that are shown in the last column of Table
7. The differences between the proportions predicted
by the model and reported by Modiano et al. are quite
small. It should be pointed out that there were only
very few women with genotype 2 of PGM, in our
sample. As a matter of fact, there was only one
woman with such genotype among those of age ^ 30,
meaning that the estimate c32 = 0005 in (12) is based on
just one individual. It is remarkable that, in spite
of that, the model predicts so well the distribution
of PGM, genotypes in the general population of
women.

Another test of the model is based on the following
consideration. Since the same women in our sample
were tested for both MNS and PGM, genotypes, any
parameter of the general population of women not
related to a particular genetic system should be the
same whether it is predicted from MNS or PGM,
data. One such parameter is the probability for a
woman in the general population to be pregnant. It is
given by the expression in the denominator in (6):

The last two columns in Table 8 show the probability
of pregnancy predicted by the model based on MNS
and PGM, data. The correspondence between the two
predictions is very good. It is useful to notice that the
probability of pregnancy can, in principle, be directly
estimated by the proportion of pregnancies among
women of reproductive ages in the general population.
Such an estimate can then be used to evaluate the
actual length of the reproduction interval by
comparing the probabilities of pregnancy predicted
for different reproduction intervals with those
estimated directly. The length of the interval for which
the two probabilities are close to each other would

Table 8. The probability of pregnancy in the general
population of women estimated from MNS and
PGM, data

Reproductive
interval MNS PGM,

1 year
2 years
3 years

0052
0106
0161

0056
0114
0174
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indicate the actual length of the reproduction interval.
Unfortunately, we do not have the necessary data,
and, therefore, the length of the reproduction interval
for women in our sample remains unknown.

It should be pointed out in conclusion that we have
presented in this paper only a deterministic model
whose statistical properties have not been worked out,
yet. Therefore, the validity tests discussed above are
not statistical, they only verify that the deterministic
model does not yield erroneous predictions.

5. Discussion and conclusions

The model presented in this paper provides means of
estimating natural selection at the reproductive level
in the case when the actual fertility of a woman, i.e.
the number of children that she has during her
lifetime, is below her total reproductive capacity due
to causes other than natural selection. It stems from
an observation that differential reproductive capacities
(natural fertilities) of different types of women should
be manifested in such case by differences between
distributions of the types among pregnant women of
different ages.

A possibility exists that the observed differences
between genotypic distributions in two age groups of
pregnant women are due to different mortality rates
among genotypes, and, hence, may have nothing to do
with pregnancy itself. It can be argued, however, that
mortality of at least some of the genotypes must be
unrealistically high in order to account for the
differences between their proportions in the age
groups. For example, if M, and ut denote the
proportions of genotypes /andyin the younger group,
whereas vt and vi denote the corresponding propor-
tions in the older group, the following relations
connect these variables:

y, = M((l-w() /( l -M), (14a)

vs = us(\-m^/(\-M), (146)

where mi and mi are mortalities of the corresponding
genotypes and M is the average mortality among
women. Dividing (14a) by (146) yields after some
algebra

m(= l-i (15)

Let genotype / be MMSs and genotype j be MMss.
Assuming that there is no mortality among MMss
women, i.e. mi = 0, and substituting the actual
genotypic proportions from Table 4 into the right side
of (15) results in m( = 0-88. Thus, in order to account
for the observed difference in the genotypic pro-
portions among younger and older women, the
mortality among MMSs women must be at least as
high as 88 %. This, of course, is not very realistic, and
differential mortality can be ruled out as an explan-
ation. The model discussed in this paper provides
another explanation.

As any model, it is based on a number of
assumptions, some of which may be closer to reality
than others. For example, the assumption that all
pregnancies result in a living child is not very
unrealistic, given the relatively low child mortality in
developed countries. On the other hand, to assume
that the reproductive rate of a woman, i.e. the
probability for her to become pregnant during a
reproduction interval, does not depend on the
woman's age may seem much less realistic. Notice,
however, that, even if in reality the reproductive rate
changes with age, it would be quite difficult to obtain
an adequate information about such changes. For
example, many existing data show that the probability
for a woman to be pregnant declines with age. This,
however, does not represent an adequate description
of changes in the reproductive rate. Indeed, the
probability of pregnancy at a particular age is
determined not only by the woman's reproductive rate
at this age but also by the limit on the number of
children that she is going to have. Since the probability
to reach this limit increases with the age of a woman,
the probability that she becomes pregnant will decline,
even if her reproductive rate remains unchanged.
Therefore, it seems practically impossible to obtain
data on ' natural' age changes in the reproductive rate
that are not confounded by the changes due to a limit
on the number of children.

In spite of all the simplifying (and, perhaps,
oversimplifying) assumptions, the validity of the
model in instances when it could be tested has been
confirmed, as the previous section demonstrates.
Therefore, we may state with a sufficient confidence
that the observed differences between the proportions
of genotypes among pregnant women in two age
groups reflect differential natural fertilities of the
genotypes. In MNS genetic system, MMSs genotype
has the highest natural fertility, whereas that of MMss
genotype is the lowest. As for PGMt system, the
natural fertility of the second homozygote is the
highest and that of the first homozygote is the lowest.

Notwithstanding the demonstrated differences in
the natural fertilities of MNS and PGMj genotypes,
there is, obviously, no fertility selection on these
genotypes in a population in which the number of
children by a woman is limited by factors other than
her natural fertility. This does not mean, however,
that no selection at the reproductive level can be
associated with MNS or PGMt systems in such a
population. Genotypes with a higher reproductive
rate will have a shorter generation length and, hence,
will have a selective advantage over genotypes with a
lower reproductive rate. Therefore, even though
selection through differential fertility may not operate
in the population from which our sample of women is
derived, there still is selection associated with MNS
and PGMj systems at the reproductive level through
the differential generation length.

It should be pointed out in conclusion that the fact
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of natural selection associated with MNS and PGMj
genotypes does not necessarily mean that selection
acts directly on either of these genetic systems. It is
quite possible that the differences in the reproductive
rates represent correlated responses to natural sel-
ection on other characterisics of a woman.
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