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Abstract

Let g be an odd prime such that ¢" + 1 = 2¢*, where c, ¢ are positive integers and s = 1, 2. We show that the
Diophantine equation x> + ¢ = ¢’ has only the positive integer solution (x, m, n) = (¢* — 1, t, 2s) under
some conditions. The proof is based on elementary methods and a result concerning the Diophantine
equation (x" — 1)/(x — 1) = y* due to Ljunggren. We also verify that when 2 < ¢ < 30 with ¢ # 12, 24, the
Diophantine equation x> + (2c — 1)™ = ¢” has only the positive integer solution (x, m, n) = (c — 1, 1, 2).
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1. Introduction

In 1956, Sierpinski [S] showed that the equation 3* + 4” = 5% has only the positive
integer solution (x,y,z) =(2,2,2). JeSmanowicz [J] conjectured that if a, b, ¢ are
Pythagorean numbers, that is, positive integers satisfying a® + b*> = ¢?, then the
Diophantine equation

a+b =ct

has only the positive integer solution (x,y,z)=(2,2,2). As an analogue of
Jesmanowicz’s conjecture, the author [T] proposed the following conjecture.

ConsecTure 1.1. If a® + b? = ¢2 with gcd(a, b, ¢) = 1 and a even, then the Diophantine
equation
b ="

has only the positive integer solution (x, m, n) = (a, 2, 2).

In [T], we proved that if p and g are primes such that (i) g + 1 = 2p and (i) d = 1 or
even if g=1 (mod 4), then the Diophantine equation x>+ ¢™ = p" has only the
positive integer solution (x, m, n) = (p — 1, 2, 2), where d is the order of a prime divisor
of (p) in the ideal class group of Q(4/—¢). Conjecture 1.1 has been verified to be true in
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many special cases:
° b>8-10% b=5 (mod 8), ¢ is a prime power (Le [Lel]);

b*+1=2c¢,b# 1 (mod 16), b, ¢ are both odd primes (Chen and Le [CL]);

b =7 (mod 8), either b is a prime or ¢ is a prime (Le [Le2]);

c=5 (mod 8), b or ¢ is a prime power (Cao and Dong [CD]);

b=+5 (mod 8), c is a prime (Yuan and Wang [YW]).
Cenberci and Senay also showed that the Diophantine equation x> + 5" = ¢" has
only the positive integer solution (x, m, n) = (a, 2, 4) in the following two cases:
° A+b:=c*c=5 (mod 8), c is a prime power [CS1];
° b? +1=2c2, b, c are both odd primes, d = 1 or even [CS2].

In this paper, using elementary methods, when ¢’ + 1 =2¢* with ¢ prime and
s =1, 2, we prove the following theorems.

TueEOREM 1|.2. Let g be a prime with g = 3,5 (mod 8). Let ¢ be a positive integer such
that ¢' + 1 = 2c¢, where t is a positive integer. Then the Diophantine equation

X +q"=c" (1.1)
has only the positive integer solution (x, m,n) = (c — 1, t, 2).

Turorem 1.3. Let q be an odd prime. Let ¢ be a positive integer such that g> + 1 = 2¢*
and c=5 (mod 8). Then (1.1) has only the positive integer solution (x, m,n) =
(®-1,2,4).

TueoreM 1.4. Let g be an odd prime. Let ¢ be a positive integer such that g + 1 = 2¢?
and ¢c=3 (mod 4). Then (1.1) has only the positive integer solution (x, m,n) =
(c*-1,1,4).

We note that the relations on ¢ and ¢ in Theorems 1.2-1.4 yield the following
identities, respectively:

g +1=2c= (c— 1’ +4 =¢,
F+1=2= (-1 +q¢=c
g+1=27 = (> - 1> +q=c"

In Section 3, combining Theorems 1.2—1.4 with Proposition 3.2, we also verify that
when 2 < ¢ <30 with ¢ # 12, 24, the Diophantine equation

X +QRe-D"=c"

has only the positive integer solution (x, m, n) = (¢ — 1, 1, 2).

2. Proof of Theorems 1.2-1.4

We use the following lemma to prove Theorems 1.2—1.4.
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Lemma 2.1 (Ljunggren [Lj]). The Diophantine equation

X' =1

x—1
has no solutions in integers x,y,n with |x|>1 and n >3, except for (n,x,y)=
4,7,20), (5,3,11).

2.1. Proof of Theorem 1.2. Let (x, m, n) be a solution of (1.1).
In view of g =3,5 (mod 8) and ¢’ + 1 = 2¢, we see that (2/q) = (¢/q) = —1, where
(/%) is the Jacobi symbol. Hence n is even from (1.1). Put n = 2N. Then, from (1.1),

q" = (" + )" - x).

Since ¢ is an odd prime and ged (cV + x, ¥ —x) =1,

q’"=cN+x, 1=cN - x,

SO
g"+1=2c". 2.1
Our goal is to show that (2.1) has only the solution (m, N) = (¢, 1). Note that N is odd
from (2.1), since (2/q) = (c/q) = —1.
Now we show that m = 0 (mod 7). It follows from ¢’ + 1 = 2c that g’ = —1 (mod c¢),
so g has order 2¢ modulo c. From (2.1), we have ¢" = —1 (mod c) and hence ¢*" = 1
(mod c). Thus we see that 2m =0 (mod 2¢), thatis, m =0 (mod 7). Putm = tM. Since
q' +1=2c, (2.1) can be written as

Qe-DY +1 =26, (2.2)

Taking (2.2) modulo 2¢ implies that (=1)” + 1 =0 (mod 2¢) and so M is odd. If
N =1, then we obtain M =1 from (2.2). Thus we may suppose that M and N are odd
and greater than 1. Then (2.2) leads to

(2c+ DM -1 _ Dy
(2c+1)—1 ‘

It follows from Lemma 2.1 that the above equation has no solutions. This completes
the proof of Theorem 1.2. O

2.2. Proof of Theorem 1.3. Let (x, m, n) be a solution of (1.1).
We first show that m and n are even. Since g* + 1 = 2¢?,

=172+ q2 =c*

This implies that

2 —1=2u, q=u2—v2, =u? +12,
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where u, v are positive integers such that gcd(u, v) = 1, u > vand u # v (mod 2). From
the third relation above,

u=2hk, v=hn -k, c=h+k,

or
v=2hk, u=h>-k>, c=h+k%,

where 5, k are positive integers such that gcd(h, k) =1, h >k and h # k (mod 2). Then
q = +((h* = k*)? — 2hk)*) = =(h* — 6K k> + k*).
Since ¢ =5 (mod 8),
(6)=(2)- ()= ()= ()=
q c h? + k2 h? + k2 c '

We therefore conclude that m and n are even from (1.1).
Put m =2M and n = 2N. Then, from (1.1),

q" = (" + ) - x).
Since ¢ is an odd prime and ged (cV + x, ¥ —x) =1,
" =cN+x, 1=c"—-x,

SO
q"+1=2c". (2.3)

Our goal is to show that (2.3) has only the solution (m, N) = (2, 2). Note that N is even
from (2.3), since (2/¢) = 1 and (¢/q) = —1. Since ¢*> + 1 = 2¢?, (2.3) can be written as

Q2 - DM +1=2c. (2.4)
Taking (2.4) modulo ¢ implies that (=1)” + 1 =0 (mod ¢) and so M is odd. If

N =2, then we obtain M =1 from (2.4). Thus we may suppose that M is odd and
greater than 1, and N is even and greater than 2. Then (2.4) leads to

(=22 + DM — 1 _ (N2
(-2c2+ 1) -1 ’

It follows from Lemma 2.1 that the above equation has no solution. This completes
the proof of Theorem 1.3. O
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2.3. Proof of Theorem 1.4. Let (x, m, n) be a solution of (1.1).
We first show that n is even. Since ¢ + 1 = 2¢? and ¢ =3 (mod 4),

9)-(9- -

We therefore conclude that » is even from (1.1). Put n = 2N. Then, from (1.1),

q" = (" + (N - x).
Since ¢ is an odd prime and ged (cV + x, N —x) =1,
q’"=cN+x, 1=c" —x,

SO
g"+1=2c". (2.5)

Our goal is to show that (2.5) has only the solution (m, N) = (1, 2). Note that N is even
from (2.5), since (2/¢) = 1 and (c/q) = —1. Since ¢ + 1 = 2¢?, (2.5) can be written as

QF-DM+1=2N

with M =m. In the same way as in the proof of Theorem 1.3, we see that the

above equation has only the solution (M, N) = (1, 2). This completes the proof of

Theorem 1.4. a
3. Conjecture on the equation x> + (2¢ — 1) = ¢"

In connection with Conjecture 1.1 and Theorems 1.2-1.4, we propose the following
conjecture.

ConsecTurk 3.1. Let ¢ > 2 be a positive integer. Then the Diophantine equation
P+Qe-D"=¢" (3.1
has only the positive integer solution (x, m, n) = (c — 1, 1, 2).

We first show the following criteria, which are easy to handle and are useful to
Conjecture 3.1.

ProrosiTION 3.2. Suppose that at least one of the following conditions holds:
(i) 2c-1=3 (mod 8);
(i) 2c¢—1=3p, where p is a prime such that p=7 (mod 8), p=3,5 (mod 16) or

p =3 (mod 5);
(iii)) 2c—1=5p, where p is a prime such that p=3 (mod 8) and 5+ p#0
(mod 32);

@iv) 2c—1=9p, where p is a prime with p=5 (mod 8);
v) 2c—1=gqandc=4*% where q is a prime and s is a positive integer.

Then Conjecture 3.1 is true.
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Proor. (i) Since 2c — 1 =3 (mod 8), c =2 (mod 4). If n > 3, then (3.1) leads to
1+3"=0 (mod 8),

which is impossible. We therefore obtainn=2,m=1and x=c — 1.
(ii) Since 2¢ — 1 =0 (mod 3), c =2 (mod 3). Taking (3.1) modulo 3 implies that n
is even, say n = 2N. From (3.1), we have the following two cases:

Qe-1D"+1=2cN (3.2)

or
3" 4 p"=2cN. (3.3)

We can solve (3.2) in the same way as in the proof of Theorem 1.2.

We now show that (3.3) has no solutions in each case.

e p=7 (mod 8): Then ¢=3 (mod 4). Hence m is odd from (3.3). Thus ¢ =
(3p + 1)/2is divisible by an odd prime divisor r of (3 + p)/2 (=1 (mod 4)). This leads
to a contradiction. Indeed, r satisfies 3p + 1 =0 (mod r), that is, =32 +1=-8=0
(mod r), which is impossible.

e p=3 (mod 16): Then ¢=5 (mod 8). Taking (3.3) modulo 16 implies that
2-3m=2-.57 (mod 16) and so 3" = 5" (mod 8). Hence m and N are even. Taking
(3.3) modulo 3 implies that 1 = 2¥*! (mod 3) and so N is odd. This is a contradiction.

e p=5 (mod 16): Thenc =0 (mod 8). Hence 2¢" =0 (mod 16), while 3" + p™ =
2 (mod 8) if m is even, and = 8 (mod 16) if m is odd. This is a contradiction.

e p=3 (mod 5): Then ¢ =0 (mod 5), since 2c¢ — 1 = 3p. Taking (3.3) modulo 5
implies that 2 - 3" = 0 (mod 5), which is impossible.

(iii) Since 2c — 1 =0 (mod 5), ¢ =3 (mod 5). Taking (3.1) modulo 5 implies that
n is even, say n = 2N. As in the proof of (ii), it suffices to show that

5" 4 pm=2cN 3.4

has no solutions. Since p =3 (mod 8), c =0 (mod 4). Thus m is odd from (3.4). Note
that (5™ + p™)/2 #0 (mod 16), since 5+ p #0 (mod 32). This implies that N = 1.
Then 5 + p™ = 5p + 1, which is impossible.

(@iv) Since 2¢ — 1 =0 (mod 3), c=2 (mod 3). Taking (3.1) modulo 3 implies that
nis even, say n = 2N. As in the proof of (ii), it suffices to show that

9" 4 pm=2cN (3.5)

has no solutions. Since 2c—1=9p and p=5 (mod 8), c =3 (mod 4). Hence m
is odd from (3.5). Since (9 + p)/2 =3 (mod 4), there is an odd prime r such that
9+ p)/2=0 (mod r) and r =3 (mod 4). This leads to a contradiction. Indeed, r
satisfies 9p + 1 =0 (mod r), that is, =9 + 1 = —-80=-2%-5=0 (mod r), which is
impossible.

(v) Since 2¢ — 1 =g and ¢ =4°, (3.1) can be reduced to solving the equation

qm +1= 23n+1.
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We easily see that the above equation has only the solution (m, n) = (1,2) and so
x = ¢ — 1. This completes the proof of Proposition 3.2. O

Combining Theorems 1.2—1.4 with Proposition 3.2, we verify that when 2 < ¢ < 30
with ¢ # 12, 24, Conjecture 3.1 is true.

Prorosition 3.3. Let ¢ be a positive integer with 2 <c¢ <30 and c #12,24. Then
Conjecture 3.1 is true.

Proor. Cases ¢ =3,5,6,7,10, 13, 14, 15, 19, 22,27, 30: Our assertions follow from
Theorem 1.2.

Case ¢ = 25: Our assertion follows from Theorem 1.3.

Case ¢ =9: Our assertion follows from Theorem 1.4.

Cases ¢ =2, 18, 26: Our assertions follow from Proposition 3.2(i).

Cases ¢ =8, 11, 20, 29: Our assertions follow from Proposition 3.2(ii).

Cases ¢ = 28: Our assertion follows from Proposition 3.2(iii).

Cases ¢ = 23: Our assertion follows from Proposition 3.2(iv).

Cases ¢ =4, 16: Our assertions follow from Proposition 3.2(v).

Case ¢ = 17: Equation (3.1) becomes

X433 =17

Taking the above equation modulo 3 implies that n is even, say n = 2N. As in the proof
of Proposition 3.2(i1), it suffices to show that

34 m =217 (3.6)

has no solutions. Note that an odd prime divisor r of a® + b with ged(a, b) = 1
satisfies r =1 (mod 2%*1), since (b))% =—1 (mod r) and (ab~1)?"" =1 (mod 7).
Hence m#0 (mod 16). Put m =2%s with s odd and k=0,1,2,3. But when
k=0,1,2,3, the right-hand side of (3.6) is indivisible by 3+ 11=2-7,3>+11% =
2-5-13,3*+114=2-17-433,38 + 118 =2 - 107182721, respectively.

Case ¢ =21: Equation (3.1) becomes

X +41m=21" (3.7)

If n is even, then (3.7) has only the positive integer solution (x, m, n) = (20, 1, 2), in
the same way as in the proof of Theorem 1.2.

When n is odd, we need the following lemma due to Zhu [Z] and Arif and
Muriefah [AM].

Lemma 3.4. The Diophantine equation
x4+ 41m =y

has no positive integer solutions x, m, n with m odd and n odd and greater than 1.
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For the proof of Lemma 3.4, see Zhu [Z] when n = 3, and Arif and Muriefah [AM]
when n > 3. Note that the class number of the quadratic field Q(V-41) is equal to
eight. It follows from Lemma 3.4 that (3.7) has no solutions x, m, n with n odd.

This completes the proof of Proposition 3.3. O

ReMark 3.5. In the cases ¢ = 12, 24, we could not show that (3.1) has no solutions
x, m,n with m, n odd . The difficulty is that /(Q(V-23)) = 3, h(Q(V-47)) = 5, and
23=47=7 (mod 8) (that is, ¢ =0 (mod 4)), where A(Q(V—=d)) denotes the class
number of the quadratic field Q(\/—_d).
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