A NOTE ON THE DIOPHANTINE EQUATION $x^2 + q^m = c^n$

NOBUHIRO TERAI

(Received 4 September 2013; accepted 3 October 2013; first published online 26 November 2013)

Abstract

Let q be an odd prime such that $q^t + 1 = 2c^s$, where c, t are positive integers and s = 1, 2. We show that the Diophantine equation $x^2 + q^m = c^n$ has only the positive integer solution $(x, m, n) = (c^s - 1, t, 2s)$ under some conditions. The proof is based on elementary methods and a result concerning the Diophantine equation $(x^n - 1)/(x - 1) = y^2$ due to Ljunggren. We also verify that when $2 \le c \le 30$ with $c \ne 12, 24$, the Diophantine equation $x^2 + (2c - 1)^m = c^n$ has only the positive integer solution (x, m, n) = (c - 1, 1, 2).

2010 Mathematics subject classification: primary 11D61.

Keywords and phrases: Diophantine equation, integer solution.

1. Introduction

In 1956, Sierpiński [S] showed that the equation $3^x + 4^y = 5^z$ has only the positive integer solution (x, y, z) = (2, 2, 2). Jeśmanowicz [J] conjectured that if a, b, c are Pythagorean numbers, that is, positive integers satisfying $a^2 + b^2 = c^2$, then the Diophantine equation

$$a^x + b^y = c^z$$

has only the positive integer solution (x, y, z) = (2, 2, 2). As an analogue of Jeśmanowicz's conjecture, the author [T] proposed the following conjecture.

Conjecture 1.1. If $a^2 + b^2 = c^2$ with gcd(a, b, c) = 1 and a even, then the Diophantine equation

$$x^2 + b^m = c^n$$

has only the positive integer solution (x, m, n) = (a, 2, 2).

In [T], we proved that if p and q are primes such that (i) $q^2 + 1 = 2p$ and (ii) d = 1 or even if $q \equiv 1 \pmod{4}$, then the Diophantine equation $x^2 + q^m = p^n$ has only the positive integer solution (x, m, n) = (p - 1, 2, 2), where d is the order of a prime divisor of (p) in the ideal class group of $\mathbb{Q}(\sqrt{-q})$. Conjecture 1.1 has been verified to be true in

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

many special cases:

- $b > 8 \cdot 10^6$, $b \equiv 5 \pmod{8}$, c is a prime power (Le [Le1]);
- $b^2 + 1 = 2c, b \not\equiv 1 \pmod{16}, b, c$ are both odd primes (Chen and Le [CL]);
- $b \equiv 7 \pmod{8}$, either b is a prime or c is a prime (Le [Le2]);
- $c \equiv 5 \pmod{8}$, b or c is a prime power (Cao and Dong [CD]);
- $b \equiv \pm 5 \pmod{8}$, c is a prime (Yuan and Wang [YW]).

Cenberci and Senay also showed that the Diophantine equation $x^2 + b^m = c^n$ has only the positive integer solution (x, m, n) = (a, 2, 4) in the following two cases:

- $a^2 + b^2 = c^4$, $c \equiv 5 \pmod{8}$, c is a prime power [CS1];
- $b^2 + 1 = 2c^2$, b, c are both odd primes, d = 1 or even [CS2].

In this paper, using elementary methods, when $q^t + 1 = 2c^s$ with q prime and s = 1, 2, we prove the following theorems.

THEOREM 1.2. Let q be a prime with $q \equiv 3, 5 \pmod{8}$. Let c be a positive integer such that $q^t + 1 = 2c$, where t is a positive integer. Then the Diophantine equation

$$x^2 + q^m = c^n \tag{1.1}$$

has only the positive integer solution (x, m, n) = (c - 1, t, 2).

THEOREM 1.3. Let q be an odd prime. Let c be a positive integer such that $q^2 + 1 = 2c^2$ and $c \equiv 5 \pmod{8}$. Then (1.1) has only the positive integer solution $(x, m, n) = (c^2 - 1, 2, 4)$.

THEOREM 1.4. Let q be an odd prime. Let c be a positive integer such that $q + 1 = 2c^2$ and $c \equiv 3 \pmod{4}$. Then (1.1) has only the positive integer solution $(x, m, n) = (c^2 - 1, 1, 4)$.

We note that the relations on q and c in Theorems 1.2–1.4 yield the following identities, respectively:

$$q^{t} + 1 = 2c \Longrightarrow (c - 1)^{2} + q^{t} = c^{2},$$

 $q^{2} + 1 = 2c^{2} \Longrightarrow (c^{2} - 1)^{2} + q^{2} = c^{4},$
 $q + 1 = 2c^{2} \Longrightarrow (c^{2} - 1)^{2} + q = c^{4}.$

In Section 3, combining Theorems 1.2–1.4 with Proposition 3.2, we also verify that when $2 \le c \le 30$ with $c \ne 12$, 24, the Diophantine equation

$$x^2 + (2c - 1)^m = c^n$$

has only the positive integer solution (x, m, n) = (c - 1, 1, 2).

2. Proof of Theorems 1.2-1.4

We use the following lemma to prove Theorems 1.2–1.4.

Lemma 2.1 (Ljunggren [Lj]). The Diophantine equation

$$\frac{x^n - 1}{x - 1} = y^2$$

has no solutions in integers x, y, n with |x| > 1 and $n \ge 3$, except for (n, x, y) = (4, 7, 20), (5, 3, 11).

2.1. Proof of Theorem 1.2. Let (x, m, n) be a solution of (1.1).

In view of $q \equiv 3, 5 \pmod{8}$ and $q^t + 1 = 2c$, we see that (2/q) = (c/q) = -1, where (*/*) is the Jacobi symbol. Hence n is even from (1.1). Put n = 2N. Then, from (1.1),

$$q^m = (c^N + x)(c^N - x).$$

Since q is an odd prime and gcd $(c^N + x, c^N - x) = 1$,

$$q^m = c^N + x$$
, $1 = c^N - x$,

so

$$q^m + 1 = 2c^N. (2.1)$$

Our goal is to show that (2.1) has only the solution (m, N) = (t, 1). Note that N is odd from (2.1), since (2/q) = (c/q) = -1.

Now we show that $m \equiv 0 \pmod{t}$. It follows from $q^t + 1 = 2c$ that $q^t \equiv -1 \pmod{c}$, so q has order 2t modulo c. From (2.1), we have $q^m \equiv -1 \pmod{c}$ and hence $q^{2m} \equiv 1 \pmod{c}$. Thus we see that $2m \equiv 0 \pmod{2t}$, that is, $m \equiv 0 \pmod{t}$. Put m = tM. Since $q^t + 1 = 2c$, (2.1) can be written as

$$(2c-1)^M + 1 = 2c^N. (2.2)$$

Taking (2.2) modulo 2c implies that $(-1)^M + 1 \equiv 0 \pmod{2c}$ and so M is odd. If N = 1, then we obtain M = 1 from (2.2). Thus we may suppose that M and N are odd and greater than 1. Then (2.2) leads to

$$\frac{(-2c+1)^M - 1}{(-2c+1) - 1} = (c^{(N-1)/2})^2.$$

It follows from Lemma 2.1 that the above equation has no solutions. This completes the proof of Theorem 1.2.

2.2. Proof of Theorem 1.3. Let (x, m, n) be a solution of (1.1).

We first show that m and n are even. Since $q^2 + 1 = 2c^2$,

$$(c^2 - 1)^2 + q^2 = c^4.$$

This implies that

$$c^2 - 1 = 2uv$$
, $q = u^2 - v^2$, $c^2 = u^2 + v^2$,

where u, v are positive integers such that gcd(u, v) = 1, u > v and $u \not\equiv v \pmod 2$. From the third relation above,

$$u = 2hk$$
, $v = h^2 - k^2$, $c = h^2 + k^2$,

or

$$v = 2hk$$
, $u = h^2 - k^2$, $c = h^2 + k^2$,

where h, k are positive integers such that gcd(h, k) = 1, h > k and $h \not\equiv k \pmod{2}$. Then

$$q = \pm ((h^2 - k^2)^2 - (2hk)^2) = \pm (h^4 - 6h^2k^2 + k^4).$$

Since $c \equiv 5 \pmod{8}$,

$$\left(\frac{c}{q}\right) = \left(\frac{q}{c}\right) = \left(\frac{h^4 - 6h^2k^2 + k^4}{h^2 + k^2}\right) = \left(\frac{8h^4}{h^2 + k^2}\right) = \left(\frac{2}{c}\right) = -1.$$

We therefore conclude that m and n are even from (1.1).

Put m = 2M and n = 2N. Then, from (1.1),

$$q^m = (c^N + x)(c^N - x).$$

Since q is an odd prime and gcd $(c^N + x, c^N - x) = 1$,

$$q^m = c^N + x, \quad 1 = c^N - x,$$

so

$$q^m + 1 = 2c^N. (2.3)$$

Our goal is to show that (2.3) has only the solution (m, N) = (2, 2). Note that N is even from (2.3), since (2/q) = 1 and (c/q) = -1. Since $q^2 + 1 = 2c^2$, (2.3) can be written as

$$(2c^2 - 1)^M + 1 = 2c^N. (2.4)$$

Taking (2.4) modulo c implies that $(-1)^M + 1 \equiv 0 \pmod{c}$ and so M is odd. If N = 2, then we obtain M = 1 from (2.4). Thus we may suppose that M is odd and greater than 1, and N is even and greater than 2. Then (2.4) leads to

$$\frac{(-2c^2+1)^M-1}{(-2c^2+1)-1}=(c^{(N-2)/2})^2.$$

It follows from Lemma 2.1 that the above equation has no solution. This completes the proof of Theorem 1.3.

2.3. Proof of Theorem 1.4. Let (x, m, n) be a solution of (1.1).

We first show that n is even. Since $q + 1 = 2c^2$ and $c \equiv 3 \pmod{4}$,

$$\left(\frac{c}{q}\right) = \left(\frac{q}{c}\right) = \left(\frac{2c^2 - 1}{c}\right) = \left(\frac{-1}{c}\right) = -1.$$

We therefore conclude that n is even from (1.1). Put n = 2N. Then, from (1.1),

$$q^m = (c^N + x)(c^N - x).$$

Since q is an odd prime and gcd $(c^N + x, c^N - x) = 1$,

$$q^m = c^N + x, \quad 1 = c^N - x,$$

so

$$q^m + 1 = 2c^N. (2.5)$$

Our goal is to show that (2.5) has only the solution (m, N) = (1, 2). Note that N is even from (2.5), since (2/q) = 1 and (c/q) = -1. Since $q + 1 = 2c^2$, (2.5) can be written as

$$(2c^2 - 1)^M + 1 = 2c^N$$

with M = m. In the same way as in the proof of Theorem 1.3, we see that the above equation has only the solution (M, N) = (1, 2). This completes the proof of Theorem 1.4.

3. Conjecture on the equation $x^2 + (2c - 1)^m = c^n$

In connection with Conjecture 1.1 and Theorems 1.2–1.4, we propose the following conjecture.

Conjecture 3.1. Let $c \ge 2$ be a positive integer. Then the Diophantine equation

$$x^2 + (2c - 1)^m = c^n (3.1)$$

has only the positive integer solution (x, m, n) = (c - 1, 1, 2).

We first show the following criteria, which are easy to handle and are useful to Conjecture 3.1.

Proposition 3.2. Suppose that at least one of the following conditions holds:

- (i) $2c 1 \equiv 3 \pmod{8}$;
- (ii) 2c-1=3p, where p is a prime such that $p \equiv 7 \pmod{8}$, $p \equiv 3, 5 \pmod{16}$ or $p \equiv 3 \pmod{5}$;
- (iii) 2c 1 = 5p, where p is a prime such that $p \equiv 3 \pmod{8}$ and $5 + p \not\equiv 0 \pmod{32}$;
- (iv) 2c 1 = 9p, where p is a prime with $p \equiv 5 \pmod{8}$;
- (v) 2c 1 = q and $c = 4^s$, where q is a prime and s is a positive integer.

Then Conjecture 3.1 is true.

PROOF. (i) Since $2c - 1 \equiv 3 \pmod{8}$, $c \equiv 2 \pmod{4}$. If $n \ge 3$, then (3.1) leads to

$$1 + 3^m \equiv 0 \pmod{8},$$

which is impossible. We therefore obtain n = 2, m = 1 and x = c - 1.

(ii) Since $2c - 1 \equiv 0 \pmod{3}$, $c \equiv 2 \pmod{3}$. Taking (3.1) modulo 3 implies that n is even, say n = 2N. From (3.1), we have the following two cases:

$$(2c-1)^m + 1 = 2c^N (3.2)$$

or

$$3^m + p^m = 2c^N. (3.3)$$

We can solve (3.2) in the same way as in the proof of Theorem 1.2.

We now show that (3.3) has no solutions in each case.

- $p \equiv 7 \pmod{8}$: Then $c \equiv 3 \pmod{4}$. Hence m is odd from (3.3). Thus c = (3p+1)/2 is divisible by an odd prime divisor r of (3+p)/2 ($\equiv 1 \pmod{4}$). This leads to a contradiction. Indeed, r satisfies $3p+1 \equiv 0 \pmod{r}$, that is, $-3^2+1=-8 \equiv 0 \pmod{r}$, which is impossible.
- $p \equiv 3 \pmod{16}$: Then $c \equiv 5 \pmod{8}$. Taking (3.3) modulo 16 implies that $2 \cdot 3^m \equiv 2 \cdot 5^N \pmod{16}$ and so $3^m \equiv 5^N \pmod{8}$. Hence m and N are even. Taking (3.3) modulo 3 implies that $1 \equiv 2^{N+1} \pmod{3}$ and so N is odd. This is a contradiction.
- $p \equiv 5 \pmod{16}$: Then $c \equiv 0 \pmod{8}$. Hence $2c^n \equiv 0 \pmod{16}$, while $3^m + p^m \equiv 2 \pmod{8}$ if m is even, and $m \equiv 8 \pmod{16}$ if m is odd. This is a contradiction.
- $p \equiv 3 \pmod{5}$: Then $c \equiv 0 \pmod{5}$, since 2c 1 = 3p. Taking (3.3) modulo 5 implies that $2 \cdot 3^m \equiv 0 \pmod{5}$, which is impossible.
- (iii) Since $2c 1 \equiv 0 \pmod{5}$, $c \equiv 3 \pmod{5}$. Taking (3.1) modulo 5 implies that n is even, say n = 2N. As in the proof of (ii), it suffices to show that

$$5^m + p^m = 2c^N (3.4)$$

has no solutions. Since $p \equiv 3 \pmod{8}$, $c \equiv 0 \pmod{4}$. Thus m is odd from (3.4). Note that $(5^m + p^m)/2 \not\equiv 0 \pmod{16}$, since $5 + p \not\equiv 0 \pmod{32}$. This implies that N = 1. Then $5^m + p^m = 5p + 1$, which is impossible.

(iv) Since $2c - 1 \equiv 0 \pmod{3}$, $c \equiv 2 \pmod{3}$. Taking (3.1) modulo 3 implies that n is even, say n = 2N. As in the proof of (ii), it suffices to show that

$$9^m + p^m = 2c^N (3.5)$$

has no solutions. Since 2c - 1 = 9p and $p \equiv 5 \pmod{8}$, $c \equiv 3 \pmod{4}$. Hence m is odd from (3.5). Since $(9 + p)/2 \equiv 3 \pmod{4}$, there is an odd prime r such that $(9 + p)/2 \equiv 0 \pmod{r}$ and $r \equiv 3 \pmod{4}$. This leads to a contradiction. Indeed, r satisfies $9p + 1 \equiv 0 \pmod{r}$, that is, $-9^2 + 1 = -80 = -2^4 \cdot 5 \equiv 0 \pmod{r}$, which is impossible.

(v) Since 2c - 1 = q and $c = 4^s$, (3.1) can be reduced to solving the equation

$$q^m + 1 = 2^{sn+1}$$
.

We easily see that the above equation has only the solution (m, n) = (1, 2) and so x = c - 1. This completes the proof of Proposition 3.2.

Combining Theorems 1.2–1.4 with Proposition 3.2, we verify that when $2 \le c \le 30$ with $c \ne 12, 24$, Conjecture 3.1 is true.

Proposition 3.3. Let c be a positive integer with $2 \le c \le 30$ and $c \ne 12, 24$. Then Conjecture 3.1 is true.

PROOF. Cases c = 3, 5, 6, 7, 10, 13, 14, 15, 19, 22, 27, 30: Our assertions follow from Theorem 1.2.

Case c = 25: Our assertion follows from Theorem 1.3.

Case c = 9: Our assertion follows from Theorem 1.4.

Cases c = 2, 18, 26: Our assertions follow from Proposition 3.2(i).

Cases c = 8, 11, 20, 29: Our assertions follow from Proposition 3.2(ii).

Cases c = 28: Our assertion follows from Proposition 3.2(iii).

Cases c = 23: Our assertion follows from Proposition 3.2(iv).

Cases c = 4, 16: Our assertions follow from Proposition 3.2(v).

Case c = 17: Equation (3.1) becomes

$$x^2 + 33^m = 17^n$$
.

Taking the above equation modulo 3 implies that n is even, say n = 2N. As in the proof of Proposition 3.2(ii), it suffices to show that

$$3^m + 11^m = 2 \cdot 17^N \tag{3.6}$$

has no solutions. Note that an odd prime divisor r of $a^{2^k} + b^{2^k}$ with $\gcd(a, b) = 1$ satisfies $r \equiv 1 \pmod{2^{k+1}}$, since $(ab^{-1})^{2^k} \equiv -1 \pmod{r}$ and $(ab^{-1})^{2^{k+1}} \equiv 1 \pmod{r}$. Hence $m \not\equiv 0 \pmod{16}$. Put $m = 2^k s$ with s odd and k = 0, 1, 2, 3. But when k = 0, 1, 2, 3, the right-hand side of (3.6) is indivisible by $3 + 11 = 2 \cdot 7, 3^2 + 11^2 = 2 \cdot 5 \cdot 13, 3^4 + 11^4 = 2 \cdot 17 \cdot 433, 3^8 + 11^8 = 2 \cdot 107182721$, respectively.

Case c = 21: Equation (3.1) becomes

$$x^2 + 41^m = 21^n. (3.7)$$

If *n* is even, then (3.7) has only the positive integer solution (x, m, n) = (20, 1, 2), in the same way as in the proof of Theorem 1.2.

When n is odd, we need the following lemma due to Zhu [Z] and Arif and Muriefah [AM].

Lemma 3.4. The Diophantine equation

$$x^2 + 41^m = y^n$$

has no positive integer solutions x, m, n with m odd and n odd and greater than 1.

For the proof of Lemma 3.4, see Zhu [Z] when n = 3, and Arif and Muriefah [AM] when n > 3. Note that the class number of the quadratic field $\mathbb{Q}(\sqrt{-41})$ is equal to eight. It follows from Lemma 3.4 that (3.7) has no solutions x, m, n with n odd.

This completes the proof of Proposition 3.3.

REMARK 3.5. In the cases c = 12, 24, we could not show that (3.1) has no solutions x, m, n with m, n odd. The difficulty is that $h(\mathbb{Q}(\sqrt{-23})) = 3$, $h(\mathbb{Q}(\sqrt{-47})) = 5$, and $23 \equiv 47 \equiv 7 \pmod{8}$ (that is, $c \equiv 0 \pmod{4}$), where $h(\mathbb{Q}(\sqrt{-d}))$ denotes the class number of the quadratic field $\mathbb{Q}(\sqrt{-d})$.

References

- [AM] S. A. Arif and F. S. Abu Muriefah, 'On the Diophantine equation $x^2 + q^{2k+1} = y^n$ ', J. Number Theory **95** (2002), 95–100.
- [CD] Z. Cao and X. Dong, 'On Terai's conjecture', Proc. Japan Acad. 74A (1998), 127–129.
- [CS1] S. Cenberci and H. Senay, 'The Diophantine equation $x^2 + B^m = y^n$ ', Int. J. Algebra 3 (2009), 657–662.
- [CS2] S. Cenberci and H. Senay, 'The Diophantine equation $x^2 + q^m = p^n$ ', Int. J. Contemp. Math. Sci. **4** (2009), 1181–1191.
- [CL] X. Chen and M. Le, 'A note on Terai's conjecture concerning Pythagorean numbers', Proc. Japan Acad. 74A (1998), 80–81.
 - [J] L. Jeśmanowicz, 'Some remarks on Pythagorean numbers', Wiad. Mat. 1 (1955/1956), 196–202 (in Polish).
- [Le1] M. Le, 'A Note on the Diophantine equation $x^2 + b^y = c^z$ ', Acta Arith. 71 (1995), 253–257.
- [Le2] M. Le, 'On Terai's conjecture concerning Pythagorean numbers', Acta Arith. 100 (2001), 41–45.
- [Lj] W. Ljunggren, 'Some theorems on indeterminate equations of the form $\frac{x^n-1}{x-1} = y^q$ ', *Norsk Mat. Tidsskr.* **25** (1943), 17–20 (in Norwegian).
- [S] W. Sierpiński, 'On the equation $3^x + 4^y = 5^z$ ', Wiadom. Mat. 1 (1955/1956), 194–195 (in Polish).
- [T] N. Terai, 'The Diophantine quation $x^2 + q^m = p^n$ ', Acta Arith. 63 (1993), 351–358.
- [YW] P. Yuan and J. Wang, 'On the Diophantine equation $x^2 + b^y = c^z$ ', Acta Arith. **84** (1998), 145–147.
 - [Z] H. L. Zhu, 'A note on the Diophantine equation $x^2 + q^m = y^3$ ', Acta Arith. 146 (2011), 195–202.

NOBUHIRO TERAI, Division of Information System Design,

Ashikaga Institute of Technology, 268-1 Omae, Ashikaga,

Tochigi 326-8558, Japan

e-mail: terai@ashitech.ac.jp