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A NOTE ON THE DIOPHANTINE EQUATION x2 + qm = cn
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Abstract

Let q be an odd prime such that qt + 1 = 2cs, where c, t are positive integers and s = 1, 2. We show that the
Diophantine equation x2 + qm = cn has only the positive integer solution (x, m, n) = (cs − 1, t, 2s) under
some conditions. The proof is based on elementary methods and a result concerning the Diophantine
equation (xn − 1)/(x − 1) = y2 due to Ljunggren. We also verify that when 2 ≤ c ≤ 30 with c , 12, 24, the
Diophantine equation x2 + (2c − 1)m = cn has only the positive integer solution (x, m, n) = (c − 1, 1, 2).
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1. Introduction

In 1956, Sierpiński [S] showed that the equation 3x + 4y = 5z has only the positive
integer solution (x, y, z) = (2, 2, 2). Jeśmanowicz [J] conjectured that if a, b, c are
Pythagorean numbers, that is, positive integers satisfying a2 + b2 = c2, then the
Diophantine equation

ax + by = cz

has only the positive integer solution (x, y, z) = (2, 2, 2). As an analogue of
Jeśmanowicz’s conjecture, the author [T] proposed the following conjecture.

C 1.1. If a2 + b2 = c2 with gcd(a, b, c) = 1 and a even, then the Diophantine
equation

x2 + bm = cn

has only the positive integer solution (x, m, n) = (a, 2, 2).

In [T], we proved that if p and q are primes such that (i) q2 + 1 = 2p and (ii) d = 1 or
even if q ≡ 1 (mod 4), then the Diophantine equation x2 + qm = pn has only the
positive integer solution (x, m, n) = (p − 1, 2, 2), where d is the order of a prime divisor
of (p) in the ideal class group ofQ(

√
−q). Conjecture 1.1 has been verified to be true in
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many special cases:
• b > 8 · 106, b ≡ 5 (mod 8), c is a prime power (Le [Le1]);
• b2 + 1 = 2c, b . 1 (mod 16), b, c are both odd primes (Chen and Le [CL]);
• b ≡ 7 (mod 8), either b is a prime or c is a prime (Le [Le2]);
• c ≡ 5 (mod 8), b or c is a prime power (Cao and Dong [CD]);
• b ≡ ±5 (mod 8), c is a prime (Yuan and Wang [YW]).

Cenberci and Senay also showed that the Diophantine equation x2 + bm = cn has
only the positive integer solution (x, m, n) = (a, 2, 4) in the following two cases:
• a2 + b2 = c4, c ≡ 5 (mod 8), c is a prime power [CS1];
• b2 + 1 = 2c2, b, c are both odd primes, d = 1 or even [CS2].

In this paper, using elementary methods, when qt + 1 = 2cs with q prime and
s = 1, 2, we prove the following theorems.

T 1.2. Let q be a prime with q ≡ 3, 5 (mod 8). Let c be a positive integer such
that qt + 1 = 2c, where t is a positive integer. Then the Diophantine equation

x2 + qm = cn (1.1)

has only the positive integer solution (x, m, n) = (c − 1, t, 2).

T 1.3. Let q be an odd prime. Let c be a positive integer such that q2 + 1 = 2c2

and c ≡ 5 (mod 8). Then (1.1) has only the positive integer solution (x, m, n) =

(c2 − 1, 2, 4).

T 1.4. Let q be an odd prime. Let c be a positive integer such that q + 1 = 2c2

and c ≡ 3 (mod 4). Then (1.1) has only the positive integer solution (x, m, n) =

(c2 − 1, 1, 4).

We note that the relations on q and c in Theorems 1.2–1.4 yield the following
identities, respectively:

qt + 1 = 2c =⇒ (c − 1)2 + qt = c2,

q2 + 1 = 2c2 =⇒ (c2 − 1)2 + q2 = c4,

q + 1 = 2c2 =⇒ (c2 − 1)2 + q = c4.

In Section 3, combining Theorems 1.2–1.4 with Proposition 3.2, we also verify that
when 2 ≤ c ≤ 30 with c , 12, 24, the Diophantine equation

x2 + (2c − 1)m = cn

has only the positive integer solution (x, m, n) = (c − 1, 1, 2).

2. Proof of Theorems 1.2–1.4

We use the following lemma to prove Theorems 1.2–1.4.
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L 2.1 (Ljunggren [Lj]). The Diophantine equation

xn − 1
x − 1

= y2

has no solutions in integers x, y, n with |x| > 1 and n ≥ 3, except for (n, x, y) =

(4, 7, 20), (5, 3, 11).

2.1. Proof of Theorem 1.2. Let (x, m, n) be a solution of (1.1).
In view of q ≡ 3, 5 (mod 8) and qt + 1 = 2c, we see that (2/q) = (c/q) = −1, where

(∗/∗) is the Jacobi symbol. Hence n is even from (1.1). Put n = 2N. Then, from (1.1),

qm = (cN + x)(cN − x).

Since q is an odd prime and gcd (cN + x, cN − x) = 1,

qm = cN + x, 1 = cN − x,

so
qm + 1 = 2cN . (2.1)

Our goal is to show that (2.1) has only the solution (m, N) = (t, 1). Note that N is odd
from (2.1), since (2/q) = (c/q) = −1.

Now we show that m ≡ 0 (mod t). It follows from qt + 1 = 2c that qt ≡ −1 (mod c),
so q has order 2t modulo c. From (2.1), we have qm ≡ −1 (mod c) and hence q2m ≡ 1
(mod c). Thus we see that 2m ≡ 0 (mod 2t), that is, m ≡ 0 (mod t). Put m = tM. Since
qt + 1 = 2c, (2.1) can be written as

(2c − 1)M + 1 = 2cN . (2.2)

Taking (2.2) modulo 2c implies that (−1)M + 1 ≡ 0 (mod 2c) and so M is odd. If
N = 1, then we obtain M = 1 from (2.2). Thus we may suppose that M and N are odd
and greater than 1. Then (2.2) leads to

(−2c + 1)M − 1
(−2c + 1) − 1

= (c(N−1)/2)2.

It follows from Lemma 2.1 that the above equation has no solutions. This completes
the proof of Theorem 1.2. �

2.2. Proof of Theorem 1.3. Let (x, m, n) be a solution of (1.1).
We first show that m and n are even. Since q2 + 1 = 2c2,

(c2 − 1)2 + q2 = c4.

This implies that

c2 − 1 = 2uv, q = u2 − v2, c2 = u2 + v2,

22 N. Terai [3]
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where u, v are positive integers such that gcd(u, v) = 1, u > v and u . v (mod 2). From
the third relation above,

u = 2hk, v = h2 − k2, c = h2 + k2,

or

v = 2hk, u = h2 − k2, c = h2 + k2,

where h, k are positive integers such that gcd(h, k) = 1, h > k and h . k (mod 2). Then

q = ±((h2 − k2)2 − (2hk)2) = ±(h4 − 6h2k2 + k4).

Since c ≡ 5 (mod 8),( c
q

)
=

(q
c

)
=

(h4 − 6h2k2 + k4

h2 + k2

)
=

( 8h4

h2 + k2

)
=

(2
c

)
= −1.

We therefore conclude that m and n are even from (1.1).
Put m = 2M and n = 2N. Then, from (1.1),

qm = (cN + x)(cN − x).

Since q is an odd prime and gcd (cN + x, cN − x) = 1,

qm = cN + x, 1 = cN − x,

so

qm + 1 = 2cN . (2.3)

Our goal is to show that (2.3) has only the solution (m, N) = (2, 2). Note that N is even
from (2.3), since (2/q) = 1 and (c/q) = −1. Since q2 + 1 = 2c2, (2.3) can be written as

(2c2 − 1)M + 1 = 2cN . (2.4)

Taking (2.4) modulo c implies that (−1)M + 1 ≡ 0 (mod c) and so M is odd. If
N = 2, then we obtain M = 1 from (2.4). Thus we may suppose that M is odd and
greater than 1, and N is even and greater than 2. Then (2.4) leads to

(−2c2 + 1)M − 1
(−2c2 + 1) − 1

= (c(N−2)/2)2.

It follows from Lemma 2.1 that the above equation has no solution. This completes
the proof of Theorem 1.3. �
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2.3. Proof of Theorem 1.4. Let (x, m, n) be a solution of (1.1).
We first show that n is even. Since q + 1 = 2c2 and c ≡ 3 (mod 4),( c

q

)
=

(q
c

)
=

(2c2 − 1
c

)
=

(
−1
c

)
= −1.

We therefore conclude that n is even from (1.1). Put n = 2N. Then, from (1.1),

qm = (cN + x)(cN − x).

Since q is an odd prime and gcd (cN + x, cN − x) = 1,

qm = cN + x, 1 = cN − x,

so
qm + 1 = 2cN . (2.5)

Our goal is to show that (2.5) has only the solution (m, N) = (1, 2). Note that N is even
from (2.5), since (2/q) = 1 and (c/q) = −1. Since q + 1 = 2c2, (2.5) can be written as

(2c2 − 1)M + 1 = 2cN

with M = m. In the same way as in the proof of Theorem 1.3, we see that the
above equation has only the solution (M, N) = (1, 2). This completes the proof of
Theorem 1.4. �

3. Conjecture on the equation x2 + (2c − 1)m = cn

In connection with Conjecture 1.1 and Theorems 1.2–1.4, we propose the following
conjecture.

C 3.1. Let c ≥ 2 be a positive integer. Then the Diophantine equation

x2 + (2c − 1)m = cn (3.1)

has only the positive integer solution (x, m, n) = (c − 1, 1, 2).

We first show the following criteria, which are easy to handle and are useful to
Conjecture 3.1.

P 3.2. Suppose that at least one of the following conditions holds:

(i) 2c − 1 ≡ 3 (mod 8);
(ii) 2c − 1 = 3p, where p is a prime such that p ≡ 7 (mod 8), p ≡ 3, 5 (mod 16) or

p ≡ 3 (mod 5);
(iii) 2c − 1 = 5p, where p is a prime such that p ≡ 3 (mod 8) and 5 + p . 0

(mod 32);
(iv) 2c − 1 = 9p, where p is a prime with p ≡ 5 (mod 8);
(v) 2c − 1 = q and c = 4s, where q is a prime and s is a positive integer.

Then Conjecture 3.1 is true.

24 N. Terai [5]
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P. (i) Since 2c − 1 ≡ 3 (mod 8), c ≡ 2 (mod 4). If n ≥ 3, then (3.1) leads to

1 + 3m ≡ 0 (mod 8),

which is impossible. We therefore obtain n = 2, m = 1 and x = c − 1.
(ii) Since 2c − 1 ≡ 0 (mod 3), c ≡ 2 (mod 3). Taking (3.1) modulo 3 implies that n

is even, say n = 2N. From (3.1), we have the following two cases:

(2c − 1)m + 1 = 2cN (3.2)

or
3m + pm = 2cN . (3.3)

We can solve (3.2) in the same way as in the proof of Theorem 1.2.
We now show that (3.3) has no solutions in each case.
• p ≡ 7 (mod 8): Then c ≡ 3 (mod 4). Hence m is odd from (3.3). Thus c =

(3p + 1)/2 is divisible by an odd prime divisor r of (3 + p)/2 (≡ 1 (mod 4)). This leads
to a contradiction. Indeed, r satisfies 3p + 1 ≡ 0 (mod r), that is, −32 + 1 = −8 ≡ 0
(mod r), which is impossible.
• p ≡ 3 (mod 16): Then c ≡ 5 (mod 8). Taking (3.3) modulo 16 implies that

2 · 3m ≡ 2 · 5N (mod 16) and so 3m ≡ 5N (mod 8). Hence m and N are even. Taking
(3.3) modulo 3 implies that 1 ≡ 2N+1 (mod 3) and so N is odd. This is a contradiction.
• p ≡ 5 (mod 16): Then c ≡ 0 (mod 8). Hence 2cn ≡ 0 (mod 16), while 3m + pm ≡

2 (mod 8) if m is even, and ≡ 8 (mod 16) if m is odd. This is a contradiction.
• p ≡ 3 (mod 5): Then c ≡ 0 (mod 5), since 2c − 1 = 3p. Taking (3.3) modulo 5

implies that 2 · 3m ≡ 0 (mod 5), which is impossible.
(iii) Since 2c − 1 ≡ 0 (mod 5), c ≡ 3 (mod 5). Taking (3.1) modulo 5 implies that

n is even, say n = 2N. As in the proof of (ii), it suffices to show that

5m + pm = 2cN (3.4)

has no solutions. Since p ≡ 3 (mod 8), c ≡ 0 (mod 4). Thus m is odd from (3.4). Note
that (5m + pm)/2 . 0 (mod 16), since 5 + p . 0 (mod 32). This implies that N = 1.
Then 5m + pm = 5p + 1, which is impossible.

(iv) Since 2c − 1 ≡ 0 (mod 3), c ≡ 2 (mod 3). Taking (3.1) modulo 3 implies that
n is even, say n = 2N. As in the proof of (ii), it suffices to show that

9m + pm = 2cN (3.5)

has no solutions. Since 2c − 1 = 9p and p ≡ 5 (mod 8), c ≡ 3 (mod 4). Hence m
is odd from (3.5). Since (9 + p)/2 ≡ 3 (mod 4), there is an odd prime r such that
(9 + p)/2 ≡ 0 (mod r) and r ≡ 3 (mod 4). This leads to a contradiction. Indeed, r
satisfies 9p + 1 ≡ 0 (mod r), that is, −92 + 1 = −80 = −24 · 5 ≡ 0 (mod r), which is
impossible.

(v) Since 2c − 1 = q and c = 4s, (3.1) can be reduced to solving the equation

qm + 1 = 2sn+1.
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We easily see that the above equation has only the solution (m, n) = (1, 2) and so
x = c − 1. This completes the proof of Proposition 3.2. �

Combining Theorems 1.2–1.4 with Proposition 3.2, we verify that when 2 ≤ c ≤ 30
with c , 12, 24, Conjecture 3.1 is true.

P 3.3. Let c be a positive integer with 2 ≤ c ≤ 30 and c , 12, 24. Then
Conjecture 3.1 is true.

P. Cases c = 3, 5, 6, 7, 10, 13, 14, 15, 19, 22, 27, 30: Our assertions follow from
Theorem 1.2.

Case c = 25: Our assertion follows from Theorem 1.3.
Case c = 9: Our assertion follows from Theorem 1.4.
Cases c = 2, 18, 26: Our assertions follow from Proposition 3.2(i).
Cases c = 8, 11, 20, 29: Our assertions follow from Proposition 3.2(ii).
Cases c = 28: Our assertion follows from Proposition 3.2(iii).
Cases c = 23: Our assertion follows from Proposition 3.2(iv).
Cases c = 4, 16: Our assertions follow from Proposition 3.2(v).
Case c = 17: Equation (3.1) becomes

x2 + 33m = 17n.

Taking the above equation modulo 3 implies that n is even, say n = 2N. As in the proof
of Proposition 3.2(ii), it suffices to show that

3m + 11m = 2 · 17N (3.6)

has no solutions. Note that an odd prime divisor r of a2k
+ b2k

with gcd(a, b) = 1
satisfies r ≡ 1 (mod 2k+1), since (ab−1)2k

≡ −1 (mod r) and (ab−1)2k+1
≡ 1 (mod r).

Hence m . 0 (mod 16). Put m = 2k s with s odd and k = 0, 1, 2, 3. But when
k = 0, 1, 2, 3, the right-hand side of (3.6) is indivisible by 3 + 11 = 2 · 7, 32 + 112 =

2 · 5 · 13, 34 + 114 = 2 · 17 · 433, 38 + 118 = 2 · 107182721, respectively.
Case c = 21: Equation (3.1) becomes

x2 + 41m = 21n. (3.7)

If n is even, then (3.7) has only the positive integer solution (x, m, n) = (20, 1, 2), in
the same way as in the proof of Theorem 1.2.

When n is odd, we need the following lemma due to Zhu [Z] and Arif and
Muriefah [AM].

L 3.4. The Diophantine equation

x2 + 41m = yn

has no positive integer solutions x, m, n with m odd and n odd and greater than 1.

26 N. Terai [7]
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For the proof of Lemma 3.4, see Zhu [Z] when n = 3, and Arif and Muriefah [AM]
when n > 3. Note that the class number of the quadratic field Q(

√
−41) is equal to

eight. It follows from Lemma 3.4 that (3.7) has no solutions x, m, n with n odd.
This completes the proof of Proposition 3.3. �

R 3.5. In the cases c = 12, 24, we could not show that (3.1) has no solutions
x, m, n with m, n odd . The difficulty is that h(Q(

√
−23)) = 3, h(Q(

√
−47)) = 5, and

23 ≡ 47 ≡ 7 (mod 8) (that is, c ≡ 0 (mod 4)), where h(Q(
√
−d)) denotes the class

number of the quadratic field Q(
√
−d).
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