APPLICATION OF A METHOD OF SZEMEREDI

by H. HALBERSTAM

To Robert Rankin on his 70th Birthday

1. Let $\mathscr{B}=\left\{b_{i}: b_{1}<b_{2}<\ldots\right\}$ be an infinite sequence of positive integers that exceed 1 and are pairwise coprime, so that

$$
\begin{equation*}
\left(b_{i}, b_{j}\right)=1, \quad i \neq j \tag{1.1}
\end{equation*}
$$

Assume also that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{b_{i}}<\infty . \tag{1.2}
\end{equation*}
$$

Let $\mathscr{A}=\mathscr{A}_{\mathscr{B}}$ denote the sequence of \mathscr{B}-free numbers, that is, of positive integers divisible by no element of \mathscr{B}. This concept, generalizing square-free and k-free numbers, derives from Erdös [2] who proved in 1966 that there exists a constant $c, 0<c<1$, independent of \mathscr{B}, such that the interval $\left(x, x+x^{c}\right)$ contains elements of \mathscr{A} provided only that x is large enough. This result of Erdös was shown by Szemeredi [7] in 1973 to hold with $c=\frac{1}{2}+\varepsilon$, if $x \geqslant x_{0}(\varepsilon, \mathscr{B})$, and quite recently Bantle and Grupp [1] have sharpened Szemeredi's result to $c=9 / 20+\varepsilon$.

The purpose of this note is to show how the method of Szemeredi can be used to derive, virtually without change, the following result.

Theorem. Let k be a positive integer and let h satisfy $1 \leqslant h<k,(h, k)=1$. Given $\delta>0$, there exists a \mathscr{B}-free number a such that

$$
a \equiv h \bmod k, \quad a \leqslant k^{2+\delta}
$$

provided only that $k \geqslant k_{0}(\varepsilon, \mathscr{B})$.
Define, as (1.2) permits us to do,

$$
\begin{equation*}
\beta=\prod_{i=1}^{\infty}\left(1-\frac{1}{b_{i}}\right) \tag{1.3}
\end{equation*}
$$

and denote by s the least positive integer so that

$$
\begin{equation*}
\sum_{i=s+1}^{\infty} \frac{1}{b_{i}}<\frac{1}{100} \varepsilon \beta . \tag{1.4}
\end{equation*}
$$

It is easy to see that, without any loss of generality, one may assume b_{1}, \ldots, b_{s} to be prime. We shall use the letters p and q, with or without suffices, exclusively to denote primes.

We shall prove the theorem by showing that, actually, there exist at least $(1 / 20) \varepsilon \beta k^{1+\varepsilon} \mathscr{B}$-free numbers $a \leqslant k^{2+\varepsilon}$ in the arithmetic progression $h \bmod k$, provided that k is large enough.
2. Proof of the theorem. The natural approach would be to develop an argument to show that the set $\left\{n: 1 \leqslant n \leqslant k^{2+\varepsilon}, n \equiv h \bmod k\right\}$ contains elements of \mathscr{A} if k is large enough. Instead, following Szemeredi, we narrow attention at the outset to a subset of these integers each having a large prime factor. It turns out that this surrender of advantage is more than compensated by the increased difficulty of having such integers divisible by large elements of \mathscr{B}.

Accordingly, let

$$
\begin{equation*}
\mathscr{P}=\left\{p: 2 k^{1+\varepsilon / 2}<p<k^{1+\varepsilon}, p \notin \mathscr{B}, p \nmid k\right\}, \tag{2.1}
\end{equation*}
$$

and focus on the set of integers

$$
\mathscr{C}=\left\{n: 1 \leqslant n \leqslant k^{2+\varepsilon}, n \equiv h \bmod k, n \text { divisible by a prime of } \mathscr{P}\right\} .
$$

If an integer n in \mathscr{C} were to have two prime divisors from \mathscr{P} we should have $k^{2+\varepsilon} \geqslant n>$ $\left(2 k^{1+\varepsilon / 2}\right)^{2}$, a contradiction. Hence \mathscr{P} induces the partition

$$
\begin{equation*}
\mathscr{C}=\bigcup_{p \in \mathcal{P}} \mathscr{C}^{(p)} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{C}^{(p)}:=\left\{n: 1 \leqslant n \leqslant k^{2+\varepsilon}, n \equiv h \bmod k, n \equiv 0 \bmod p\right\} \tag{2.3}
\end{equation*}
$$

Moreover, if \mathscr{C}_{1} now denotes the number of elements of \mathscr{C} divisible by none of b_{1}, \ldots, b_{s}, then the cardinality $\left|\mathscr{C}_{1}\right|$ of \mathscr{C}_{1} is given by

$$
\begin{equation*}
\left|\mathscr{C}_{1}\right|=\sum_{p \in \mathscr{P}}\left|\mathscr{C}_{1}^{(\mathrm{p})}\right|=\sum_{p \in \mathscr{P}}\left|\left\{m: 1 \leqslant m \leqslant k^{2+\varepsilon} p^{-1}, m \equiv h p^{\prime} \bmod k,\left(m, b_{1} \ldots b_{s}\right)=1\right\}\right| \tag{2.4}
\end{equation*}
$$

where the interpretation of $\mathscr{C}_{1}^{(\mathrm{p})}$ is obvious and $p^{\prime}=p^{\prime}(k)$ is the inverse of p modulo k, i.e. $p p^{\prime} \equiv 1 \bmod k$.

Lemma 1. If k is sufficiently large,

$$
\left|\mathscr{C}_{1}\right| \geqslant \frac{\varepsilon}{10} \beta k^{1+\varepsilon}
$$

Proof. By (2.4) and the definition of \mathscr{P}, which guarantees that $\left(p, b_{1} \ldots b_{s}\right)=1$ when $p \in \mathscr{P}$, we have

$$
\begin{aligned}
\left|\mathscr{C}_{1}^{(p)}\right| & =\sum_{\substack{d \mid b_{1}, \ldots b_{s} \\
(d, k)=1}} \mu(d) \sum_{\substack{1 \leq m \leq k^{2+\varepsilon} / \mathrm{p} \\
m=h p^{\prime} \text { modk } \\
m=0 \text { mod } d}} 1 \\
& =\sum_{\substack{d \mid p_{1}, \ldots, p_{s} \\
(d, k)=1}} \mu(d)\left(\frac{k^{1+\varepsilon}}{p d}+\theta_{p, d}\right), \quad\left|\theta_{p, d}\right|<1, \\
& \geqslant \frac{k^{1+\varepsilon}}{p} \sum_{\substack{d \mid b_{1} \ldots . . b_{s} \\
(d, k)=1}} \frac{\mu(d)}{d}-2^{s} \\
& =\frac{k^{1+\varepsilon}}{p} \prod_{\substack{i=1 \\
b_{i} \neq k}}^{s}\left(1-\frac{1}{b_{i}}\right)-2^{s} \\
& \geqslant \frac{k^{1+\varepsilon}}{p} \beta-2^{s} .
\end{aligned}
$$

Hence, by (2.4),

$$
\begin{aligned}
\left|\mathscr{C}_{1}\right| & \geqslant \beta k^{1+\varepsilon} \sum_{p \in \mathscr{P}} \frac{1}{p}-2^{s} \pi\left(k^{1+\varepsilon}\right) \\
& \geqslant k^{1+\varepsilon}\left\{\beta \sum_{p \in \mathscr{P}} \frac{1}{p}-\frac{2^{s+1}}{\log k}\right\}
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{p \in \mathscr{P}} \frac{1}{p} & =\sum_{2 k^{1+\sigma / 2<p<k}<} \frac{1}{1+\infty}-\sum_{\substack{p p \mathscr{B} \\
p>2 k^{1+k / 2}}} \frac{1}{p}-\sum_{\substack{p \mid k \\
p>2 k^{1+\epsilon / 2}}} \frac{1}{p} \\
& \geqslant \frac{\varepsilon}{5}+O\left(\frac{1}{\log k}\right)-\sum_{i>s} \frac{1}{b_{i}}-k^{-1-\varepsilon / 2} \omega(k)
\end{aligned}
$$

if k is large enough (to ensure that $k^{1+\varepsilon / 2} \geqslant b_{s+1}$), where $\omega(k)$ is the number of distinct prime factors of k; so that, by (1.4),

$$
\sum_{p \in \mathscr{P}} \frac{1}{p} \geqslant \frac{\varepsilon}{5}-\frac{\varepsilon \beta}{100}+O\left(\frac{1}{\log k}\right)
$$

and

$$
\left|\mathscr{C}_{1}\right| \geqslant \beta k^{1+\varepsilon}\left\{\frac{\varepsilon}{5}-\frac{\varepsilon}{100}+O\left(\frac{1}{\log k}\right)\right\} \geqslant \frac{\beta \varepsilon}{10} k^{1+\varepsilon}
$$

for all sufficiently large k, as required.
It follows from Lemma 1 that if \mathscr{C}_{0} denotes the set of elements of \mathscr{C} having no divisors from \mathscr{B}, then

$$
\left|\mathscr{C}_{0}\right| \geqslant\left|\mathscr{C}_{1}\right|-\left|\mathscr{C}_{2}\right|-\left|\mathscr{C}_{3}\right| \geqslant \frac{\varepsilon \beta}{10} k^{1+\varepsilon}-\left|\mathscr{C}_{2}\right|-\left|\mathscr{C}_{3}\right|
$$

where \mathscr{C}_{2} is the set of all those integers in \mathscr{C} that are divisible by an element b in \mathscr{B} of 'intermediate' size, i.e. one satisfying

$$
b_{s+1} \leqslant b \leqslant k^{1+\varepsilon},
$$

and \mathscr{C}_{3} is the set of all integers belonging to \mathscr{C}_{1} that have a large factor b from \mathscr{B}, i.e. satisfying $b>k^{1+\varepsilon}$. We shall prove that $\left|\mathscr{C}_{2}\right|+\left|\mathscr{C}_{3}\right|$ is relatively small.

Lemma 2. We have $\left|\mathscr{C}_{2}\right| \leqslant \frac{\varepsilon \beta}{50} k^{1+\varepsilon}$.

Proof. We argue quite crudely. We have that

$$
\begin{aligned}
\left|\mathscr{C}_{2}\right| & \leqslant \sum_{\substack{b_{s+1} \leqslant b \leqslant k^{1+e} \\
(b, k)=1}} \sum_{\substack{\begin{subarray}{c}{1 \leq n \leq k^{2+e} \\
n=h \operatorname{modk} \\
n=0 \text { mod }} }}\end{subarray}} 1 \\
& \leqslant \sum_{\substack{b_{s} \leqslant 1 \leqslant b \leq k^{1+\varepsilon} \\
(b, k)=1}}\left(\frac{k^{1+\varepsilon}}{b}+1\right) \\
& \leqslant 2 k^{1+\varepsilon} \sum_{b \geqslant b_{s+1}} \frac{1}{b}<\frac{\varepsilon \beta}{50} k^{1+\varepsilon}
\end{aligned}
$$

by (1.4), and this completes the proof of the lemma.
Lemma 3. We have $\left|\mathscr{C}_{3}\right| \leqslant \frac{1}{2} k^{1+\varepsilon / 2}$.
Proof. Suppose n is counted in \mathscr{C}_{3}. Then n is divisible by a (unique) prime p from \mathscr{P}, and n is divisible also by an element $b>k^{1+\varepsilon}$ from \mathscr{B}. This cannot happen if $(b, p)=1$, for then $n \geqslant b p>k^{1+\varepsilon} \cdot 2 k^{1+\varepsilon / 2}=2 k^{2+3 \varepsilon / 2}$, a contradiction. Hence the b dividing n is composite and divisible by a $p>2 k^{1+\varepsilon / 2}$. Writing $b=l p$, we have $1<l<\frac{1}{2} k^{1+\varepsilon / 2}$; and given such an integer l, there is, by (1.1), at most one $b \in \mathscr{B}$ divisible by l. Hence there are at most $\frac{1}{2} k^{1+\varepsilon / 2}$ available choices of b. Finally, given such a b, if $1 \leqslant n \leqslant k^{2+\varepsilon}, n \equiv h \bmod k$ and $n \equiv 0 \bmod b$ with $b>k^{1+\varepsilon}$, there is at most one such n. This proves the lemma.

We are now able to complete the proof of the theorem. By (2.5) and Lemmas 2 and 3 we have

$$
\left|\mathscr{C}_{0}\right| \geqslant \frac{\varepsilon}{10} \beta k^{1+\varepsilon}-\frac{\varepsilon}{50} \beta k^{1+\varepsilon}-\frac{1}{2} k^{1+\varepsilon / 2} \geqslant \frac{\varepsilon}{20} \beta k^{1+\varepsilon}
$$

if k is large enough. Thus the theorem is proved, in a quantitative form.
3. Some concluding remarks. If we replace condition (1.2) by the more demanding

$$
\begin{equation*}
B(x):=|\{b \in \mathscr{B}: b \leqslant x\}| \ll x^{\theta}, \tag{3.1}
\end{equation*}
$$

where $0<\theta<1$, we can, with only a little more trouble, replace the exponent $2+\varepsilon$ in the theorem by $1+\theta+\varepsilon$. Thus when \mathscr{B} is the sequence of squares of primes and $\mathscr{A}_{\mathscr{B}}$ is the sequence of squarefree numbers, we obtain the exponent $(3 / 2)+\varepsilon$ which is very close to the best that was known until the recent work of Heath-Brown [3]. While it is unlikely that one can emulate Heath-Brown's delicate argument in the more general situation, I do believe that the theorem itself can be improved a little, in the spirit of [1].

The condition (1.1) can be relaxed somewhat in the theorem. For such and other variations of Szemeredi's theorem see Narlikar and Ramachandra [4].

REFERENCES

1. G. Bantle and F. Grupp, On a problem of Erdös and Szemeredi, J. Number Theory, to appear.
2. P. Erdös, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), 175-182.
3. D. R. Heath-Brown, The least square-free number in an arithmetic progression, J. Reine Angew. Math. 332 (1982), 204-220.
4. H. J. Narlikar and K. Ramachandra, Contributions to the Erdös-Szemeredi theory of sieved integers, Acta Arith. 38 (1980), 157-165.
5. E. Szemeredi, On the difference of consecutive terms of sequences defined by divisibility properties II, Acta Arith. 23 (1973), 359-361.

University of Illinois at Urbana-Champaign Department of Mathematics 1409 West Green Street Urbana
 Illinois 61801
 U.S.A.

