APPLICATION OF A METHOD OF SZEMEREDI

by H. HALBERSTAM

To Robert Rankin on his 70th Birthday

1. Let $\mathcal{B} = \{b_i : b_1 < b_2 < \ldots \}$ be an infinite sequence of positive integers that exceed 1 and are pairwise coprime, so that

$$ (b_i, b_j) = 1, \quad i \neq j. $$

Assume also that

$$ \sum_{i=1}^{\infty} \frac{1}{b_i} < \infty. \quad (1.2) $$

Let $\mathcal{A} = \mathcal{A}_\mathcal{B}$ denote the sequence of \mathcal{B}-free numbers, that is, of positive integers divisible by no element of \mathcal{B}. This concept, generalizing square-free and k-free numbers, derives from Erdős [2] who proved in 1966 that there exists a constant $c, 0 < c < 1$, independent of \mathcal{B}, such that the interval $(x, x + x^c)$ contains elements of \mathcal{A} provided only that x is large enough. This result of Erdős was shown by Szemeredi [7] in 1973 to hold with $c = \frac{1}{2} + \varepsilon$, if $x \geq x_0(\varepsilon, \mathcal{B})$, and quite recently Bantle and Grupp [1] have sharpened Szemeredi's result to $c = 9/20 + \varepsilon$.

The purpose of this note is to show how the method of Szemeredi can be used to derive, virtually without change, the following result.

Theorem. Let k be a positive integer and let h satisfy $1 \leq h < k, (h, k) = 1$. Given $\delta > 0$, there exists a \mathcal{B}-free number a such that

$$ a \equiv h \mod k, \quad a \leq k^{2+\delta} $$

provided only that $k \geq k_0(\varepsilon, \mathcal{B})$.

Define, as (1.2) permits us to do,

$$ \beta = \prod_{i=1}^{\infty} \left(1 - \frac{1}{b_i}\right), \quad (1.3) $$

and denote by s the least positive integer so that

$$ \sum_{i=s+1}^{\infty} \frac{1}{b_i} < \frac{1}{100} \varepsilon \beta. \quad (1.4) $$

It is easy to see that, without any loss of generality, one may assume b_1, \ldots, b_s to be prime. We shall use the letters p and q, with or without suffices, exclusively to denote primes.

We shall prove the theorem by showing that, actually, there exist at least $(1/20)\varepsilon \beta k^{1+\varepsilon}$ \mathcal{B}-free numbers $a \leq k^{2+\varepsilon}$ in the arithmetic progression $h \mod k$, provided that k is large enough.

2. Proof of the theorem. The natural approach would be to develop an argument to show that the set \(\{ n : 1 \leq n \leq k^{2+\varepsilon}, n \equiv h \mod k \} \) contains elements of \(A \) if \(k \) is large enough. Instead, following Szemerédi, we narrow attention at the outset to a subset of these integers each having a large prime factor. It turns out that this surrender of advantage is more than compensated by the increased difficulty of having such integers divisible by large elements of \(B \).

Accordingly, let
\[
P = \{ p : 2k^{1+\varepsilon/2} < p < k^{1+\varepsilon}, \ p \not\in B, \ p \nmid k \},
\]
and focus on the set of integers
\[
\mathcal{C} = \{ n : 1 \leq n \leq k^{2+\varepsilon}, n \equiv h \mod k, \ n \text{ divisible by a prime of } P \}.
\]
If an integer \(n \) in \(\mathcal{C} \) were to have two prime divisors from \(P \) we should have \(k^{2+\varepsilon} > n > (2k^{1+\varepsilon/2})^2 \), a contradiction. Hence \(\mathcal{P} \) induces the partition
\[
\mathcal{C} = \bigcup_{p \in \mathcal{P}} \mathcal{C}^{(p)},
\]
where
\[
\mathcal{C}^{(p)} = \{ n : 1 \leq n \leq k^{2+\varepsilon}, n \equiv h \mod k, n \equiv 0 \mod p \}.
\]
Moreover, if \(\mathcal{C}_1 \) now denotes the number of elements of \(\mathcal{C} \) divisible by none of \(b_1, \ldots, b_s \), then the cardinality \(|\mathcal{C}_1| \) of \(\mathcal{C}_1 \) is given by
\[
|\mathcal{C}_1| = \sum_{p \in \mathcal{P}} |\mathcal{C}_1^{(p)}| = \sum_{p \in \mathcal{P}} \left| \left\{ m : 1 \leq m \leq k^{2+\varepsilon}p^{-1}, m \equiv hp' \mod k, (m, b_1 \ldots b_s) = 1 \right\} \right| \quad (2.4)
\]
where the interpretation of \(\mathcal{C}_1^{(p)} \) is obvious and \(p' = p'(k) \) is the inverse of \(p \) modulo \(k \), i.e. \(pp' \equiv 1 \mod k \).

Lemma 1. If \(k \) is sufficiently large,
\[
|\mathcal{C}_1| \geq \frac{\varepsilon}{10} \beta k^{1+\varepsilon}.
\]

Proof. By (2.4) and the definition of \(\mathcal{P} \), which guarantees that \((p, b_1 \ldots b_s) = 1 \) when \(p \in \mathcal{P} \), we have
\[
|\mathcal{C}_1^{(p)}| = \sum_{d \mid b_1, \ldots, b_s} \mu(d) \sum_{\substack{1 \leq m \leq k^{2+\varepsilon}/p \\ m \equiv hp' \mod k \\ m \equiv 0 \mod d}} 1
\]
\[
= \sum_{d \mid p_1, \ldots, p_s} \mu(d) \left(\frac{k^{1+\varepsilon}}{pd} + \theta_{p,d} \right), \quad |\theta_{p,d}| < 1,
\]
\[
\geq \frac{k^{1+\varepsilon}}{p} \sum_{d \mid p_1, \ldots, p_s} \mu(d) \left(\frac{1}{d} - 2^s \right)
\]
\[
= \frac{k^{1+\varepsilon}}{p} \left(1 - \prod_{i=1}^{s} \left(1 - \frac{1}{b_i} \right) - 2^s \right)
\]
\[
\geq \frac{k^{1+\varepsilon}}{p} \beta - 2^s.
\]
Hence, by (2.4),

\[|\mathcal{C}_1| \geq \beta k^{1+\varepsilon} \sum_{p \in \mathcal{P}} \frac{1}{p} - 2^s \pi(k^{1+\varepsilon}) \]

\[\geq k^{1+\varepsilon} \left\{ \beta \sum_{p \in \mathcal{P}} \frac{1}{p} - \frac{2^{s+1}}{\log k} \right\}. \]

But

\[
\sum_{p \in \mathcal{P}} \frac{1}{p} = \sum_{2k^{1+\varepsilon/2} < p < k^{1+\varepsilon}} \frac{1}{p} - \sum_{p \in \mathcal{P}} \frac{1}{p} - \sum_{p \in \mathcal{P}} \frac{1}{p} \\
\geq \varepsilon + O\left(\frac{1}{\log k} \right) - \sum_{b_i} \frac{1}{b_i} - k^{-1-\varepsilon/2} \omega(k)
\]

if \(k \) is large enough (to ensure that \(k^{1+\varepsilon/2} \geq b_{i+1} \)), where \(\omega(k) \) is the number of distinct prime factors of \(k \); so that, by (1.4),

\[
\sum_{p \in \mathcal{P}} \frac{1}{p} \geq \frac{\varepsilon}{5} - \frac{\varepsilon \beta}{100} + O\left(\frac{1}{\log k} \right)
\]

and

\[|\mathcal{C}_1| \geq \beta k^{1+\varepsilon} \left\{ \frac{\varepsilon}{5} - \frac{\varepsilon \beta}{100} + O\left(\frac{1}{\log k} \right) \right\} \geq \frac{\varepsilon \beta}{10} k^{1+\varepsilon}
\]

for all sufficiently large \(k \), as required.

It follows from Lemma 1 that if \(\mathcal{C}_0 \) denotes the set of elements of \(\mathcal{C} \) having no divisors from \(\mathcal{B} \), then

\[|\mathcal{C}_0| \geq |\mathcal{C}_1| - |\mathcal{C}_2| - |\mathcal{C}_3| \geq \frac{\varepsilon \beta}{10} k^{1+\varepsilon} - |\mathcal{C}_2| - |\mathcal{C}_3|,
\]

where \(\mathcal{C}_2 \) is the set of all those integers in \(\mathcal{C} \) that are divisible by an element \(b \) in \(\mathcal{B} \) of 'intermediate' size, i.e. one satisfying

\[b_{i+1} \leq b \leq k^{1+\varepsilon}, \]

and \(\mathcal{C}_3 \) is the set of all integers belonging to \(\mathcal{C}_1 \) that have a large factor \(b \) from \(\mathcal{B} \), i.e. satisfying \(b > k^{1+\varepsilon} \). We shall prove that \(|\mathcal{C}_2| + |\mathcal{C}_3| \) is relatively small.

Lemma 2. We have \(|\mathcal{C}_2| \leq \frac{\varepsilon \beta}{50} k^{1+\varepsilon} \).
Proof. We argue quite crudely. We have that
\[
(b,k) = n^h \mod b
\]
by (1.4), and this completes the proof of the lemma.

Lemma 3. We have \(|\mathcal{C}_3| \leq \frac{1}{2} k^{1+\varepsilon/2}\).

Proof. Suppose \(n\) is counted in \(\mathcal{C}_3\). Then \(n\) is divisible by a (unique) prime \(p\) from \(\mathcal{P}\), and \(n\) is divisible also by an element \(b > k^{1+\varepsilon}\) from \(\mathcal{B}\). This cannot happen if \((b, p) = 1\), for then \(np > k^{1+\varepsilon} \cdot 2k^{1+\varepsilon/2} = 2k^{2+3\varepsilon/2}\), a contradiction. Hence the \(b\) dividing \(n\) is composite and divisible by a \(p > 2k^{1+\varepsilon/2}\). Writing \(b = lp\), we have \(1 < l < \frac{1}{2} k^{1+\varepsilon/2}\); and given such an integer \(l\), there is, by (1.1), at most one \(b \in \mathcal{B}\) divisible by \(l\). Hence there are at most \(\frac{1}{2} k^{1+\varepsilon/2}\) available choices of \(b\). Finally, given such a \(b\), if \(1 \leq n \leq k^{2+\varepsilon}\), \(n \equiv h \mod k\) and \(n \equiv 0 \mod b\) with \(b > k^{1+\varepsilon}\), there is at most one such \(n\). This proves the lemma.

We are now able to complete the proof of the theorem. By (2.5) and Lemmas 2 and 3 we have
\[
|\mathcal{C}_0| \geq \frac{e}{10} \beta k^{1+\varepsilon} - \frac{e}{50} \beta k^{1+\varepsilon} - \frac{1}{2} k^{1+\varepsilon/2} \geq \frac{e}{20} \beta k^{1+\varepsilon}
\]
if \(k\) is large enough. Thus the theorem is proved, in a quantitative form.

3. Some concluding remarks. If we replace condition (1.2) by the more demanding
\[
B(x) := |\{b \in \mathcal{B} : b \leq x\}| \ll x^\theta,
\]
where \(0 < \theta < 1\), we can, with only a little more trouble, replace the exponent \(2+\varepsilon\) in the theorem by \(1+\theta+\varepsilon\). Thus when \(\mathcal{B}\) is the sequence of squares of primes and \(\mathcal{A}_\theta\) is the sequence of squarefree numbers, we obtain the exponent \((3/2) + \varepsilon\) which is very close to the best that was known until the recent work of Heath-Brown [3]. While it is unlikely that one can emulate Heath-Brown’s delicate argument in the more general situation, I do believe that the theorem itself can be improved a little, in the spirit of [1].

The condition (1.1) can be relaxed somewhat in the theorem. For such and other variations of Szemeredi’s theorem see Narlikar and Ramachandra [4].

REFERENCES

University of Illinois at Urbana-Champaign
Department of Mathematics
1409 West Green Street
Urbana
Illinois 61801
U.S.A.