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To Robert Rankin on his 70th Birthday

1. Let 08 = {bj: bx < b2< • • •} be an infinite sequence of positive integers that exceed
1 and are pairwise coprime, so that

(1.1)

Assume also that

I ^<°°- (1-2)

Let sd=sigi denote the sequence of S3-free numbers, that is, of positive integers divisible
by no element of 38. This concept, generalizing square-free and fc-free numbers, derives
from Erdos [2] who proved in 1966 that there exists a constant c, 0 < c < l , independent
of 38, such that the interval (x, x + xc) contains elements of si provided only that x is large
enough. This result of Erdos was shown by Szemeredi [7] in 1973 to hold with c = \+ e, if
xs=xo(e, 38), and quite recently Bantle and Grupp [1] have sharpened Szemeredi's result
to c = 9/20 + e.

The purpose of this note is to show how the method of Szemeredi can be used to
derive, virtually without change, the following result.

THEOREM. Let k be a positive integer and let h satisfy l^h<k,(h,k) = l. Given S > 0,
there exists a (%-free number a such that

a = h mod k, a «= k2+8

provided only that fcs= ko(e, 38).

Define, as (1.2) permits us to do,

flK) a3)

and denote by s the least positive integer so that

i = s + i Oj 100

It is easy to see that, without any loss of generality, one may assume bu ... ,bs to be
prime. We shall use the letters p and q, with or without suffices, exclusively to denote
primes.

We shall prove the theorem by showing that, actually, there exist at least
(l/20)e/3fc1+e 38-free numbers a=£fc2+e in the arithmetic progression h mod k, provided
that k is large enough.
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2. Proof of the theorem. The natural approach would be to develop an argument to
show that the set {n : 1 =£ n =£ k2+e, n = h mod fc} contains elements of si if fc is large
enough. Instead, following Szemeredi, we narrow attention at the outset to a subset of
these integers each having a large prime factor. It turns out that this surrender of
advantage is more than compensated by the increased difficulty of having such integers
divisible by large elements of 28.

Accordingly, let

9 = {p:2k1+*2<p<k1+',pt9t,pJrk}, (2.1)

and focus on the set of integers

% = {n : 1 =£ n =2 k2+e, n = h mod k, n divisible by a prime of 3>}.

If an integer n in <£ were to have two prime divisors from *3> we should have fc2+e > n >
(2k1+e/2)2, a contradiction. Hence &> induces the partition

< g= U (# ( p ) ,
pe9>

where
^< p ) : = {n : 1 =s n =s k2+e, n = h mod k, n = 0 mod p}.

Moreover, if c€l now denotes the number of elements of <# divisible by none of bu

then the cardinality l^jl of ^ is given by

l«il = Z i«iP)l = I |{m : 1 s m « k ^ p " 1 , m = hp' mod k, (m, b1...bs) = 1}

(2.2)

(2.3)

.., bs,

(2.4)

where the interpretation of
pp' = 1 mod k.

LEMMA 1. If k is sufficiently large,

is obvious and p' = p'(k) is the inverse of p modulo k, i.e.

Proof. By (2.4) and the definition of *3>, which guarantees that (p,
we have | v ? ) , ^

. . . bs) = 1 when

(d,k)=l

(d,fc)=l

m^hp'modk

- 2 s

P d|b,...b,
(d,k)=l

fcl+e ,

.1+6

— 2 s .

https://doi.org/10.1017/S001708950000608X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000608X


A METHOD OF SZEMEREDI 83

Hence, by (2.4),

1+E V ! s 1+e

pe^ P

But

p<=& P 2k'*"/2<p<k1+I P pegs P p|k P
p>2lc'*'ra p>2fc'*-'2

5 Vlog

if k is large enough (to ensure that k1+B/2ss&s+1), where w(k) is the number of distinct
prime factors of k; so that, by (1.4),

p%p 5 100 Vlogk

and

100 Mogk/J 10

for all sufficiently large k, as required.

It follows from Lemma 1 that if <i§o denotes the set of elements of ^€ having no
divisors from 38, then

where %2 is the set of all those integers in % that are divisible by an element b in % of
'intermediate' size, i.e. one satisfying

and ^ 3 is the set of all integers belonging to ^ that have a large factor b from S9, i.e.
satisfying fc>fc1+e. We shall prove that l^l + l^l is relatively small.

LEMMA 2. We have I*2l«7^fc1+B.
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Proof. We argue quite crudely. We have that

(b,k) = n^h modlc
n^Omodb

50

(b,k) =

=£2k1+e

by (1.4), and this completes the proof of the lemma.

LEMMA 3. We have l^ss^fe1"1"8'2.

Proof. Suppose n is counted in ̂ 3. Then n is divisible by a (unique) prime p from 0>,
and n is divisible also by an element b > k1+e from 58. This cannot happen if (b, p) = 1, for
then n^bp>k1+e. 2fc1+e/2 = 2k2+3e/2, a contradiction. Hence the 6 dividing n is compo-
site and divisible by a p>2fc1+E/2. Writing b = fp, we have \<\<\k1+el2; and given such
an integer /, there is, by (1.1), at most one b eS8 divisible by I. Hence there are at most
\kl+el2 available choices of b. Finally, given such a b, if l=£n=£fc2+e, n = h mod k and
n = 0 mod b with b > k1+e, there is at most one such n. This proves the lemma.

We are now able to complete the proof of the theorem. By (2.5) and Lemmas 2 and 3
we have

e
10

e
"50

if k is large enough. Thus the theorem is proved, in a quantitative form.

3. Some concluding remarks. If we replace condition (1.2) by the more demanding

B(x):=\{be®:b^x}\«xe, (3.1)

where 0 < 0 < 1, we can, with only a little more trouble, replace the exponent 2 + e in the
theorem by 1 + 0 + e. Thus when 38 is the sequence of squares of primes and s&a is the
sequence of squarefree numbers, we obtain the exponent (3/2) + e which is very close to
the best that was known until the recent work of Heath-Brown [3]. While it is unlikely
that one can emulate Heath-Brown's delicate argument in the more general situation, I do
believe that the theorem itself can be improved a little, in the spirit of [1].

The condition (1.1) can be relaxed somewhat in the theorem. For such and other
variations of Szemeredi's theorem see Narlikar and Ramachandra [4].
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