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Abstract. I use a thermodynamic formalism to study the spectrum / ( a ) which
characterises the large fluctuations of pointwise dimension in a Gibbs state supported
on a hyperbolic cookie-cutter. Amongst other things, it is proved that /(a) is the
Hausdorff dimension of the set of points with pointwise dimension a, that/(a) is
real-analytic and that its Legendre transform r(q) is related to the Renyi dimension
Dq of the Gibbs state by the formula (1 - q)Dq = r(q).

1. Introduction
Let v be a measure on an interval / such as an invariant measure of a 1-dimensional
map or the conditional measure on a local 1-dimensional stable or unstable manifold
of an attractor. To each point x in / one can associate a range of local dimensions
a given by

,. . >gy(B. (*) ) .. log v(BAx))
hm inf ^ a s hm sup ,

" 0 log e e^o log e
where Be(x) is the ball of radius e about x. For many x the Hm inf and lim sup will
be equal so that one can talk of a local dimension a(x). Moreover, if the system is
ergodic, a(x) will be independent of x on a set of full I'-measure. Nevertheless, as
x ranges over / there will typically be large fluctuations in the value of a. In this
paper I use a thermodynamic formalism to consider the function f(a) which
characterizes these large fluctuations of the local pointwise dimension a (see figure
1 below). This function was first introduced by Halsey et al. [9] and Parisi et al.
[15]. Using a thermodynamic formalism I will give a precise definition of/ and
prove a number of results for which they only gave heuristic arguments. My proofs
are for a very special class of dynamical systems and invariant measures; namely
hyperbolic cookie-cutters and their Gibbs states. Using the arguments of this paper
it is easy to extend the results to a larger class of hyperbolic systems such as Axiom
A attractors with 1-dimensional stable or unstable manifolds (see Gundlach [8]),
but I have restricted to cookie-cutters in order to get to the heart of the problem
without introducing unnecessary technical details.
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528 D. A. Rand

These problems are all open for non-hyperbolic attractors. Indeed one of the
most interesting questions in this area concerns the existence of phase transitions
in the thermodynamic formalism. I prove here that for cookie-cutters / is analytic,
but Bohr and Rand [2] gave a simple example where it is not and Arneodo et al.
[1], Cvitanovic [5], Grassberger et al. [6] and Gunaratne and Procaccia [7] have
conjectured that for some non-hyperbolic attractors such as the Henon attractor
and certain fractal bifurcation sets / is non-analytic and hence the thermodynamic
formalism has phase transitions. If this is true it would be most interesting and
should have geometrical-dynamical consequences.

The thermodynamic formalism adopted here shows the generality of these ideas.
In [2] a similar approach is used to define an entropy function for characteristic
exponents and to relate it to topological entropy, Hausdorff dimension and escape
rates associated with certain interesting subsets of an attractor. One can also define
a spectrum which measures large fluctuations of the local metric entropy and similar
ideas can be used to define entropy and dimension functions which describe the
large fluctuations of rotation numbers in Birkhoff attractors.

Collet, Lebowitz and Porzio have independently obtained similar results in [4].

2. Definitions and results
2.1. Cookie-cutters
Let / = [0,1] and Io, /, <= / be two disjoint closed subintervals. A cookie-cutter is a
C1+a map g: 70u /,-* R such that (a) \g'\> 1 and (b) g(I0) = / and g(/,) = /. Let

A = {xeI:gJxeI for; = 0,1,2,. . .}

and let h: A-» £ = {0,1}N be defined as follows: h(x) = aoaxa2 • • • where a, e {0,1}
is such that g'xe /„.. Then it is easy to show that h is a homeomorphism from A to
1 (when 2 has the product topology) and

h ° g = g ° s,

where s is the shift: s(aoaia2 • • •) = ai<*2<*3 ' • This symbolic representation will
be useful. I shall denote by An the set {xe I:gJxe I for0< js n) which consists of
2" closed intervals. These intervals are called n-cylinders and the set of n-cylinders
is denoted by <£„. If xe A then Cnx denotes the n-cylinder containing x

2.2. Gibbs states and the Gibbsian hypothesis
The notion of a Gibbs state is needed for what follows. Let <p: I -» R be a Holder
continuous function. The Gibbs state /MV of <p is the unique invariant probability
measure with the following property: there exists a constant P and constants c,, c2 > 0
such that for all C e <€n and all x € C,

where Sn<p(x) = <p(x) + • • • + <p(g"~'x). It is easy to deduce from this that

where Sn<p(C) denotes the maximum value taken by Sn<p(x) on C. P = P(<p) is called
the pressure of <p. The existence and uniqueness of fiv is due to Ruelle and Sinai
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and a proof is given in Bowen [3] for subshifts of finite type. To deduce the result
as stated here one has simply to apply the principle of bounded variation stated in
Lemma 1.

The Gibbsian condition on v. Throughout the paper I fix a measure v which is
invariant under g. Now I introduce an important technical condition on it. I shall
assume throughout that v is the Gibbs state of a Holder continuous function <pv.
This is the case if and only if the v is non-singular in the sense that if v(g(A)) > 0
then v(A) > 0 for all measurable sets A and the Radon-Nikodyn derivative

/(x)=lim v{g{A))/v{A)
AM

is v- almost everywhere equal to a Holder continuous function which is also denoted
by /([16]). Then <pv = -log J + u° g-u for some Holder continuous u. For the rest
of this paper I shall regard v and J as fixed and I shall use <pt and <p2 to denote
the functions -log |g'| and -log / respectively.

2.3. The singularity spectrum
If J is an interval, A (/) denotes the length of /. Let A and L be open intervals and
let Nn(A, L) denote the number of n-cylinders C such that l(C) = n~l log A(C) € L
and a(C) = log v(C)/\og\(C)e A. Let

S(A, L) = lim inf n"1 log Nn(A, L)
«-»oo

and

S(a, /) = inf {S(A,L): a e A, leL}.

Below (see Lemma 2), it is shown that S(a, I) is continuous and concave in each
of its arguments separately, and

S(A, L) = sup {S(a, I): a e A, I e L}.

Define

and

/ ( a ) = sup f{a,l).
i

Then I call / ( a ) the singularity spectrum. Very roughly speaking, if 98 is a typical
cover of A by non-overlapping intervals of length e then the number of B e $) with
a(B) = log v(B)/log ee[a,a + da] grows as e -*• 0 as e~/(af) or, in terms of cylinders,
the number of n-cylinders C such that v(C) = \(C)a grows, as n-»oo, like e~/(a)

where e = e"' and / = /(«) is the value of / for which the supremum of/(a, /) is
attained i.e. describes the dominant length scale.

2.4. Results
Define 2)(a) = {xeA: a(Cnx)-* a as n-*oo} where Cnx denotes the n-cylinder con-
taining x
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THEOREM 1. The Hausdorff dimension of 2(a) isf(a).

Here I adopt the convention that the Hausdorff dimension of the empty set is -oo
since f(a) = -oo if there is no point x with local pointwise dimension a.

Throughout the paper I denote - log \g'\ by <plf - l o g J by <p2 and r<p1 + q<p2 by
<pq>T where q, T € R. We will see that the pressure P(q, T) = P{<pq,T) of the function
(P9>T is the growth rate of the sums 2,n(q, T) = Z C e « n

 v(C)qX.(C)T. It is a concave real
analytic function of q and T. It follows (see below) that there is a real analytic
function function r(q) such that P(q, r(q)) = 0.

THEOREM 2. The singularity spectrum f is real analytic and T is the Legendre transform
of f i.e. f= qa + T where q =f\a) and a = — r'(q).

COROLLARY. The maximum value offis T(0) which is the Hausdorff dimension of A.
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FIGURE 1. (a) A numerically computed approximation of the measure of maximal entropy for the
cookie-cutter denned on the interval [-a, a], a = (1 +vTT)/2, by the map x-» 1 -2.5x2.
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FIGURE 1. (b) A numerical approximation of o- for this measure. Note that the Hausdorff dimension
and information dimension are respectively 0.779 ±0.001 and 0.756 ±0.001. More accuracy can easily be

obtained with more computing time.

Now I introduce the Renyi dimensions Dq of a subset A of /. Let 38 be a cover
of A by intervals B of length 8. Such a cover is called a 8- cover. If q # 1 define

, / \ /
DJ$) = (l-q) I log £ v(B)")/\ogS .

\ Bern II

For q = 1 define

£>,(&)= I v(B)\ogp(B))/\og8-1.
\Bem II

Then D,(38) is continuous at q = \ if ^(A) = l. If q<l let D,(A, 8) denote
infm Dq(S&) where the infimum is taken over all 5-covers and let £>,(A) denote
liminf«_0 Dq(&, 8). Otherwise let D,(A, 8) = supmDq(i%) where the supremum is
over all 5-covers and D,(A) = lim supg-,0 Dq(A, 8).
THEOREM 3. ( 1 - q)Dq(A) = r(q).
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(c)

FIGURE 1. (c) A numerical approximation of T for this measure.

Of particular interest is the information dimenson ID(v) = Dt(A) of v.

COROLLARY. The information dimension ID(v) of v is f(a) where a is such that
/'(«) = !•
Proof. Using Theorem 3, r\q) = Dq + {q-l) dDJdq. Consequently, ID{v) =
Wmq^i Dq = T'(1). But, by Theorem 3, T(1) = 0 SO, by Theorem l , / (a( l ) ) = a(l) =

. a

1 lim n"1 log £ v(C)q.
n>oo

The Renyi entropies are given by

hq = hq{v) = (1 -

As for the usual definitions of metric and topological entropy, a definition can be
given in terms of arbitrary partitions, but it is a relatively simple exercise to show
that, for cookie-cutters this boils down to the above. It is clear that h0 is the
topological entropy and that lim,Ni hq is the metric entropy of v. The following
theorem follows from a proof similar to that for Theorem 3.

THEOREM 4. (1 -q)hq = r(q)x(q) where x(q) is the characteristic exponent
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~i <PiW d(i(x) of the measure /j. = fiqMq) which is the Gibbs state of the function
<P = T{q)<pi + q<p2- Consequently, hq/Dq = \{q)-

Also, in Proposition 1 it is shown that r(q) can be defined via a construction
resembling and generalizing the definition of Hausdorff dimension so as to take the
measure v into account.

3. Principle of bounded variation, the constants for <pt and <p2 and the concavity of S
The principle of bounded variation will play a crucial role in many arguments in
the rest of the paper. In fact when this fails one gets some physically interesting
deviations from our results for cookie-cutters (see [2] for an example).

LEMMA 1. (Principle of bounded variation.) Suppose <p:I-*U is Holder continuous.
Then there exists d>0 such that ifCe'$n andx,yeC then \Sn<p(x)-Sn(p(y)\<d.

Proof. Since the length of the cylinders is exponentially decreasing with n, the
variation of <p on an n- cylinder decreases exponentially i.e. there exists 0< /3<l
and c>0 such that for all n >0 if Ce <£„ then \<p(x)-(p(y)\ < c/3" for all x, y e C.
Moreover, if x and y lie in a common n-cylinder then gmx and gmy lie in a common
(n — m)-cylinder. Hence,

i=0 1=0

whence the variation of Sn<p on an n-cylinder C is bounded independently of n
and C by d = c(l-)3)"1. •

Notation. Throughout the paper I denote by D a common bound d for the functions
<px = -log \g'\ and <p2 = -log / i.e. if x and y lie in a common /i-cylinder then, for
i = l,2,

)Sn(Pi(x)-Sn<Pi(y)\<D. (I)

LEMMA 2. S'if c0/z///?u<?us axd'ca/tver //? eacfi argume/?/' separa/e/}'.
Proof. If A and L are two open intervals let Nn(A, L) denote the number of
n-cylinders C such that for <px = -log|g'| and <p2 = -log/, n'1 Sn<f>i(x) e L and
Sn(p2(x)/Sn(pl(x) € A for all xeC. Then an = log Nn(A, L) is a subadditive sequence
so that limbec ajn exists and equals supn ajn. Let this limit be denoted by S(A, L)
and let S(a, I) = inf {S(A, L): a e A and / e l } . Now it follows from (1) that if A'
and L' denote respectively the (D/n)-neighbourhoods of A and L then

Nn(A, L) s Nn(A, L) < Nn(A', L).
It follows immediately that S(a, 1) = S{a, I). Now one can directly apply the argu-
ments of Lanford [10] to prove that 5 is convex in each argument separately and
is continuous. •

4. Fundamental lemma
Let fi = fiqT be the Gibbs state of

<P = <Pq,r = ?<Pi + q<Pi =-(T log \g'\ + q log J)

and let P = P(q, T) be the pressure of (p. Then P(q, T) is convex and since (p} =
-log \g'\ and <f>2 — ~log / are Holder continuous, P(q, T) is also real-analytic ([17]).
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Moreover,

/ = l(q, T) = dP/dr(q, r) = ^ . r H o g |g'|)

is the ^i,>T-mean decay rate of the cylinder length i.e. for all e > 0, the //.,,,.-measure
of the n-cylinders with length in the interval e"</±1!) tends to 1 as n-*oo. Similarly,
if

p = p(q, T) = dP/dq(q, r) = M,,r("log J)
for all e>0 , the /A,T-measure of the n-cylinders with probability in the interval
e"</>±e) tends to 1 as n-»oo. Let a(q, r)=p(q, r)/l(q, r).

Since dP/dT(q, T ) < 0 it follows from the Implicit Function Theorem that there
exists a real analytic function r(q) such that P(q, r(q)) = 0. Now, if a(q) denotes
a(q, r(q)), then

T'(q) = -(dP/dq)/{dP/dr) = -a(q).

Let R, (resp. Rp) denote the set of limit points of the sequences n~*Sn<pi(x)
(resp. n~1Sn<p2(x)) where x ranges over A and let Ra denote the set of limit points
of the sequences Sn(p2(x)/Sn<pl(x) where x ranges over A. Then at the end of this
section I prove that Ra, Rp and R, are (possibly trivial) closed intervals.

If Ra is a singleton then/(a) is clearly trivial and r'(q) = a(q) = a0 is independent
of q. Thus r(q) = aoq + h for some constant h. In fact, below I will show that T(0)
and hence h is the Hausdorff dimension of A. Consequently, it is henceforth assumed
that Ra is a non-trivial interval.

If Rt is a singleton then <p, = —log |g-'| is of the form l+u-u°g where u is a
Holder continuous function and / is a constant ([3, Theorem 1.28 and Proposition
4.5]). Consequently, I henceforth assume that R, is a non-trivial interval. It follows
from this that P(q, r) is a strictly convex function in the argument T i.e.
d2P/d2T(q, T ) > 0 ([17]). But

T"(q) = ((dP/dr) • (d2P/dq2)-(dP/dq)2 • (d2P/dr2))/(dP/dT)3

with each of the functions in the righthand side evaluated at (q, T(q)). Therefore,
r"(q)>0 because dP/dr<0, dP/dq<0, d2P/dq2>0 and d2P/dr2>0. Thus r(q) is
strictly convex.

Now consider the function a :R-» Ra given above by a(q) = -r'{q).

LEMMA 3. a(q) is invertible on int Ra and its inverse q(a) is real analytic.

Proof. Let a e int Ra. Consider the sum

(Recall that Sni/^(C) denotes maxxeCSn(/>(x).) Then by the principle of bounded
variation and the definition of D (see (1)), if K = (\q\ + \r\)D, for any choice of
xc e C, this sum is not less than

X exp(Sn<p,jT(xc)-/<)=

= I exp((TSn<p,(xc)
Ce«,

+ q(Sn<p2(xc)/Sn<pl(xc)))Sn<pl(xc)-K). (2)
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If a'6 Ra there exists x e A and a sequence nt -> oo such that Sn.<p2{x)/ Sn.(pi(x)^> a'
as i-»oo.

Firstly consider the case q > 0. Choose a' = a — 2e e /?a, where e > 0. Each term
in the sum (2) can be written as

exp ((T + aq + q(Sn<p2(xc)/Sn<pi(xc) - a))Sn<p1(xc) - K).

If x = xc and M = «,, then for large i, Sn<p2{x)/ Sn<px(x) — a<—e and, since Sn(p,(xc) <
0, the corresponding term in the sum is not less than

exp ((r+aq - qe)Sn<px(xc)) > exp ((r+aq - qe)nl),

where / = inf{<p,(x):xeA} if r + aq-qe>0 and I = sup{<p1(x):x€A} otherwise.
Thus P(g, T)>(T+aq + qre)/. But P(q, T) = 0 if T=r(q). Consequently, if r = r{q),
since / < 0, r + aq — eq s 0 or T + aq > eq. This implies that T + aq -» oo as g -» oo. If
q<0 then a similar argument with a' = a+2e proves that T+aq->oo as q->— oo.
Thus r + ag has a minimum at q{a) say and (T+aq)'(?(a)) = 0 or r'{q(a)) = a.
But since T is strictly convex then so is r+aq and this minimum is unique. This
proves the existence of the function q(a). It is real-analytic by the inverse function
theorem because T'(q(a)) = a and r"(q)>0. •

Now fix g e R and consider the map/,: IR-»R, given by lq(r) = l{q, r) = dP/dr{q, T).

LEMMA 4. /, is invertible on int /?, and its inverse rq(l) is real-analytic.

Proof. Let /eint /? , . Let <pqT = (pqT-h= T(pl + q<p2 where <pi = <pi-l. Let P{q,r) =
P(<Pq,r) be the pressure of <p9iT. Then P(q,<p) = P(q,T)-h. Thus solving /,(T) =
dP/dr{q, T) = / is equivalent to solving dP/dr(q, T) = 0.

If I'eR, there exists xeA and a sequence n,-»oo such that nflSn.<pi(x)-*l' as
F-»OO. But then if ye Cn. x, the « r cylinder containing x, \nJxSnitp\(x) — n~1Sn.(pl(y)\ <
D/n, by (1). Thus «r'Sn/«Pi(Cn,,x)-*/' as J^OO. (Recall Sn<p(C) = ma\x£CSn<p(x).)
Consequently, n7xSnpx{Cni,x)-*l'-l.

Fix e>0sothat \_l-2e, / + 2e]c R,. Then taking /' = l + 2e, there exists a sequence
n,-»oo such that for each i>0 there is a nrcylinder C, such that «r15n(^i(C,)> e.
Now consider the sum

Cs«n Ce«,,

If T < 0 and « = nt one of the terms in this sum is exp (TSn.«p,(C,)) • exp (qSn.<p2(Cj))
which is greater than exp (mje) • exp (<jSn.<p2(C,)). Thus P(qf, T) > re + c where c =
q • min (q>2) if q 2 0 and c = q • max (<p2) if q < 0. If T < 0 then using a sequence C,
so that «rlSn|^i(Cj)<—e, one proves in a similar fashion that P(q, T)>\T\E + C.

Thus in any case, P(q, T)-»OO as |T|-»OO. AS has already been noted, since /?, is a
nontrivial closed interval, P(q, T) is a strictly convex function of T. Therefore since
P(q,T)~*°° as |T|-»OO it has a unique minimum, say at T0. Consequently,
dP/driq, T0) = 0 as required and we set rq(/) = T0.

Since iq(r) = d2P/d2T(q, T ) > 0 it follows immediately from the Inverse Function
Theorem that the inverse function T9(/) is a real-analytic. •

FUNDAMENTAL LEMMA. f(a) = r(q) + aq whereq- q(a) andl(a) = lq(a)(r(q(a))) =
l(q(a), T(q(a))) is the unique value of I at which the supremum off (a, /) is achieved.
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Proof. Given a and / let A (resp. L) be a small interval containing a (resp. /). Let
q = q(a) and T = T,(/). Then if C is an n-cylinder such that l(C)eL and a(C)eA,
for some xe C,

c [e~2d
Cl, e

2dc2] exp [M(-

where d = (|^| + |T|)D. Consequently, if Cn(A, L) denotes the union of such n-
cylinders,

fiq,T(Cn(A, L)) e [e-2d
Cl, c

2dc2]Nn(A, L) exp [n(-P(q, T) + TL+ qAL)].

But by the choice of q and T, /u.,T(Cn(/l, L))-> 1 as /i-»oo so

5(/4, Z; e P(g, r) - qAL - TL.

Taking the limits A \ a and L \ / it follows that

But then df/dl = l~2P(q, T) SO the maximum value is achieved when P(q, T) = 0 and
then/(a) = qa + r which is the first part of the required result. Moreover, P{q, T) = 0
when T=r(q) so that the maximum occurs when /=/,(T(<J)). This is the second
part of the result as q = q(a). •

Proof of Theorem 2. By the Fundamental Lemma, f(a) = r(q) + aq where q = q{a).
But, q = q(a) implies that a = a(q) = -r'(q) and, moreover,

since a = —r'(q). Thus / is the Legendre transform of T. Since r{q) and q(a) are
real-analytic then so is / •

Proof of Corollary to Theorem 2. One immediate consequence of the relation/(a) =
r(q) + aq is that the maximum value of/(a) is the Hausdorff dimension of A. This
is the case because at the maximum, q = / ' = 0. Thus for this value of a, P(0, T(0)) = 0
i.e. the pressure of —d log \g'\ is zero when d = T(0). By standard arguments (e.g.
[14]; see also [2] § 7) this means that d = T(0) =/(a(0)) is the Hausdorff dimension.
This will also be proved via a direct argument below. •

Proof that Ra and R, are intervals. This is quite general and follows from the fact
that <px = -log \g'\ and tp2 = -log / are Holder continuous and that <pt is bounded
away from zero, say 0 < S < lipj. In particular, <pt and <p2 are bounded, say \<pi\, \(p2\ < c.

To prove the result for Ra, firstly note that if Bnti(x) = n~lSH<p,(x) then the set
L(x) of limit points of the sequence sn(x) = Bna(x)/Bnl(x) is either a single point
or a closed interval [/, r] with, of course, / = lim inf sn and r = lim sup sn. To see this
cover [/, r] by intervals of length e and choose n > 2c2/eS such that sn lies in the
leftmost interval. Then a simple calculation shows that |sn+, -sn\< re/2 for all i>0,
so every interval of the cover contains a point of the sequence s,-. Consequently,
the sequence is dense in [/, r] which proves that [/, r] is the set of limit points.

I must now prove that Ra = (J {L(x): x € A} is an interval. To see this suppose
that x<y are in A, aeL(x) and beL(y). Fix e > 0 small. By the principle of
bounded variation (1), if x, y e C e <€„ then |Sn<p,(jc) - Sn<pt(y)\ < D for i = 1,2. Then,
using the fact that the variation of BnjJ on Cn(0 is bounded by D/nt, one easily
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sees that there exist a sequence n, -* oo and n.-cylinders Cn. such that for all reCn.,
\sn.(t)-a\<e. Similarly there exists another sequence so that \sn.(t) — b\<e. Thus
there exists a sequence nj-»oo such tht «,/«,+,-»0 and such that for each i there is
a (n1+1-n,)-cylinder C, such that for i odd,

\sni+l-ni(t)-a\<e f o r a l l teQ

and for all even i,

\sn^n,(t)-b\<e for all teQ.

Also, since the image of any n-cylinder under g" contains /, there exists xeA such
that g"'x € C, for all i > 0. Now, since \<p\<c, it is clear that

Consequently, since g"<x e C,, for large i, the sequence 5n.(x) oscillates between the
intervals \_a-2e, a + 2e] and [b-2e, b + 2e]. Thus L(x) contains [a, 6] since L(x)
is an interval. This proves that Ra is an interval.

This same argument, but taking <px = 1 and <p2 = -log |g'| also proves that R, is
an interval. •

5. The meaning of the function r(q)
Since P{q, r(q)) = 0, there are constants cx, c2>0 such that

1 = I M,,r(,)(C) 6 [c,, c2] I exp (SMC)),

where<P = «P,,T(,) = - ( T ( 9 ) log|g'| + g log/),5n^>(C)isthesupremumof (p(x)+- • • +
<p{g"~lx) over the n-cylinder C and the sum is over the set of n-cylinders <#„. This
used the Gibbs state property of fiqT. But, using the principle of bounded variation,
if d = (\q\ + \r\)D where D is given by (1) then

exp SMC) e [e-d, e<XC)«A(C)T(".

Thus there exists constants d,, d2 > 0 such that

I eld,, d2]j: v(C)qX(C)Ti"\

Proposition 1 follows from this.

PROPOSITION 1. r(q) is defined by the following property: as n-*oo,

„ 0 (q)
From this one sees that it corresponds precisely to the corresponding function

introduced by Halsey et al. [9]. There the definition is given in terms of arbitrary
covers of bounded diameter and not just in terms of cylinders, but you will see
from the arguments of the next section that this makes no difference.

I now prove that the Hausdorff dimension of the set 2(a) of points with exponent
a is / (a) (see §2.4).

Proof of Theorem 1. In this proof and what follows I denote by 9Cd
6(E) the quantity

infa Zoe* X(B)g where the infimum is over all covers 38 of E by intervals B with
A(B)<5. Let S€d(E) denote lim^0 ^ ( £ ) = sups>0 3ff2(£). Then the Hausdorff
dimension HD(E) of E is given by inf{d:
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Let fjLq = fiqMq). Since fiq(L(a)) = l if a = a(q), then it follows from Manning
[13] or Young [18] that

HD(Z(a)) a *(/*,)/*(**,),
where h(fi.q) are x(pq) respectively the metric entropy and characteristic exponent
associated with fiq. But by the variational principle [3],

• J < "*(/*,) = P{q, r{q)) + J (-r(q) log |g'| - <? log J)dfiq.

Thus, since P(q, r(q)) = 0, /i(/t,) = r(q)x(.fiq) + q<*x(f*-q)', from which it follows that

Now I prove the reverse inequality. Let A be an open interval containing a = a(q)
and An = {xeA:a(Cm,x) = log»'(Cm,x)/logA(Cm,x)e>i for all m>n}. Let <€m(A)
denote the set of those Cec€m such that a(C) = log v(C)/log A(C) e A Then there
exists di, d2>0 and independent of n and C such that

[d,,d2] I ACO^KO'c ld , ,^ ] X A(Cr(")+A".

But the lefthand side converges to 1 as «->oo and ^m(A) is a cover of An for all
m > n. Thus choosing m so large that each cylinder in ^m(A) has length less than
8 one sees that if d > r{q) + Aq then ffld(An) = 0. Hence, since 9€d defines an outer
measure %d({Jn>0An) = Q. But S ( a ) c | J n > 0 An so 2ifd(S(a)) = 0. Letting A \ a
one deduces that if d > r(q) + aq then 5ifd(2(a)) = 0 i.e. HD{1{a)) < r(q) + aq. U

6. 77ie /?e«>»i dimensions
Recall the definition of the Renyi dimensions and the statement of Theorem 3 from
§2.4.

Proof of Theorem 3. If q e R is fixed, for e > 0 and JV> 0 let

AN(fi) = {xeA:A(Cv)eexp[n(/±e)]
and

^(Cn,x)Gexp[n(p±e)] for all n > N},

where l = l(q)=dP/dT(q,r(q)) and p = p(q) = dP/dq(q,T(q)). For N sufficiently
large fiq(AN(e))> 1 - e . Then, if "t?n(e) denotes the set of n-cylinders C such that
X(C)een(l±e:i andn>N,

for some dt, d2 > 0 independent of w and C. This uses the Gibbs state property and
the principle of bounded variation. But, since A(C)Ge"(/±e), this implies that there
exist c,, c2 > 0 such that

e n M " I *(C)«e[cIexp(-nT(g)e),c2exp(nT(g)e)]. (3)

This inequality will be used several times in the proof. Also assume henceforth that

Firstly, I consider the case q^O, q^l and show that (1 -q)Dq(A)ar(q). (The
result for q = 1 follows by continuity.) If B is an open interval let n = n{B) be the
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smallest non-negative integer such that B contains a cylinder in ^n(e). If
Bn AN(e)^0 then n(B)<oo. Now, by the definition of n(B), B can meet at most
two elements of <€niB)-i(e). Let B, and B'2 denote the intersection of these with B,
with B, containing an element of ^n(fl)(e) and with B'2 = 0 if B only meets one
element of *n(B)-i(e). If B'2 does not intersect AN(e) then set B'2 = 0. If B'2#0
then B2 only meets one element C of ^n(e) with n = n(B2)-l. Let B2 = B'2nC.
Then 2f (B)« s „(£,)* + v(B2)

q.
If 38 is a S-cover of AN(e) let 38' denote the set of intervals of the form B, and

B2 where B ranges over 33. Then 58' is a cover of AN(e) with diameter <5. Moreover,
if Be 38' then since B contains an element of ^n(B)(e), j/(B)>eB(B)(j>~e) and since
£ is contained in an element of ^ ( B J - I U ) , A(B) < exp [(n(B) -1)(/+ e)] or n(B) <
l+logA(B)/(/+e). Thus

2 X i>(B)« > I J'(B)' > I (

= c8~T(q)

where d = r(q) + q(p-e)/(l+e) and c = e<p"E)«. This used the fact that
for ? < 1 . If <j> 1, T(qr)<0 and the last two inequalities are replaced by

where d = q(p-e)/(l+ e). Thus,

(log I ?(B)«)/(log «-') s log (2c-')/log 5 + T( 9 ) + (log ^(AJV(e)))/(log 5).

This proves that

But, it follows exactly as in the proof of Theorem 3 that the Hausdorff dimension
of Ajv(e) is / (a ) . Thus, since in both cases d>f(a), Wt(AN(e))^0 as S-»0 and
one deduces that

(l-q)Dq(A(e))>T(q).

Since A(e)cA, this implies that (l-q)Dq > T ( ? ) as required. Now I prove the
reverse inequality for the case q > 0.

Each C e ^ ( e ) can be covered by < N = e2"* intervals B of length en('"e). Let 38
denote such a cover. Then

But by (3) the left-hand side is <c2e""T<?) ( '"e ) for n sufficiently large. Thus

(1 -q)Dq{AN{e), en('-e))< - ( logI v(B)^/nl

< (-«/)"' log ATc2 + T(«)(1 - el'1).
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Thus (l-q)Dq(A'e)<T(q)(l-erl) where A^ = U n a 0 An(e). Since A, is dense in
A, it follows that

for all e > 0 sufficiently small, whence (1 - q)Dq(A) < r{q). This completes the case

Finally, I consider the case q<0. Let 38 be a e""~E)-cover of AN(e). Then for
each C e <£n(e), I J>(B) < »/(C) where the sum is over all B e 98 which meet C. Thus,
since g<0, X v{B)q > v{C)q and summing over all C it follows that

2>(B)«&2 I v{C)q

since each B can meet at most two Cs. It follows that (1 — q)Dq{A)^
(1 -q)Dq(An(e))> r(q). Finally, for the reverse inequality, take for 58 any cover
whose intervals B are in one-to-one correspondence with the cylinders C in <£„ and
contain the corresponding cylinder. Then £« v(C)q>Y.m v(B)q and as above one
deduces that r{q) > (1 - ^)D,(A). •
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