A PROPERTY OF COMPLETELY MONOTONIC FUNCTIONS

COLM O'CINNEIDE

(Received 13 March 1985)

Communicated by T. C. Brown

Abstract

A non-negative function $f(t), t>0$, is said to be completely monotonic if its derivatives satisfy $(-1)^{n} f^{(n)}(t) \geqslant 0$ for all t and $n=1,2, \ldots$. For such a function, either $f(t+\delta) / f(t)$ is strictly increasing in t for each $\delta>0$, or $f(t)=c e^{-d t}$ for some constants c and d, and for all t. An application of this result is given.

1980 Mathematics subject classification (Amer. Math. Soc.): 44 A 10.

The motivation for this note is the following result which arose in connection with work on stability of numerical methods for singular integral equations; see [1].

Proposition A. For $t>0, \delta>0, h>0, n=0,1, \ldots, p<n$ and $p \neq$ $0,1, \ldots, n-1$, the function

$$
G(t)=\frac{\Delta_{h}^{n}(t+\delta)^{p}}{\Delta_{h}^{n} t^{p}}
$$

is strictly increasing in t.
Here, $\Delta_{h}^{0} f(t)=f(t)$ and $\Delta_{h}^{n+1} f(t)=\Delta_{h}^{n} f(t+h)-\Delta_{h}^{n} f(t)$ for $n=1,2, \ldots$ To simplify statements below, we suppose throughout this note that the variables appearing in Proposition A always satisfy the constraints given there. The operator Δ_{h}^{n} will always act on functions of the variable t. To prove Proposition A we first show that $g(t+\delta) / g(t)$ is non-decreasing in t for a completely monotonic function g (a further condition gives 'strictly increasing'), which is the

[^0]content of D. We then show that the function $(-1)^{n} \Delta_{h}^{n} t^{p}$ is completely monotonic, and Proposition A is a simple consequence.

The idea of stochastic ordering of probability measures underlies the proof of Proposition B (see [3]).

Proposition B. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be Borel measurable and let $\mu \not \equiv 0$ be a positive Borel measure on $[0, \infty)$ for which the function

$$
h(t)=\frac{\int_{[0, \infty)} e^{-x t} g(x) d \mu(x)}{\int_{[0, \infty)} e^{-x t} d \mu(x)}
$$

is well defined for all $t>0$. Then h is non-decreasing (non-increasing) whenever g is non-increasing (non-decreasing). Furthermore, strict monotonicity of h follows if we also assume that g is not μ-a.e. constant (i.e. $\mu(\{x \mid g(x) \neq c\}) \neq 0$ for all $c \in R)$.

Note. All integrals here are Lebesgue integrals.
Proof. For each $t>0$ define a probability measure ν_{t} by

$$
\nu_{t}(E)=\frac{\int_{E} e^{-x t} d \mu(x)}{\int_{[0, \infty)} e^{-x t} d \mu(x)}, \quad E \subset[0, \infty)
$$

It is clear that for each $y \geqslant 0$, either $\nu_{t}([y, \infty))=1$ for all t or that $\nu_{t}([y, \infty))<1$ for all t. In the latter case we have

$$
\frac{\nu_{t}([y, \infty))}{1-\nu_{t}([y, \infty))}=\frac{\int_{[y, \infty)} e^{(y-x) t} d \mu(x)}{\int_{[0, y)} e^{(y-x) t} d \mu(x)}
$$

The numerator of this quotient is non-increasing in t since $y-x \leqslant 0$ on the range of integration, while the denominator is strictly increasing since $y-x>0$ on the range of integration. We conclude that $\nu_{t}([y, \infty))$ is either identically 0 , identically 1 , or strictly decreasing in t, for each y. The same may be said of $\nu_{i}((y, \infty))$ by a similar argument.

Let us suppose now that g is non-negative and non-decreasing. Then

$$
\begin{equation*}
h(t)=\int_{[0, \infty)} g(x) d \nu_{t}(x)=\int_{0}^{\infty} \nu_{t}(\{x \mid g(x)>a\}) d a \tag{1}
\end{equation*}
$$

Since the integrand of the latter is either of the form $\nu_{t}((y, \infty))$ or of the form $v_{t}([y, \infty))$, it is non-increasing in t, and so $h(t)$ is non-increasing.

Now suppose further that g is not μ-a.e. constant. Then for some $a_{0} \geqslant 0$, we have $0<\nu_{t}\left(\left\{x \mid g(x)>a_{0}\right\}\right)<1$. Since $\nu_{t}\left(\left\{x \left\lvert\, g(x)>a_{0}+\frac{1}{n}\right.\right\}\right) \rightarrow \nu_{t}(\{x \mid g(x)>$ $\left.\left.a_{0}\right\}\right)$ as $n \rightarrow \infty$, we see that for some $\varepsilon>0,0<\nu_{t}(\{x \mid g(x)>a\})<1$ for $a_{0} \leqslant a \leqslant a_{0}+\varepsilon$. Thus on this interval the integrand of (1) is strictly decreasing.

For other values of a it is non-increasing, and we conclude that $h(t)$ is strictly decreasing.

To complete the proof, a similar argument gives the corresponding result for g non-negative and non-increasing. The general case follows by taking the positive and negative parts of g separately.

A theorem of Bernstein, discussed in [2], states that a function $f(t)$ is completely monotonic if and only if it has the representation

$$
\begin{equation*}
f(t)=\int_{[0, \infty)} e^{-x t} d \mu(x) \tag{2}
\end{equation*}
$$

for some positive Borel measure μ on $[0, \infty)$. This fact will be used in no essential way, but it allows us to simplify many statements below. The following result is obvious, with $f(t)$ as in (2).

Proposition C. $(-1)^{n} \Delta_{h}^{n} f(t)=\int_{[0, \infty)} e^{-x t}\left(1-e^{-x h}\right)^{n} d \mu(x)$.

It follows that $(-1)^{n} \Delta_{h}^{n} f(t)$ is completely monotonic if $f(t)$ is.

Proposition D. If $f(t)$ is completely monotonic, then either $f(t)=c e^{-d t}$ for some $c \geqslant 0, d \geqslant 0$, or $f(t+\delta) / f(t)$ is strictly increasing in t.

Proof. Let μ be the measure that represents f in the sense of (2). Then we have

$$
\frac{f(t+\delta)}{f(t)}=\frac{\int_{[0, \infty)} e^{-x t} e^{-\delta x} d \mu(x)}{\int_{[0, \infty)} e^{-x t} d \mu(x)}
$$

and the result follows from Proposition B with $g(x)=e^{-\delta x}$, upon noting that $g(x)$ is μ-a.e. constant if and only if μ is a point mass.

Proposition A now follows from Proposition D and

Proposition E. The function $(-1)^{n} \Delta_{h}^{n} t^{p}$ is completely monotonic.

Proof. It is elementary that

$$
\int_{0}^{\infty} e^{-x t} x^{-z-1} d x=\Gamma(-z) t^{z}
$$

so that by Proposition C, we have

$$
\begin{equation*}
(-1)^{n} \Delta_{h}^{n} t^{z}=\frac{1}{\Gamma(-z)} \int_{0}^{\infty} e^{-x t}\left(1-e^{-x h}\right)^{n} x^{-z-1} d x \tag{3}
\end{equation*}
$$

whenever $z<0$. The left hand side of (3) defines an entire function of z, while the right hand side defines an analytic function of z in the domain $\operatorname{Re}(z)<n$, $z \neq 0,1, \ldots, n-1$. Thus the two sides agree in the latter domain. Replacing z by p in (3) and using Bernstein's theorem gives the result.

Acknowledgement

The author thanks \mathbf{Z}. Jackiewicz for his careful reading of the manuscript and for his many helpful remarks.

References

[1] V. L. Bakke and Z. Jackiewicz, 'Stability analysis of product $\boldsymbol{\theta}$-methods, for Abel integral equations of the second kind', Numer. Math. 48 (1986), 127-136.
[2] R. R. Phelps, Lectures on Choquet's Theorem (Van Nostrand Math. Studies, No. 7, Van Nostrand, New York, 1965).
[3] S. M. Ross, Stochastic Processes (John Wiley \& Sons, New York, 1983).

Statistics Division
Department of Mathematical Sciences
University of Arkansas
Fayetteville, Arkansas 72701
U.S.A.

[^0]: © 1987 Australian Mathematical Society 0263-6115/87\$A2.00 +0.00

