J. Austral. Math. Soc. (Series A) 42 (1987), 143-146

A PROPERTY OF COMPLETELY MONOTONIC FUNCTIONS

COLM O'CINNEIDE

(Received 13 March 1985)

Communicated by T. C. Brown

Abstract

A non-negative function f(t), t > 0, is said to be *completely monotonic* if its derivatives satisfy $(-1)^n f^{(n)}(t) \ge 0$ for all t and n = 1, 2, ... For such a function, either $f(t + \delta)/f(t)$ is strictly increasing in t for each $\delta > 0$, or $f(t) = ce^{-dt}$ for some constants c and d, and for all t. An application of this result is given.

1980 Mathematics subject classification (Amer. Math. Soc.): 44 A 10.

The motivation for this note is the following result which arose in connection with work on stability of numerical methods for singular integral equations; see [1].

PROPOSITION A. For t > 0, $\delta > 0$, h > 0, n = 0, 1, ..., p < n and $p \neq 0, 1, ..., n - 1$, the function

$$G(t) = \frac{\Delta_h^n (t+\delta)^p}{\Delta_h^n t^p}$$

is strictly increasing in t.

Here, $\Delta_h^0 f(t) = f(t)$ and $\Delta_h^{n+1} f(t) = \Delta_h^n f(t + h) - \Delta_h^n f(t)$ for n = 1, 2, ... To simplify statements below, we suppose throughout this note that the variables appearing in Proposition A always satisfy the constraints given there. The operator Δ_h^n will always act on functions of the variable t. To prove Proposition A we first show that $g(t + \delta)/g(t)$ is non-decreasing in t for a completely monotonic function g (a further condition gives 'strictly increasing'), which is the

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

Colm O'Cinneide

content of D. We then show that the function $(-1)^n \Delta_h^n t^p$ is completely monotonic, and Proposition A is a simple consequence.

The idea of stochastic ordering of probability measures underlies the proof of Proposition B (see [3]).

PROPOSITION B. Let $g: [0, \infty) \to \mathbb{R}$ be Borel measurable and let $\mu \neq 0$ be a positive Borel measure on $[0, \infty)$ for which the function

$$h(t) = \frac{\int_{[0,\infty)} e^{-xt}g(x) d\mu(x)}{\int_{[0,\infty)} e^{-xt} d\mu(x)}$$

is well defined for all t > 0. Then h is non-decreasing (non-increasing) whenever g is non-increasing (non-decreasing). Furthermore, strict monotonicity of h follows if we also assume that g is not μ -a.e. constant (i.e. $\mu(\{x | g(x) \neq c\}) \neq 0$ for all $c \in R$).

NOTE. All integrals here are Lebesgue integrals.

PROOF. For each t > 0 define a probability measure v_t by

$$\nu_t(E) = \frac{\int_E e^{-xt} d\mu(x)}{\int_{\{0,\infty\}} e^{-xt} d\mu(x)}, \qquad E \subset [0,\infty).$$

It is clear that for each $y \ge 0$, either $\nu_t([y, \infty)) = 1$ for all t or that $\nu_t([y, \infty)) < 1$ for all t. In the latter case we have

$$\frac{\nu_t([y,\infty))}{1-\nu_t([y,\infty))}=\frac{\int_{[y,\infty)}e^{(y-x)t}d\mu(x)}{\int_{[0,y)}e^{(y-x)t}d\mu(x)}.$$

The numerator of this quotient is non-increasing in t since $y - x \le 0$ on the range of integration, while the denominator is strictly increasing since y - x > 0 on the range of integration. We conclude that $\nu_t([y, \infty))$ is either identically 0, identically 1, or strictly decreasing in t, for each y. The same may be said of $\nu_t((y, \infty))$ by a similar argument.

Let us suppose now that g is non-negative and non-decreasing. Then

(1)
$$h(t) = \int_{[0,\infty)} g(x) d\nu_t(x) = \int_0^\infty \nu_t(\{x \mid g(x) > a\}) da.$$

Since the integrand of the latter is either of the form $\nu_t((y, \infty))$ or of the form $\nu_t((y, \infty))$, it is non-increasing in t, and so h(t) is non-increasing.

Now suppose further that g is not μ -a.e. constant. Then for some $a_0 \ge 0$, we have $0 < \nu_t(\{x \mid g(x) > a_0\}) < 1$. Since $\nu_t(\{x \mid g(x) > a_0 + \frac{1}{n}\}) \rightarrow \nu_t(\{x \mid g(x) > a_0\})$ as $n \rightarrow \infty$, we see that for some $\varepsilon > 0$, $0 < \nu_t(\{x \mid g(x) > a\}) < 1$ for $a_0 \le a \le a_0 + \varepsilon$. Thus on this interval the integrand of (1) is strictly decreasing.

145

For other values of a it is non-increasing, and we conclude that h(t) is strictly decreasing.

To complete the proof, a similar argument gives the corresponding result for g non-negative and non-increasing. The general case follows by taking the positive and negative parts of g separately.

A theorem of Bernstein, discussed in [2], states that a function f(t) is completely monotonic if and only if it has the representation

(2)
$$f(t) = \int_{[0,\infty)} e^{-xt} d\mu(x)$$

for some positive Borel measure μ on $[0, \infty)$. This fact will be used in no essential way, but it allows us to simplify many statements below. The following result is obvious, with f(t) as in (2).

PROPOSITION C. $(-1)^n \Delta_h^n f(t) = \int_{[0,\infty)} e^{-xt} (1 - e^{-xh})^n d\mu(x).$

It follows that $(-1)^n \Delta_h^n f(t)$ is completely monotonic if f(t) is.

PROPOSITION D. If f(t) is completely monotonic, then either $f(t) = ce^{-dt}$ for some $c \ge 0$, $d \ge 0$, or $f(t + \delta)/f(t)$ is strictly increasing in t.

PROOF. Let μ be the measure that represents f in the sense of (2). Then we have

$$\frac{f(t+\delta)}{f(t)} = \frac{\int_{[0,\infty)} e^{-xt} e^{-\delta x} d\mu(x)}{\int_{[0,\infty)} e^{-xt} d\mu(x)},$$

and the result follows from Proposition B with $g(x) = e^{-\delta x}$, upon noting that g(x) is μ -a.e. constant if and only if μ is a point mass.

Proposition A now follows from Proposition D and

PROPOSITION E. The function $(-1)^n \Delta_h^n t^p$ is completely monotonic.

PROOF. It is elementary that

$$\int_0^\infty e^{-xt}x^{-z-1}\,dx=\Gamma(-z)t^z,$$

so that by Proposition C, we have

(3)
$$(-1)^n \Delta_h^n t^z = \frac{1}{\Gamma(-z)} \int_0^\infty e^{-xt} (1 - e^{-xh})^n x^{-z-1} dx$$

Colm O'Cinneide

whenever z < 0. The left hand side of (3) defines an entire function of z, while the right hand side defines an analytic function of z in the domain $\operatorname{Re}(z) < n$, $z \neq 0, 1, \ldots, n-1$. Thus the two sides agree in the latter domain. Replacing z by p in (3) and using Bernstein's theorem gives the result.

Acknowledgement

The author thanks Z. Jackiewicz for his careful reading of the manuscript and for his many helpful remarks.

References

- [1] V. L. Bakke and Z. Jackiewicz, 'Stability analysis of product θ -methods, for Abel integral equations of the second kind', Numer. Math. 48 (1986), 127-136.
- [2] R. R. Phelps, Lectures on Choquet's Theorem (Van Nostrand Math. Studies, No. 7, Van Nostrand, New York, 1965).
- [3] S. M. Ross, Stochastic Processes (John Wiley & Sons, New York, 1983).

Statistics Division Department of Mathematical Sciences University of Arkansas Fayetteville, Arkansas 72701 U.S.A.