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Abstract Let P (r, θ) be the two-dimensional Poisson kernel in the unit disc D. It is proved that there
exists a special sequence {ak} of points of D which is non-tangentially dense for ∂D and such that any
function on ∂D can be expanded in series of P (|ak|, (·)−arg ak) with coefficients depending continuously
on f in various classes of functions. The result is used to solve a Cauchy-type problem for ∆u = µ, where
µ is a measure supported on {ak}.
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1. Introduction

Let P (r, θ) be the two-dimensional Poisson kernel in the disc D = {|z| < 1}:

P (r, θ) =
1
2

1 − r2

1 − 2r cos θ + r2 , 0 � r < 1, θ ∈ T = R/2πZ.

The function P (r, ·) is a 2π-periodic oscillatory function and it is natural to ask if super-
positions of functions of the form P (rµ, (·) − θµ), for suitable values of rµ and θµ, might
approximate functions on T.

This problem and related ones have been studied by Bonsall [2–4], Bonsall and Walsh
[5] and Hayman and Lyons [10]; it turns out that, if the sequence of points bµ = rµeθµi

is non-tangentially dense for ∂D (see § 4 for the definition), then every f ∈ L1(∂D) can
be written as

∞∑
µ=1

λµP (rµ, (·) − θµ) with {λµ} ∈ �1.

The solution is non-unique and the series converges in L1(∂D).
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Our approach is somewhat different. We choose, once and for all, points aµ in the
following way.

Let σ ∈ (0, 1), suitably chosen; for any n ∈ N, let us denote by ζ
(1)
2n,l, ζ

(2)
2n,l, with

0 � l � 2n − 1, the 2nth roots of σ2 and −σ2, respectively, ordered as follows:

ζ
(1)
2n,l = σ1/n exp

{
−π

n
li
}

, l = 0, . . . , 2n − 1, (1.1)

ζ
(2)
2n,l = σ1/n exp

{(
π

2n
− π

n
l

)
i
}

, l = 0, . . . , 2n − 1. (1.2)

Our choice for the points in D is a0 = 0, aµ = ζ
(j)
2n,l, where µ = 1+2(n−1)n+2(j−1)n+l.

It turns out that N := ∪{aµ : µ ∈ N ∪ {0}} has no limit points in D and it is non-
tangentially dense for ∂D.

Let

Pj
n(θ) :=

1
2nσ

n−1∑
h=0

[P (σ1/n, θ − arg ζ
(j)
2n,2h) − P (σ1/n, θ − arg ζ

(j)
2n,2h+1)].

It will be proved that the functions Pj
n are uniformly bounded and periodic of period

2π/n. Our main goal is to represent functions f on ∂D as sums of the form

a0P (0, (·)) +
∞∑

n=1

(αnP1
n + βnP2

n),

so that there is a one-to-one mapping between f and the expansion above in several
classes of functions.

Our main result is the following. Let A be the space of the sums of absolutely convergent
Fourier series in T. Then every f ∈ A can be written as either

f(θ) =
a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ) (1.3)

or

f(θ) = a0P (0, θ) +
∞∑

n=1

(αnP1
n(θ) + βnP2

n(θ)), (1.4)

θ ∈ T. There is a one-to-one continuous mapping in �1 between {αn} and {an}, {βn}
and {bn}; both (1.3) and (1.4) satisfy the Weierstrass M -test and are absolutely and
uniformly convergent.

In other words, every f ∈ A can be approximated by suitable linear combination of
Poisson kernels, with continuous dependence upon the coefficients.

Sharper results are proved if derivatives of f are in A.
If 1 < p < ∞, it is proved that there is a one-to-one continuous mapping I + X in

Lp(T) with the following property. Let f ∈ Lp(T),

g(θ) ∼ a0

2
+

∞∑
n=1

(αn cos nθ + βn sin nθ) = (I + X)f ;

https://doi.org/10.1017/S0013091507001150 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507001150


Expansions with Poisson kernels 155

one can formally write the expansion (1.4) using the Fourier coefficients αn and βn of g;
then, the partial sums of the series in the right-hand side of (1.4) tend to f in Lp(T).

The approximation theorems are used to solve the following problems.
Let f (0), df (0)/dθ ∈ A, f (1) ∈ A. Then, there exists a Radon complex measure µ,

supported on N , with the following property. The Cauchy-type problem:

∆u = µ in D,

u|∂D = f (0),

∂nu|∂D = f (1),

⎫⎪⎪⎬
⎪⎪⎭ (1.5)

has a (distribution) solution u ∈ W 1,p(D), 1 � p < 2; the outer normal derivative ∂nu

is defined in a generalized sense. Our solution is different from the classical harmonic
solutions, which assume that the boundary data have radial limits in a set of first category
(see, for example, [12, p. 76] or [6, Theorem 8.11]). Problem (1.5) can be solved using the
approach in [5]; however, the solution is not unique and does not depend continuously
upon the data. Our solution, instead, continuously depends upon the data. In [9] we
use this solution for solving a Cauchy-type problem for homogeneous two-dimensional
elliptic equations.

Our final application is an interpolation-type theorem for harmonic functions in D.
Notice that the points in N are not uniformly separated (in a Carleson sense; see, for
example, [11]). It turns out that (in some sense) the points in N are too numerous: a
uniqueness result can be proved, but complicated compatibility conditions on the func-
tion’s values need to be assumed, for the existence result.

The paper is organized as follows. In § 2 some contractions in spaces of sequences and
in Lp(T), 1 � p < ∞, are studied. These results are needed to prove the expansion
theorems. In § 3 preliminary results on Poisson kernels are considered and the expansion
theorems are proved. In § 4 a more detailed comparison with previous results is made. In
§ 5 the Cauchy problem is studied. In § 6 the interpolation result is proved.

2. On some contractions in �p and Lp(T)

Let �1 be the Banach space of the complex sequences x = {xj} such that ‖x‖�1 =
∑

j |xj |
is finite. Recall that the dual space (�1)′ of �1 may be identified with the space �∞ of the
bounded sequences x = {xj} with norm ‖x‖�∞ = supj |xj |.

Let us now introduce four operators that will be used in the paper: for any given k ∈ N,
σ ∈ (0, 1) and γ � 0, let ψk, Cγ

σ , Sγ
σ and mγ be the operators which act on x = {xj} as

follows:

ψk(x) = {yj}, where yj =

{
xn if j = kn,

0 otherwise,
(2.1)

Cγ
σ (x) =

∞∑
p=1

(2p + 1)γσ2pψ2p+1(x), (2.2)
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Sγ
σ(x) =

∞∑
p=1

(−1)p(2p + 1)γσ2pψ2p+1(x), (2.3)

mγ(x) =
{

xj

jγ

}
. (2.4)

Basic properties of these operators are the following.

Lemma 2.1.

(a) For any k ∈ N, σ ∈ (0, 1) and γ � 0 the operators ψk, Cγ
σ , Sγ

σ and mγ are bounded,
linear operators from �1 to �1.

(b) For any γ � 0 there exists a constant σγ ∈ (0, 1) such that for any 0 < σ < σγ ,
the operators Cγ

σ and Sγ
σ are contractions on �1. In particular, when γ = 0, the

constant σ0 is 1/
√

2. It follows that, for any σ ∈ (0, σγ), the operators (I + Cγ
σ )

and (I + Sγ
σ) are invertible on �1.

(c) For any σ ∈ (0, σγ) and for any x ∈ �1,

mγ((I + Cγ
σ )−1(x)) = (I + C0

σ)−1(mγ(x)),

mγ((I + Sγ
σ)−1(x)) = (I + S0

σ)−1(mγ(x)).

}
(2.5)

Proof. For any x ∈ �1, we have that ‖ψk(x)‖�1 = ‖x‖�1 and

‖Cγ
σ (x)‖�1 , ‖Sγ

σ(x)‖�1 � ‖x‖�1

∞∑
p=1

(2p + 1)γσ2p.

Claim (a) follows.
To prove (b), observe that, by the uniform convergence of the previous series with

respect to σ in any compact subset of [0, 1), it follows that there exists a constant σγ

such that the sum is less than 1 for σ < σγ . If γ = 0, the sum of the series is σ2/(1 − σ2)
and hence σ0 = 1/

√
2.

Now, notice that

(mγ(ψk(x)))j =

⎧⎨
⎩

xn

(kn)γ
if j = kn,

0 otherwise,

i.e.

mγ(ψk(x)) =
1
kγ

ψk(mγ(x)).
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Therefore, for any x ∈ �1 we have

mγ(Cγ
σ (x)) = mγ

( ∞∑
p=1

(2p + 1)γσ2pψ2p+1(x)
)

=
∞∑

p=1

σ2pψ2p+1(mγ(x))

= C0
σ(mγ(x)).

From this the first equality in (c) follows. The other equality is proved similarly. �

We consider now the adjoint operators m�
γ , ψ�

k, (Cγ
σ )�, (Sγ

σ)� : �∞ → �∞. For such
operators, the following lemma holds.

Lemma 2.2.

(a) For any y = {yj} ∈ �∞,

m�
γ(y) = mγ(y), ψ�

k(y) = {ykj}, (2.6)

(Cγ
σ )�(y) =

∞∑
p=1

(2p + 1)γσ2pψ�
2p+1(y), (2.7)

(Sγ
σ)�(y) =

∞∑
p=1

(−1)p(2p + 1)γσ2pψ�
2p+1(y) (2.8)

and

mγ((C0
σ)�(y)) = (Cγ

σ )�(mγ(y)), mγ((S0
σ)�(y)) = (Sγ

σ)�(mγ(y)). (2.9)

(b) For any σ ∈ (0, σγ), the operators (Cγ
σ )� and (Sγ

σ)� are contractions on �∞ and

(I + (Cγ
σ )�)−1 = [(I + Cγ

σ )−1]�, (I + (Sγ
σ)�)−1 = [(I + Sγ

σ)−1]�. (2.10)

Proof. It is sufficient to prove (a). Formula (2.6) follows from

〈y, ψk(x)〉 =
∞∑

j=1

yj(ψk(x))j =
∞∑

n=1

yknxn =
∞∑

n=1

(ψ�
k(y))nxn,

and (2.7) and (2.8) follow from definitions. The first equality in (2.9) is obtained from

mγ((C0
σ)�(x)) =

{
1
jγ

∞∑
p=1

σ2px(2p+1)j

}

=
{ ∞∑

p=1

(2p + 1)γσ2p x(2p+1)j

[(2p + 1)j]γ

}

= (Cγ
σ )�(mγ(x))

and the second is obtained similarly. �
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Now, let us consider the space Lp(T), 1 � p < ∞, and its closed subspace

L
p(T) =

{
g ∈ Lp(T) :

∫ 2π

0
g(θ) dθ = 0

}
.

For σ ∈ (0, 1), let us define

X(g(θ)) =
∞∑

ν=1

σ2νg((−1)ν(2ν + 1)θ). (2.11)

Then, we have the following lemma.

Lemma 2.3. The operator X maps Lp(T) in Lp(T) and, for any σ ∈ (0, 1/
√

2), X is
a contraction on Lp(T).

Proof. The first part is obvious. We have

∥∥∥∥
∞∑

ν=1

σ2νg((−1)ν(2ν + 1)(·))
∥∥∥∥

p

�
∞∑

ν=1

σ2ν

( ∫ 2π

0
|g((−1)ν(2ν + 1)θ)|p dθ

)1/p

=
∞∑

ν=1

σ2ν

(
(−1)ν

2ν + 1

∫ 2π(2ν+1)(−1)ν

0
|g(φ)|p dφ

)1/p

= ‖g‖p
σ2

1 − σ2 .

This implies that X is bounded and that, for σ ∈ (0, 1/
√

2), X is a contraction on Lp(T).
�

3. Expansions in terms of Poisson kernels

Let us recall the following simple fact [13, p. 127].

Fact 3.1. Let F (z) be a continuous function of the form F (z) =
∑∞

p=0 apz
p on the

closed disc |z| � R. Then for any integer n we have

1
n

n−1∑
h=0

F (Re2hπi/n) =
∞∑

p=0

anpR
np. (3.1)

Now, let

S(r, θ) :=
1 + reiθ

2(1 − reiθ)
= 1

2 +
∞∑

p=1

rpeipθ, r ∈ [0, 1), θ ∈ R, (3.2)

be the so-called Schwarz kernel. Its real part is the Poisson kernel P (r, θ).
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The following facts hold.

Lemma 3.2. Let 0 < σ < 1, n ∈ N, θ ∈ R. Then

Sn(θ) :=
S(σ, nθ) − S(σ, nθ + π)

2σ
= einθ +

∞∑
p=1

σ2pei(2p+1)nθ (3.3)

is periodic with period 2π/n and

Sn(θ) =
1

2nσ

n−1∑
h=0

[
S

(
σ1/n, θ +

2πh

n

)
− S

(
σ1/n, θ +

π

n
+

2πh

n

)]
. (3.4)

Moreover, |Sn(θ)| � 1/(1 − σ2).

Proof. From the definition (3.2) of the Schwarz kernel, one can directly obtain the
following identity:

S(r, θ) − S(r, θ + π) = 2
∞∑

p=0

r2p+1ei(2p+1)θ, (3.5)

and (3.3) follows from (3.5).
Now, consider formula (3.1) for R = 1 and F (z) =

∑∞
p=1 rpeipθzp:

1
n

n−1∑
h=0

∞∑
p=1

rp exp
{

ip
(

θ +
2πh

n

)}
=

∞∑
p=1

rnpeinpθ.

So, by (3.2),
1
n

n−1∑
h=0

S

(
r, θ +

2πh

n

)
= S(rn, nθ).

Hence, setting σ = rn, (3.4) follows. The last bound is a consequence of the identity

Sn(θ) =
einθ

1 − σ2e2inθ
.

�

Lemma 3.3. Let 0 < σ < 1, n ∈ N, θ ∈ R. Then the functions P1
n(θ) := Re Sn(θ)

satisfy the following identities:

P1
n(θ) =

P (σ, nθ) − P (σ, nθ + π)
2σ

= cos(nθ) +
∞∑

p=1

σ2p cos[(2p + 1)nθ], (3.6)

P1
n(θ) =

1
2nσ

n−1∑
h=0

[
P

(
σ1/n, θ +

2πh

n

)
− P

(
σ1/n, θ +

π

n
+

2πh

n

)]
. (3.7)

Moreover, P1
n is periodic of period 2π/n and |P1

n(θ)| � 1/(1 − σ2).
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The functions P2
n(θ) := P1

n(θ − (π/2n)) satisfy the identities

P2
n(θ) =

P (σ, nθ − 1
2π) − P (σ, nθ + 1

2π)
2σ

= sin(nθ) +
∞∑

p=1

(−1)pσ2p sin[(2p + 1)nθ],

(3.8)

P2
n(θ) =

1
2nσ

n−1∑
h=0

[
P

(
σ1/n, θ +

2πh

n
− π

2n

)
− P

(
σ1/n, θ +

π

2n
+

2πh

n

)]
. (3.9)

Moreover, P2
n is periodic of period 2π/n and |P2

n(θ)| � 1/(1 − σ2).

Proof. Formulae (3.6) and (3.7) are the real parts of (3.3) and (3.4), respectively.
Formulae (3.8) and (3.9) follow from (3.6) and (3.7) by replacing θ with θ − (π/2n). �

Remark 3.4. Notice that (3.7) and (3.9) can also be written as

Pj
n(θ) :=

1
2nσ

n−1∑
h=0

[P (σ1/n, θ − arg ζ
(j)
2n,2h) − P (σ1/n, θ − arg ζ

(j)
2n,2h+1)], (3.10)

where 0 < σ < 1, n ∈ N, θ ∈ R and ζ
(j)
2n,l are the points in (1.1), (1.2), j = 1, 2.

For any θ ∈ R, let us denote by c(θ), s(θ) and Pj(θ), j = 1, 2, the following elements
in �∞:

c(θ) = {cos nθ}, s(θ) = {sin nθ}, Pj(θ) = {Pj
n(θ)}.

Then we have the following lemma.

Lemma 3.5. For any θ ∈ R, γ � 0, we have

(i) for any σ ∈ (0, 1),

P1(θ) = (I + (C0
σ)�)(c(θ)), P2(θ) = (I + (S0

σ)�)(s(θ)), (3.11)

mγ(P1(θ)) = (I + (Cγ
σ )�)mγ(c(θ)), mγ(P2(θ)) = (I + (Sγ

σ)�)mγ(s(θ)),
(3.12)

(ii) for any σ ∈ (0, 1/
√

2),

c(θ) = [(I + C0
σ)−1]�(P1(θ)), s(θ) = [(I + S0

σ)−1]�(P2(θ)), (3.13)

(iii) for any σ ∈ (0, σγ),

mγ(c(θ)) = [(I + Cγ
σ )−1]�(mγ(P1(θ))), mγ(s(θ)) = [(I + Sγ

σ)−1]�(mγ(P2(θ))).
(3.14)

Proof. The identities (3.11) are simply the identities (3.6) and (3.8) written in terms
of the operators (C0

σ)�, (S0
σ)�. Formulae (3.12) follow from (3.11) and (2.9). Equalities

(3.13) and (3.14) follow from (3.11), (3.12) and Lemma 2.2 (b). �
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Let us denote by A the space of the (complex-valued) functions which are sums of
absolutely convergent Fourier series, i.e. of the functions of the form

f(θ) =
a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ) (3.15)

with a = {an}n�1 and b = {bn}n�1 in �1 (for more about this space, see, for example,
[1,15]). For any γ > 0, also let A

(γ) be the space of the functions f ∈ A of the form (3.15)
with a = mγ(a1), b = mγ(b1) and a1 = {a1

n}n�1, b1 = {b1
n}n�1 in �1. Notice that if γ ∈ N,

the condition f ∈ A
γ is equivalent to saying that

dm

dθm
f ∈ A, 0 � m � γ.

We have the following result.

Theorem 3.6. Let σ ∈ (0, 1/
√

2) and let f ∈ A be of the form (3.15). Then f can be
written as

f(θ) = a0P (0, θ) +
∞∑

n=1

(αnP1
n(θ) + βnP2

n(θ)), (3.16)

with α = {αn}, β = {βn} ∈ �1 given by

α = (I + C0
σ)−1a, β = (I + S0

σ)−1b. (3.17)

On the other hand, if f can be written in the form (3.16) with α and β in �1, then f ∈ A

and it can be written as in (3.15), setting a = (I + C0
σ)α and b = (I + S0

σ)β. Both the
series (3.15) and (3.16) satisfy the Weierstrass M -test and are absolutely and uniformly
convergent.

Proof. Let σ ∈ (0, 1/
√

2) and f ∈ A. Then (3.15) can be written as

f(θ) = 1
2a0 + 〈c(θ), a〉 + 〈s(θ), b〉, θ ∈ R.

Let us write a = (I + C0
σ)α, b = (I + S0

σ)β. Then

f(θ) = a0P (0, θ) + 〈(I + C0
σ)�c(θ), α〉 + 〈(I + S0

σ)�s(θ), β〉;

by (3.11) one gets (3.16).
In a similar way, if f is of the form

f(θ) = a0P (0, θ) + 〈P1(θ), α〉 + 〈P2(θ), β〉,

using (3.17) and (3.11), we obtain (3.15). �
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Remark 3.7. Let σ ∈ (0, 1/
√

2) and f ∈ A. Using (3.7), (3.9) and Remark 3.4, (3.16)
can be written as

f(θ) = α0P (0, θ) +
∞∑

n=1

αn

2σn

n−1∑
p=0

[P (σ1/n, θ − arg ζ
(1)
2n,2p) − P (σ1/n, θ − arg ζ

(1)
2n,2p+1)]

+
∞∑

n=1

βn

2σn

n−1∑
p=0

[P (σ1/n, θ − arg ζ
(2)
2n,2p) − P (σ1/n, θ − arg ζ

(2)
2n,2p+1)].

(3.18)

In other words, f is approximated by linear combinations of delayed Poisson kernels.

Theorem 3.8. Let γ > 0 and let σ be fixed in the interval (0, σγ), where σγ is the
constant in Lemma 2.1. Assume that f ∈ A

γ is of the form (3.15) with a = mγ(a1) and
b = mγ(b1), a1 ∈ �1, b1 ∈ �1. Let α1 = (I + Cγ

σ )−1a1, β1 = (I + Sγ
σ)−1b1. Then, f can be

written in the form (3.16) with

α = mγ(α1) = (I + C0
σ)−1a (3.19)

and

β = mγ(β1) = (I + C0
σ)−1b. (3.20)

As in the previous theorem, the converse also holds.

Proof. Using (3.14), we have

f(θ) = 1
2a0 + 〈c(θ), mγa1〉 + 〈s(θ), mγb1〉

= 1
2a0 + 〈mγc(θ), a1〉 + 〈mγs(θ), b1〉

= 1
2a0 + 〈[(I + Cγ

σ )−1]�mγP1(θ), a1〉 + 〈[(I + Sγ
σ)−1]�mγP2(θ), b1〉

= a0P (0, θ) + 〈P1(θ), mγ(I + Cγ
σ )−1a1〉 + 〈P2(θ), mγ(I + Sγ

σ)−1b1〉.

Using (2.5) and defining α and β as in (3.19), (3.20), we obtain the thesis. �

Our last expansion theorem is for functions in Lp(T). Recall that, if X is the operator
in (2.11) and σ ∈ (0, 1/

√
2), by Lemma 2.3, X is a contraction in Lp(T), so that for any

h ∈ Lp(T) the equation g + X(g) = h has a unique solution g ∈ Lp(T).

Theorem 3.9. Let p ∈ (1,∞) and f ∈ Lp(T),

f(θ) ∼ a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ)

and let g ∈ Lp(T) be the solution to

g + X(g) = f − 1
2π

∫ 2π

0
f(θ) dθ ∈ L

p(T).
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Let

g(θ) ∼
∞∑

n=1

(αn cos nθ + βn sin nθ). (3.21)

be the Fourier expansion of g. Then

lim
N→∞

∥∥∥∥f − a0

2
−

N∑
n=1

(αnP1
n + βnP2

n)
∥∥∥∥

p

= 0. (3.22)

On the other hand, if g ∈ Lp(T) is of the form (3.21) and f is defined as

f =
1
2π

∫ 2π

0
f(θ) dθ + g + X(g),

then (3.22) holds.

Proof. By (2.11), (3.6) and (3.8), we have that (I + X)(cos nθ) = P1
n(θ) and (I +

X)(sinnθ) = P2
n(θ). From this and by Lemma 2.3 we obtain that∥∥∥∥f − a0

2
−

N∑
n=1

(αnP1
n + βnP2

n)
∥∥∥∥

p

=
∥∥∥∥g + X(g) −

N∑
n=1

(αn(I + X)(cos n(·)) + βn(I + X)(sinn(·)))
∥∥∥∥

p

=
∥∥∥∥(I + X)

(
g −

N∑
n=1

(αn cos n(·) + βn sin n(·))
)∥∥∥∥

p

� 1
1 − σ2

∥∥∥∥g −
N∑

n=1

(αn cos n(·) + βn sin n(·))
∥∥∥∥

p

tends to zero when N → ∞. �

Remark 3.10. Let f ∈ L1(T),

f(θ) ∼ a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ);

then g, defined by

g + X(g) = f − 1
2π

∫ 2π

0
f(θ) dθ,

satisfies g ∈ L1(T) and can be written as in (3.21). In this case, however, one cannot
have a convergence as in (3.22). Using the notation of the previous theorem, a weaker
convergence such as

lim
ρ→1

∥∥∥∥f − a0

2
−

∞∑
n=1

ρn(αnP1
n + βnP2

n)
∥∥∥∥

1
= 0

holds.
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As a first application of Theorem 3.6 we give an expansion as a sum of Poisson kernels
for harmonic functions u in D such that u|∂D ∈ A. We need the following lemma.

Lemma 3.11. Let 0 � r1, r2 < 1, n ∈ N and θ ∈ R. Then

1
π

∫ 2π

0
P (r1, θ − t)P (rn

2 , nt) dt = P ((r1r2)n, nθ). (3.23)

Proof. Notice that, for any n ∈ N, the function

v(reiθ) = P ((rr2)n, nθ) = 1
2 +

∞∑
ν=1

(r2r)nν cos nνθ

is harmonic in D and v(eiθ) = P (rn
2 , nθ). Then, representing v by Poisson’s formula, we

obtain (3.23). �

Theorem 3.12. Let σ ∈ (0, 1/
√

2) and f ∈ A be of the form in (3.15). Then, the
solution u to the Dirichlet problem

∆u = 0 in D,

u = f on ∂D

can be written as

u(reiθ) = a0P (0, θ) +
∞∑

n=1

αn

2σ
[P (rnσ, nθ) − P (rnσ, nθ + π)]

+
∞∑

n=1

βn

2σ
[P (rnσ, nθ − 1

2π) − P (rnσ, nθ + 1
2π)], (3.24)

where αn, βn, given by (3.17), are the coefficients in the expansion (3.16) of f . Moreover,
if ζ

(j)
2n,l, n ∈ N, l = 0, . . . , 2n − 1, j = 1, 2, are the points in (1.1), (1.2), let

A(j) :=
{

1
n

n−1∑
h=0

[u(ζ(j)
2n,2h) − u(ζ(j)

2n,2h+1)]
}

n∈N

, j = 1, 2.

Then A(j) ∈ �1, j = 1, 2, and

A(1) = 2σ(I + (C0
σ)�)(a), (3.25)

A(2) = 2σ(I + (S0
σ)�)(b), (3.26)

where a, b are the sequences of the Fourier coefficients of f .
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Proof. Let us write f in the expansion (3.16). By Poisson’s formula, as the series
in (3.16) is uniformly convergent, we have

u(reiθ) =
1
π

∫ 2π

0
P (r, θ − t)f(t) dt

=
a0

π

∫ 2π

0
P (r, θ − t)P (0, t) dt

+
∞∑

n=1

αn

2σ

1
π

∫ 2π

0
(P (σ, nt) − P (σ, nt + π))P (r, θ − t) dt

+
∞∑

n=1

βn

2σ

1
π

∫ 2π

0
(P (σ, nt − 1

2π) − P (σ, nt + 1
2π))P (r, θ − t) dt.

From this, applying Lemma 3.11, we obtain (3.24).
Moreover, again by Poisson’s formula, we have

A(1) =
{

1
nπ

∫ 2π

0
f(θ)

n−1∑
h=0

[
P

(
σ1/n, θ +

2πh

n

)
− P

(
σ1/n, θ +

2πh

n
+

π

n

)]
dθ

}
n∈N

.

Therefore, by (3.7) and (3.6),

A(1) =
{

2σ

π

∫ 2π

0
f(θ)

(
cos nθ +

∞∑
p=1

σ2p cos[(2p + 1)nθ]
)

dθ

}
n∈N

= 2σ

{
an +

∞∑
p=1

σ2pa(2p+1)n

}
n∈N

= 2σ(I + (C0
σ)�)(a),

i.e. (3.25) holds. Formula (3.26) has a similar proof. �

4. Comparison with previous results

Let us recall (see, for example, [5]) that a subset E of D is called non-tangentially dense
for ∂D if almost every point of ∂D is the non-tangential limit of some sequence in E.
More precisely, for w ∈ ∂D, ψ ∈ (0, π/2) and ε > 0, let us denote by ∆w,ψ,ε the symmetric
Stolz angle with vertex w and of opening 2ψ, i.e.

∆w,ψ,ε = {z ∈ D : |arg(1 − w̄z)| < ψ, |z − w| < ε}.

Then, E is non-tangentially dense for ∂D if, for almost all w ∈ ∂D, there exists ψ ∈
(0, π/2) such that E ∩ ∆w,ψ,ε �= ∅ for all ε > 0.

Let us recall the following results.

Fact 4.1 (Bonsall [2]). Let M = {bj} be a subset of D which is non-tangentially
dense for ∂D. Then, L1(∂D) is the set of all functions f of the form

f =
∞∑

µ=1

λµP (|bk|, (·) − arg bk) (4.1)
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with
∑∞

µ=1 |λµ| < ∞. Also

‖f‖L1(∂D) = inf
∞∑

µ=1

|λµ|,

with the infimum taken over all decompositions (4.1).

Fact 4.2 (Bonsall [3]). Let M = {bj} be a subset of D which is non-tangentially
dense for ∂D and let BH(D) be the family of bounded complex valued harmonic functions
in D. Then, for all u ∈ BH(D),

sup
z∈D

|u(z)| = sup
n∈N

|u(bn)|.

Fact 4.3 (Bonsall and Walsh [5]). The map T of �1 into L1(∂D) given by (4.1) is
onto (Fact 4.1) and kerT �= {0}.

Remark 4.4. Let N be the set of points defined in § 1. Then N is non-tangentially
dense for ∂D. To prove this, let ψ be such that

2
π

(tanψ) log
1
σ

> 1.

We will prove that, for every w ∈ ∂D, n sufficiently large and j = 1, 2, one has ζ
(j)
2n,l ∈

∆w,ψ,ε for some l = 0, . . . , 2n− 1. This is certainly true if, for n sufficiently large, the arc
∆w,ψ,ε ∩ {|z| = σ1/n} bounds a sector, centred at 0, with opening 2ϕn > π/n. As

σ1/n

sin ψ
=

1
sin(ϕn + ψ)

,

it follows that

lim
n→∞

2ϕn

π/n
= lim

n→∞

2(arcsin((sinψ)/σ1/n) − ψ)
π/n

=
2
π

log
1
σ

tanψ.

From this fact, the thesis follows.

Remark 4.5. Let f ∈ A and let M = {bν} ⊂ D be a set which is non-tangentially
dense for ∂D. As A ⊂ L1(∂D), there are infinitely many λ ∈ �1 such that f can be
written in the form (4.1). The series in (4.1) converges in L1(∂D), but nothing can be
said about the continuous dependence of the �1 norm of λ upon the Fourier coefficients
of f .

If we choose M = N , our results imply that in (4.1) (or, more explicitly, in (3.18))
one can make a choice for λ in order to obtain more precise results:

(i) there is a one-to-one mapping between the Fourier coefficients of f and the coeffi-
cients of the expansion in Poisson kernels (now written as (3.16));

(ii) if we start with f ∈ L1(∂D), and f is the sum of a series of the form (3.16) with
coefficients in �1, then f ∈ A.
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5. A Cauchy-type problem

Let M = {bν} ⊂ D be a set which is non-tangentially dense for ∂D, without limit points
in D. Let us consider a class of functions of the form

u(z) = h(z) +
∞∑

ν=1

λνG(z, bν), (5.1)

where h is harmonic in D, of the form

h(ρeiθ) = h0 +
∞∑

n=1

h′
n cos nθ + h′′

n sin nθ

n
ρn

with

hn ∼
∞∑

n=1

(h′
n cos nθ + h′′

n sin nθ) ∈ L1(∂D);

G(z, ζ) is the Green function in D for the Laplacian

G(z, ζ) = − 1
2π

ln
∣∣∣∣ z − ζ

1 − zζ̄

∣∣∣∣, z �= ζ,

and λ = {λν} is a sequence in �1. The function u − h belongs to W 1,p(D), 1 � p < 2,
u is smooth in D \ M and has a distributional Laplacian which is a complex measure µ

supported on M:

µ := ∆u = −
∞∑

ν=1

λνδbν
(5.2)

(δζ denotes the Dirac function with singularity ζ). A generalized (exterior) normal deriva-
tive ∂nu on ∂D can be defined as

∂nu = hn − 1
π

∞∑
ν=1

λνP (|bν |, θ − arg bν). (5.3)

By Fact 4.1 and the properties of h, we have that u|∂D is in Lp(∂D) for 1 � p < ∞
and ∂nu is in L1(∂D). The next lemma shows that it satisfies natural boundary integral
formulae.

Lemma 5.1. Let u be of the form (5.1). Then, for any v ∈ C1(D̄), v harmonic in D,

∫
D

v dµ =
∫

∂D

(
v∂nu − u

∂v

∂n

)
ds. (5.4)

Proof. Since ∫
∂D

(
vhn − h

∂v

∂n

)
ds = 0,
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we have ∫
∂D

(
v∂nu − u

∂v

∂n

)
ds = − 1

π

∞∑
ν=1

λν

∫ 2π

0
v(θ)P (|bν |, θ − arg bν) dθ

= −
∞∑

ν=1

λνv(bν)

=
∫

D

v dµ.

�

By using Fact 4.1, we get the following theorem.

Theorem 5.2. Let

(i) f (0) be defined on ∂D of the form

f (0)(θ) ∼ f
(0)
0 +

∞∑
n=1

f
(0)′

n cos nθ + f
(0)′′

n sin nθ

n

with

L1(∂D) � g(0) ∼
∞∑

n=1

(f (0)′

n cos nθ + f (0)′′

n sin nθ),

(ii) f (1) ∈ L1(∂D).

Then, there exist µ of the form (5.2) and u of the form (5.1) satisfying

∆u = µ in D,

u|∂D = f (0),

∂nu|∂D = f (1).

⎫⎪⎪⎬
⎪⎪⎭ (5.5)

The boundary data are assumed according to (5.4).

Proof. Let

v(ρeiθ) := f
(0)
0 +

∞∑
n=1

f
(0)′

n cos nθ + f
(0)′′

n sin nθ

n
ρn.

By Fact 4.1, there exists λ̃ = {λ̃ν} ∈ �1 such that

f (1) − g(0) =
∞∑

ν=1

λ̃νP (|bν |, (·) − arg bν).

Then

µ = π

∞∑
ν=1

λ̃νδbν and u = v − π

∞∑
ν=1

λ̃νG(· , bν)

satisfy (5.5). �
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The Bonsall–Walsh result gives us that any f ∈ L1(∂D) can be written in the form
(4.1), but it does not say anything about the dependence of λ upon f . Our set of points
N and a suitable choice of λ give a more precise result.

Let γ > 0, 0 < σ < σγ , and let N be the set of the points defined in § 1 (which is
non-tangentially dense for ∂D by Remark 4.4). Let also

u = h − πa0G((·), 0) − π

∞∑
n=1

αn

2σn

n−1∑
p=0

[G((·), ζ(1)
2n,2p) − G((·), ζ(1)

2n,2p+1)]

− π

∞∑
n=1

βn

2σn

n−1∑
p=0

[G((·), ζ(2)
2n,2p) − G((·), ζ(2)

2n,2p+1)], (5.6)

where h ∈ C1(D̄) is a harmonic function such that ∂h/∂n ∈ A
γ and α and β are sequences

in �1 such that α = mγ(α1), β = mγ(β1), with α1, β1 ∈ �1.
We have that u ∈ W 1,p(D), 1 � p < 2, u|∂D = h|∂D and

µ = ∆u = πa0δ0 +π

∞∑
n=1

αn

2σn

n−1∑
p=0

[
δ
ζ
(1)
2n,2p

− δ
ζ
(1)
2n,2p+1

]
+π

∞∑
n=1

βn

2σn

n−1∑
p=0

[
δ
ζ
(2)
2n,2p

− δ
ζ
(2)
2n,2p+1

]
.

(5.7)
Moreover,

∂nu =
∂h

∂n
+ a0P (0, (·)) +

∞∑
n=1

(αnP1
n + βnP2

n).

Therefore, using Theorem 3.8 instead of Fact 4.1, we obtain the following result.

Theorem 5.3. Let γ > 0 and let f (0), f (1) be such that df (0)/dθ, f (1) ∈ A
γ . Denote

also by h the solution to the Dirichlet problem ∆h = 0 in D, h = f (0) on ∂D. Then we
have the following.

(i) f := f (1) − ∂h

∂n
∈ A

γ .

(ii) Let

f(θ) = a0P (0, θ) +
∞∑

n=1

(αnP1
n(θ) + βnP2

n(θ)).

Then the function u given by (5.6) solves the Cauchy problem (5.5) with µ given by
(5.7). The sequences α, β are of the form α = mγ(α1), β = mγ(β1) with α1, β1 ∈ �1

and they are in a one-to-one correspondence with the Fourier coefficients a, b of f .
Moreover, u is the unique solution to (5.5) of the form (5.6).

Remark 5.4. Under the hypotheses of Theorem 5.3, the function (5.6) can also be con-
sidered as a solution to the Cauchy problem (5.5) in the following sense. For any N ∈ N,
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let

uN = h − πa0G((·), 0) − π

N∑
n=1

αn

2σn

n−1∑
p=0

[G((·), ζ(1)
2n,2p) − G((·), ζ(1)

2n,2p+1)]

− π
N∑

n=1

βn

2σn

n−1∑
p=0

[G((·), ζ(2)
2n,2p) − G((·), ζ(2)

2n,2p+1)].

Then the following hold.

(i) uN converges to u uniformly on any compact subset of D \ N .

(ii) uN is harmonic in {σ1/N < |z| < 1}; indeed,

∆uN = πa0δ0 + π

N∑
n=1

αn

2σn

n−1∑
p=0

[
δ
ζ
(1)
2n,2p

− δ
ζ
(1)
2n,2p+1

]

+ π
N∑

n=1

βn

2σn

n−1∑
p=0

[
δ
ζ
(2)
2n,2p

− δ
ζ
(2)
2n,2p+1

]
.

(iii) uN is of class C2 in a neighbourhood of ∂D, uN |∂D = f (0) and ∂uN/∂n|∂D ∈ A
γ .

(iv) We have ∥∥∥∥∂uN

∂n

∣∣∣∣
∂D

− f1
∥∥∥∥

Aγ

→ 0,

where ‖ · ‖Aγ denotes the norm defined by

‖f‖Aγ = ‖m−1
γ (a)‖�1 + ‖m−1

γ (b)‖�1

for any

f =
a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ) ∈ A
γ .

6. An interpolation-type result

Let ζ
(j)
2n,l be the points in (1.1), (1.2) and let A0, A

(j)
2n,l ∈ C, j = 1, 2, n ∈ N, l =

0, . . . , 2n − 1. We now investigate whether there exists a function u, harmonic in D,
satisfying

u(0) = A0, u(ζ(j)
2n,l) = A

(j)
2n,l, j = 1, 2, n ∈ N, l = 0, . . . , 2n − 1, (6.1)

and, moreover, if it exists, whether it is unique.
This is a special case (with fixed points in D) of a more general problem in harmonic

analysis called the ‘interpolation problem’ (see, for example, [7,8,11,14]).

https://doi.org/10.1017/S0013091507001150 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507001150


Expansions with Poisson kernels 171

Let us recall that a sequence of points zn ∈ D is called an interpolating sequence for
the Hardy space H∞ if, for each bounded complex sequence An, there exists f ∈ H∞

satisfying f(zn) = An (for interpolating sequences in other spaces of functions see [14]
and the bibliography therein).

Concerning our set N , we point out that, as it is non-tangentially dense, its elements
cannot be an interpolating sequence [5].

One can nevertheless ask if there are conditions that characterize the sequence of
values that are assumed on N by the harmonic functions. In what follows we give the
only positive results that we have been able to determine in this regard.

We first prove a uniqueness theorem in a suitable class of complex harmonic functions.

Theorem 6.1. Let A
′ be the dual space of A and let T ∈ A

′. Let us assume that the
harmonic function

u(z) :=
1
π

〈T, P (|z|, (·) − arg z)〉, z ∈ D, (6.2)

satisfies the conditions

u(0) = 0 and
n−1∑
p=0

[u(ζ(j)
2n,2p+1) − u(ζ(j)

2n,2p)] = 0, (6.3)

j = 1, 2, n ∈ N. Then u ≡ 0.

Proof. Let T ∈ A
′ and let

t0
2

+
∞∑

n=1

(tn cos nθ + τn sin nθ), {tn}, {τn} ∈ �∞,

be the Fourier expansion of T . Then, for

f(θ) =
a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ) in A

(hence, with {an}, {bn} ∈ �1), we have

〈T, f〉 = π

{
a0t0
2

+
∞∑

n=1

(antn + bnτn)
}

.

Notice that, as P (ρ, (·) − φ) ∈ A, 0 � ρ < 1, φ ∈ T, (6.2) makes sense and u can also be
written as

u(ρeiφ) =
t0
2

+
∞∑

n=1

ρn(tn cos nφ + τn sin nφ).
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Let us write f ∈ A, by using the representation formula (3.18) and applying T to both
members of (3.18). Using (6.2) we have

〈T, f〉 = α0u(0) +
∞∑

n=1

αn

2σn

n−1∑
p=0

[u(ζ(1)
2n,2p) − u(ζ(1)

2n,2p+1)]

+
∞∑

n=1

βn

2σn

n−1∑
p=0

[u(ζ(2)
2n,2p) − u(ζ(2)

2n,2p+1)].

Then, (6.3) implies that, for every f ∈ A, 〈T, f〉 = 0. Thus, T = 0 and u ≡ 0 in D. �

Let us prove now an existence theorem. For this, we need compatibility conditions for
the As.

Theorem 6.2. Let A0, A
(j)
2n,l ∈ C, j = 1, 2, n ∈ N, l = 0, . . . , 2n − 1, which satisfy the

following conditions:

(i)

A(j) :=
{

1
n

n−1∑
p=0

[A(j)
2n,2p − A

(j)
2n,2p+1]

}
n∈N

∈ �1, j = 1, 2;

(ii)

A
(j)
2n,l = A0 +

∞∑
ν=1

[(I + (C0
σ)�)−1A(1)]ν
2σ

σν/n cos(ν arg ζ
(j)
2n,l)

+
∞∑

ν=1

[(I + (S0
σ)�)−1A(2)]ν
2σ

σν/n sin(ν arg ζ
(j)
2n,l),

j = 1, 2, n ∈ N, l = 0, . . . , 2n − 1.

Then, there exists u harmonic in D, continuous in D̄, with u|∂D ∈ A, satisfying (6.1).
On the other hand, if u is harmonic in D, continuous in D̄, with u|∂D ∈ A, then

A0 = u(0), A
(j)
2n,l = u(ζ(j)

2n,l), j = 1, 2, n ∈ N, l = 0, . . . , 2n − 1, satisfy (i) and (ii).

Proof. Let us define

a = (I + (C0
σ)�)−1 A(1)

2σ
and b = (I + (S0

σ)�)−1 A(2)

2σ
.

Then, f(θ) = A0 + 〈c(θ), a〉 + 〈s(θ), b〉 ∈ A and the solution u to the Dirichlet problem

∆u = 0 in D, u = f on ∂D,

i.e. the function u(reiθ) = A0 + 〈c(θ), rna〉 + 〈s(θ), rnb〉 satisfies (i) and (ii).
On the other hand, let u be harmonic in D, continuous in D̄, with u|∂D(θ) = A0 +

〈c(θ), a〉+ 〈s(θ), b〉 ∈ A. If A
(j)
2n,l = u(ζ(j)

2n,l), j = 1, 2, n ∈ N, l = 0, . . . , 2n− 1, then (i) (by
Theorem 3.12) and (ii) hold. �
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