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1. Introduction. Much interest has been shown in determining the range of values
of c for which the sequence [nc] contains infinitely many primes. The result is an
elementary deduction from the prime number theorem, of course, if 0 < c ^ l . In 1953,
Piatetski-Shapiro [9] showed that

for 1< c < n , where KC(X) stands for the number of primes in the set {[nc] | n ^ x).
Various authors have since extended the range of c for which (1) holds up to 5552 (see

X

[10]). It has also been shown [1] that nc(x)>—— for all large x when K c < j ? .
T'C i n JC

Leitmann and Wolke [8] have shown that (1) holds for almost all c e (1,2), and
Deshouillers [3] has demonstrated that nc{x)—» +°c as x—* +°° for almost all c > 1. In this
paper we shall attempt to establish the analogous results for nf(x) where n*(x) denotes
the number of primes in the set {[pc] \p <x} with p standing for a variable which only
takes prime values. Balog [2] has obtained the analogue of Deshouillers' result in this
situation. In fact, by making a slight adaptation to Deshouillers' method he proved:

THEOREM 1. For almost all c > 1 we have

REMARK: AS with the case [nc] it is expected that the exceptional set consists solely
of the integers exceeding 1.

In this paper we shall establish an asymptotic formula for a quantity related to n*{x)
and investigate related topics concerning the sequence [nc]. We have little hope at
present of deducing that there are infinitely many primes in the sequence for any given
c > 1 (see [5] where the equivalent question of the joint distribution of the fractional and
integral parts of pA is discussed for A < 1).

The results we prove are as follows:

THEOREM 2. For almost all (a, b) e [1,2]2 we have

S(a,b,x)= 2 l~^f^ «*-+« (2)
[n"]=p a KlnX)

where q and p both denote primes.

REMARKS: The significance of Theorem 2 lies in the fact that n*(x) = S(c, c,x). It will
become clear that much more can be said about the two dimensional "almost all" set of
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this result, but sadly we cannot as yet determine whether it includes almost all points of
the line a = b. Theorem 2 follows directly from Theorem 3 and Theorem 4 below.

THEOREM 3. Let si be an infinite set of positive integers and write

dc{x) = #{« < x | [nc] e si), s£{x) = jrf, (JC). (3)

/ 2 \
Suppose that, for some a e ( 0 , 1 ] we have si{y) » y a . Then, for almost all c e l l , I

we have, for any e > 0,

s*c(x) = y 2 «~I+7+ OQ¥(x$) (4)

where y = - and
c

REMARKS: Suppose that, for any 17 > 0, y"~r)« si(y) «ya- Then the main term in (4)
is

while the error term is
«X 4 + 2 2 + £

for any e > 0. It follows that the main term is a larger order of magnitude than the error
2

term for c < (that is a > 2(1 - y)). After correcting an oversight, Theoreme 8.2 of
2- a

2
[10] requires c<-——which is weaker for a < 1. When a = 1, as will be the case here in

8 ~ lot

proving Theorem 2, then (4) holds for almost all c e (1,2). In Chapitre 8 of [10] it is
shown how a result like Theorem 3 can be iterated to obtain arbitrarily long finite
sequences of reals ck>\ such that the equation

has the expected asymptotic formula for the number of solutions. The improvements we
have made with Theorem 3 lead to a particularly neat consequence of this type, which we
state as follows:

COROLLARY 1. Let gu... ,gkbe a finite sequence of reals with g; e [2,1) and

7 = 1

for t = 1 , . . . , k.
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Then, for almost all (c\,...,ck) with l<c ;<g;~
1, we have that the number of

solutions to

P = [«?] = [«?] = . . . = [«?],

is

for some 8 = 5(cj , . . . , ck) > 0. We remark that 8 could be stated explictly.

THEOREM 4. Let SP be the set of positive prime numbers and write

S8(y) = gPn U ((p - l)y,Py)

and

Then, for almost all y>\ we have

REMARKS: The formula (5) is actually true for all y > f, as the reader should observe
from our proof. Also, assuming the Riemann Hypothesis, (5) is valid for all y > 1. We
obtain Theorem 2 by letting si in Theorem 3 equal Sft(c2) from Theorem 4. We fail to
obtain our hoped for analogue of [8] because, in general s& in Theorem 3 must not vary
with c. Indeed, it is not hard to show that the result fails for certain si varying with c. In
our situation the precise structure of si would need to be taken into account when
analysing various error terms, if we were to obtain our desired conclusion.

Before proving our results we mention some related questions. Leitmann and Wolke
also established that the sequence [an] includes infinitely many primes for every positive
a. The corresponding problem for [ap] encompasses such notoriously difficult questions
as "is 2p + 1 prime infinitely often?" (take a = j). It follows from [4] that [ap] is prime
infinitely often for almost all a. It is a consequence of [6] that [apc] is prime infinitely
often once c is fixed greater than one for almost all a.

2. Proof of Theorem 3. Let

•i

0 otherwise.
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Then

) = (a + l)y - ay + ({-(a + i n - {-a"})

= yay~l + 0(ay-2) + ({-(a + 1)*} - {-ay})

= ya^1 + O(ay~2) - 2 ^

for any H, using the familiar truncated Fourier series for {6},

ri

= yay-1 + 0{ay'2) - £ g(/i(o + r)7)(« + ty^ydt + E2(a, y), say
h O<I/I|SW

= M(y)fl) + O( f l^
2)-£1(f l ,y) + £2(fl, r) ) say. (7)

To prove Theorem 3 we first restrict our attention to an interval - , - c ( l 2)
Iv ul

where v = u+-. We may then obtain our result by considering almost all y E [U,V]. At

this point we choose

Map] + 2, where / 3 = ^ ^ -

It will become apparent later that this is the optimum choice for H to balance the two
errors Ex(a, y) and E2{a, y). Clearly

2 M(y,a)
a es4

is our main term, while

2 O(ay-2) = 0(1).

Henceforth the variables a and b will both tacitly be assumed to belong to si.
We will show that, for any 5 > r s 1,

and

P 2 \E2(a,y)\dy« 2 //(a)"1 ln(2a) = *,(!•,*), say, (8)

f 2 £1(«,y)2dy« 2 / / ( f l^lnC//^)))3^4^^^^) , say. (9)

By the argument used in [11] (or a slight addition to the method of [12], Lemma 10)
it follows from (7), (8), (9) that, for almost all y e [u, v], we have

2 g(y,a) = y 2 a'-1 + O(^(l,y + 1)1+^ + <^(l,y + 1 ) H (10)
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By Cauchy's inequality

\-*n*P

In fl)

Since the second sum in (11) converges, the error in (10) is
1 s.

as required to complete the proof of Theorem 3.
To obtain (8) we note that if

A<ny< A + 8

then y is restricted to an interval of length

-K
• < -

In n A In n
Thus

~k

."-lsma'
I,2k)

«ln(2n)
and this gives (8).

We begin our estimation of the left-hand side of (9) by writing it as

dy

135

(ID

y2dtdy (12)

by three applications of the Cauchy-Schwarz inequality. Here d~D means D ^
Now

<2D.

= 2 f («
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(we tacitly assume the restriction H{a), H{b) >\h\ in the above and following)

(by [13], Lemma 4.3)

~ 'min(l, ;

« Z fl +Tj Z « • U->)

The right-hand side of (12) is thus

I, (/c + 1) 2 Z 2» « +,,., Z «

(recalling that a was restricted by H{a) ^ \h\)

2(ln//(fl))3 (14)

2
as desired. To obtain (14) we noted that H(a)a~2p^l follows from c< . We have

2- a
thus established (9) and completed the proof of Theorem 3. We note that it was the
diagonal terms (a = b) which gave the most significant contribution to (13). If si were to
depend on c in the way necessary to prove an analogue of [8] the bound (8) may be
obtained as above, and the diagonal terms in (13) cause no problem. It is the
non-diagonal terms which become very difficult to treat in this new situation.

3. Proof of Theorem 4. We write £(s) for the Riemann zeta-function and let

p = /3 + iy denote a zero of £(s) (y no longer appears as - j . We put

N(cr,T)= 2 1.

In the following Lemma we assemble the information we require on N(cr, T).

LEMMA 1.7/7 is sufficiently large we have

N(CT,T) = 0, fora>l-(\nT)-b (15)

N(a,T)«T{i~lTK2-^, fora>\ (16)
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Proof. See Chapters 6 and 9 of [13], in particular the end of the chapter notes.

Proof of Theorem 4. Put

Xr = exp((lnr)4), r = l , 2 , 3 , . . . .

We then note that

^ = 1 + O(r') = 1 + O(exp(-(ln *,)*)) (18)

and

m a x ( ^ - - l , l - % i ) « ^ - ^ « exp(-ln *,)»). (19)

Write

S(r) = 58(y, Xr) - 3B(y, * ,_ , ) , 4 = (*,_„*,]

dr = Xr - Xr_u and, for ; = 0,1, a,- = 1 - ——,
Ar-j

SM) = 2 A(«) E A(m) (20)

Mj(r) = (1 - aj) 2 MnW.

Then

where the O(^"^) term in (21) arises from the contribution of prime powers to (20).
We will show that

Sj(r) = Mj(r)(l + Ex(r) + E2(r)) (22)

where £,(r) = O(exp(-(lnXrf)) for all y, and |£2(r)|<exp(-(lnAr
r)*) for almost all

y e (1,2), for all large r. We now show how Theorem 4 follows from (22). By (19) and the
prime number theorem we obtain

jir) = (X* - ^ - 0 ( 1

Now suppose Xr-i <x<Xr. The formula (18) gives a bound on -—-— and -—r-, while
lnA lnj:

(y,) (y,r-x)«(x-Xr-l)x
yi «xy

and

y{\nxf
It follows that

:«Xy

for all y for which we obtain a suitable bound on \E2(r)\.
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We commence our proof of (22) by appealing to Landau's formula [7]. We
henceforth drop the subscript j on a for clarity. We obtain

- 2. 2, A(n)n
(drX

y(\nXry „
0( + 2, A(n)ln/i . (23)

We pick T = Xr exp((ln Xr)') {-rXr) and so obtain a satisfactory estimate for the O{-)
term in (23).

We write 6 = 1 + (In X)"1- Then Lemma 3.19 of [13] gives

Now

— 1 ro+yp+w' r'

y A(n)nyp = ——I — ( & ) -

(1 - a")

(24)

-•*»—i p

< (In Zr)
2 maxXy

r
p-*N(fi, T)

using (17). The error term in (24) is therefore of a suitable size.
We next shift the integral in (24) back to Re(o)) = —°°, taking care to avoid zeros of

£(s) on the contour (which arise from <o — yp = p'). We thereby find that the integral in
(24) is

Xl+yp _

1+yp - 2 O{(\nXr)Xf). (25)

The error term in (25) may be dealt with as the error term in (24). We have

yi+yP (\ — nyp\

^ y 1 I I

using (15).
It remains therefore to consider

2 2
Xp'+yp-Xpi\yp l-ayp

p'+yp p
\y\s,T

• (26)

It should become apparent that, as usual, the terms with )3 ^ \ are of the greatest
significance in (26), so we henceforth tacitly assume j 3 s | . We then split the summation
ranges for p and p' to get sums S(b,B) where b </3 <b + (InXr)f\ and fi<)3'<
B + (In Xr)~

l in each sum. First suppose that one of b, B > 5. We suppose b 2: B, the case
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B > b follows similarly. Then we tackle (26) by summing first over p' then over p. This
gives

S(b, B)«(InXr)
2N(b, T)X?+y"-'

We note that (27) is an increasing function of b since 1 + y > 2 - 55- Hence, using (15)

S(b, B)« Xy
T exp(-(ln Xr)<)(\n Xr)~

2

which we have already seen is a suitable error.
We now suppose that b, B < f. We split up the ranges of summation over y and y' so

that in S(b, B, A, G) we have |y| ~ G and A - 1 < |y' + yy| < 2A, where A,G e{2n\n>
0}. Thus

vB+yb-\

S(b,B,A,G)« 2 ~H •
p,p' ™

A — 1 ^\y'+yy\<2A
\y\~G

Thus if we write

f2
/= S(b,B,A,G)2X;2ydy

(we deal here only with the "hardest" region: y e [1 + e,2]), we obtain

I« 2 X™ ̂ r f (*) 2 1 dy. (28)
P1.P2 •'l+t P3.P4

Here (*) indicates that y is. constrained by A - 1 < \y} +yy2l ^2A-1. Once ylt y2 are

fixed the integration is thus over a range of length at most —-. Also, for each fixed y,
G

2 l«Aln2Xrmm(N(B,G),N(b,G))
P3.P4

<A(\n2Xr)(N(B,G)N(b,G))\ (29)

To obtain (29) note that once y and y3 are fixed then y4 is restricted to a range of

length — and ./V(<T, R + A) - N(a, R) «A In 2Xr for R^Xr. A similar argument holds if

y and y4 are fixed. Hence upon writing 17 = "T, an<3 using b < 5 we obtain

, G)N(Z>,2
P1.P2 "
V26+2B-4-7)

«^— (In X,)(N(B,G)N(b,G))l
u

« max (In ̂ V C ) ^ - , ( 30 )
6B G
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After substituting the bound (17) for N(a,G) in the above, (30) becomes an increasing
function of G, so we may put G = T. Since

is a decreasing function of a, the maximum of (30) for a > f is attained at a = \, and this
value is

rf
5 exp((ln Xrf)X;K (31)

For 5 < a < | w e note that

+ 4 f l 5

2-a 2-fl
Thus for a < \ the maximum value for (30) is

«(ln Xrf exp(2(ln X^X^« X~*. (32)
»2

From (31) and (32) we obtain I «X^2. We have thus established (22) with an E2(r) such
that, for any e > 0,

f E2{rfdy«X;l

Hence the measure of the set on which E2(r)>:exp(-(lnXr)^) is «r~2. Since

converges, we deduce, by the Borel-Cantelli Lemma, that, for almost all y e [1 + e, 2],
E2(r) <exp(-(ln Xr)^) for all large r.

This completes the proof.
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