This peer-reviewed article has been accepted for publication in Publications of the Astronomical Society of Australia but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI. 10.1017/pasa.2025.10052

Clustering and physical properties of AGN and Star-Forming Galaxies at fixed stellar mass: does assembly bias have a role in AGN activity?

Amrita Banerjee,¹ Biswajit Pandey,² and Anindita Nandi²

¹Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia ²Department of Physics, Visva-Bharati University, Santiniketan, 731235, West Bengal, India Author for correspondence: Biswajit Pandey, Email: biswap@visva-bharati.ac.in.

Abstract

We analyze a volume-limited sample from the Sloan Digital Sky Survey (SDSS) to compare the spatial clustering and physical properties of active galactic nuclei (AGN) and star-forming galaxies (SFG) at fixed stellar mass. We find no statistically significant difference in clustering strength or local density between AGN and SFG. However, after matching their stellar mass distributions, we detect statistically significant differences (at a confidence level > 99.99%) in colour, star formation rate (SFR), 4000 Å break measurements (D4000), and morphology. These differences persist across both low- and high-density environments, suggesting that AGN are not driven by environmental factors. The development of favourable conditions for AGN activity within a galaxy may depend on the diverse evolutionary histories of galaxies. Our results imply that AGN activity may arise stochastically, modulated by the complex assembly history of galaxies.

Keywords: methods: data analysis, methods: statistical, galaxies: statistics

1. Introduction

AGN rank among the brightest astrophysical sources in the universe, emitting radiation across the entire electromagnetic spectrum with bolometric luminosities around $10^{47} - 10^{48}$ erg/s (Fabian 1999; Woo and Urry 2002). This intense radiation is believed to stem from the accretion of matter onto supermassive black holes (SMBH) located at the centers of massive galaxies. As gas clouds spiral toward the SMBH, losing angular momentum, their gravitational potential energy is converted into electromagnetic radiation (Jiang, Stone, and Davis 2013; Cielo et al. 2018). This radiation can then heat the surrounding gas, hindering its cooling and delaying star formation (Kawata and Gibson 2005; Antonuccio-Delogu and Silk 2010; Wagner, Umemura, and Bicknell 2013). Additionally, energy and momentum from AGN-driven outflows and radio jets can either heat or expel gas (Morganti 2017; Baron et al. 2018; Santoro et al. 2020), thereby limiting black hole growth and suppressing further star formation.

AGN feedback is widely regarded as fundamental to the co-evolution of galaxies and their central black holes (Somerville et al. 2008; Kormendy and Ho 2013; Heckman and Best 2014; Harrison 2017). Observations indicate a decline in the star formation rate after $z \sim 1$ (Madau et al. 1996; Hopkins 2004; Behroozi, Wechsler, and Conroy 2013). The observed bimodality in the colour distribution (Strateva et al. 2001; Blanton et al. 2003; Balogh et al. 2004; Baldry et al. 2004; Pandey 2020) indicates that the galaxies are transitioning from the actively star-forming blue population to a passively evolving red sequence. The exact physical processes driving this transition, particularly the quenching of star formation in the transitional "green valley", remain uncertain (Das, Pandey, and Sarkar 2023a). However, numerous studies propose that AGN feed-

back may play a crucial role in quenching star formation in this phase (Nandra et al. 2007; Hasinger 2008; Silverman et al. 2008; Cimatti et al. 2013; Zhang et al. 2021). The models of galaxy formation and evolution increasingly rely on AGN feedback to replicate observed galaxy properties, making it an essential element in theoretical, numerical, and semi-analytic models (Springel, Di Matteo, and Hernquist 2005; Di Matteo, Springel, and Hernquist 2005; Eckert et al. 2021).

Nearly all massive galaxies harbour a supermassive black hole (SMBH) at their center, yet only a subset exhibit AGN activity at any given time. Understanding what triggers AGN activity in these galaxies is critical, as various internal and external factors shape the likelihood of such activity. Internal characteristics, such as gas availability in the central region, host galaxy kinematics, and morphology, significantly influence the accretion of gas onto the central SMBH (Ruffa et al. 2019; Shangguan et al. 2020; Ellison et al. 2021; Sampaio et al. 2023). Additionally, the mass of the host dark matter halo affects gas reservoir availability and the galaxy's capacity to draw gas from its surroundings. Larger halos, with deeper potential wells, facilitate gas inflow toward the galactic center, thus making AGN activity more probable (Georgakakis et al. 2019; Aird and Coil 2021; Luo et al. 2022). Observational data also reveal that AGN activity is more frequent in massive galaxies (Dunlop et al. 2003; Brusa et al. 2009; Pimbblet et al. 2013).

The SMBH mass itself plays a vital role in AGN dynamics. The larger black holes exert stronger gravitational forces, enabling higher accretion rates and boosting AGN luminosity. Meanwhile, AGN feedback can limit black hole growth by modulating gas supply. Massive galaxies, often found in high-mass dark matter halos within dense environments like

© The Author(s), 2025. Published by Cambridge University Press on behalf of Astronomical Society of Australia. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

galaxy clusters and cosmic web filaments, may experience indirect influence from these environments. Observations suggest that galaxy colour and star formation rates are sensitive to cosmic web environments (Pandey and Sarkar 2020; Das, Pandey, and Sarkar 2023b, 2023c). Furthermore, gas inflow along cosmic web filaments can initiate and sustain AGN activity within galaxies (Umehata et al. 2019).

Numerous studies indicate that AGN are more strongly clustered than SFG (Gilli et al. 2009; Mandelbaum et al. 2009; Kollatschny, Reichstein, and Zetzl 2012; Donoso et al. 2014; Hale et al. 2018). Using SDSS data, Satyapal et al. (2014) observe that the fraction of AGN increases as the distance to neighbouring galaxies decreases. Similarly, Zhang et al. (2021) find that AGN have more neighbouring galaxies compared to SFG. Results from the Horizon Run 5 simulation (Lee et al. 2021), as analyzed by Singh et al. (2023), show that AGN activity rises in response to both higher background densities and closer proximity to neighbouring galaxies. Physical mechanisms, including major and minor mergers (Di Matteo, Springel, and Hernquist 2005; Alonso et al. 2007; Ellison et al. 2011; Storchi-Bergmann and Schnorr-Müller 2019), disk instability (Hopkins and Hernquist 2006; Dekel, Sari, and Ceverino 2009; Hopkins, Kocevski, and Bundy 2014), and tidal effects (Moore et al. 1996), are thought to enhance the supply of cold gas to the central SMBH, thereby boosting AGN activity. Interactions and mergers, more common in clusters and filaments, often drive gas inflows toward galactic centers, further promoting AGN activity (Hernquist 1989; Springel, Di Matteo, and Hernquist 2005; Alexander and Hickox 2012).

While AGN are generally more common in dense environments, extremely high-density regions like massive galaxy clusters present a more complex picture. The pressure from the hot intracluster medium (ICM) at the centers of massive galaxy clusters can cause ram pressure stripping of the cold gas that fuels the AGN activity (Gunn and Gott 1972; Abadi, Moore, and Bower 1999; Boselli, Fossati, and Sun 2022). Additionally, the cluster halo may capture the cold gas, preventing accretion towards the inner regions by strangulation (Larson, Tinsley, and Caldwell 1980; Peng, Maiolino, and Cochrane 2015). These processes often suppress AGN activity near the centers of massive galaxy clusters. Ehlert et al. (2014) observe that the fraction of X-ray bright AGN rises with increasing distance from the centers of galaxy clusters, and Lopes, Ribeiro, and Rembold (2017) find that AGN are more frequently located in low-mass groups, field environments, and cluster outskirts. The XXL survey (Pierre et al. 2016), as analyzed by Koulouridis et al. (2018), reveals that the relationship between X-ray-selected AGN and environment differs between high- and low-mass clusters. Studies of X-ray selected clusters from ROSAT by Mishra and Dai (2020) show a lower AGN fraction in clusters compared to fields, while Ceccarelli, Duplancic, and Garcia Lambas (2021) find AGN activity significantly stronger in voids compared to field environments.

Low-density regions, such as voids, tend to host less evolved galaxies due to the lack of external processes, like gas stripping

and frequent mergers, and contain large reservoirs of pristine gas. Galaxies in these environments evolve through internal, or secular, processes and are typically fainter, bluer, and exhibit higher star formation rates than galaxies in averagedensity environments (Grogin and Geller 2000; Hoyle et al. 2005; Ricciardelli et al. 2014; Bruton et al. 2020). Constantin, Hoyle, and Vogeley (2008) find that moderately luminous AGN are more common in voids than walls, but the abundance of brighter AGN are comparable in the two environments. Kauffmann, Heckman, Tremonti, et al. (2003) observe a decreasing AGN fraction in massive galaxies as density increases, and several other works report a higher prevalence of AGN in low- to moderate-density environments (Kauffmann et al. 2004; Gilmour et al. 2007; Choi, Woo, and Park 2009; Sabater, Best, and Argudo-Fernández 2013; Miraghaei 2020; Mishra, Dai, and Guerras 2021). This trend suggests that galaxies in voids may experience a higher frequency of one-on-one interactions, which may be key to triggering AGN activity in these regions.

The environmental dependence of AGN activity at higher redshifts has been investigated in several studies. Using data from the zCOSMOS spectroscopic survey up to $z \sim$ 1, Silverman et al. (2009) find that massive galaxies hosting AGN tend to reside in low-density regions. In contrast, Bradshaw et al. (2011) analyze the UKIDSS Ultra-deep Survey in the redshift range $z \sim 1 - 1.5$ and observe that AGN are more frequently found in high-density environments. More recent studies provide growing evidence for a positive evolution of AGN activity with redshift, particularly in dense environments such as galaxy clusters. Several works have demonstrated that the fraction of AGN in clusters increases with redshift, implying a stronger connection between environment and AGN triggering at earlier times (Fassbender, Šuhada, and Nastasi 2012; Martini et al. 2013; Bufanda et al. 2017; Hashiguchi et al. 2023). Numerous studies also reported a high incidence of AGN in proto-cluster environments, further supporting the idea that dense regions at high redshift are conducive to AGN activity (Lehmer et al. 2013; Krishnan et al. 2017; Gatica et al. 2024; Vito et al. 2024).

Several other studies suggest that AGN activity shows little to no dependence on environmental factors. Miller et al. (2003) report that the fraction of optically selected AGN remains consistent from the cores of galaxy clusters to field regions, a finding mirrored by Martini, Mulchaey, and Kelson (2007) for X-ray-selected AGN. Similarly, Pandey and Bharadwaj (2008) analyze SDSS data, comparing filamentarity in the distributions of SFG and AGN, and find no significant difference. Pimbblet et al. (2013) observe that the fraction of optically selected AGN does not vary with distance from the cluster center, while Sabater, Best, and Heckman (2015) find no statistically significant effect of environment on optical AGN activity. Likewise, Amiri, Tavasoli, and De Zotti (2019) report only a weak correlation between local galaxy density and AGN activity, and Man et al. (2019), analyzing SDSS data, find minimal to no environmental influence on AGN occurrence. Some studies find no significant differences in the clustering of AGN and non-AGN galaxies (Porqueres et al. 2018; Wang and Li 2019). These apparently conflicting results suggest that the role of environment in AGN activity remains an open question, underscoring the need for further research to resolve the uncertainties.

The SDSS (Stoughton et al. 2002) provides high-quality spectra and imaging for a large number galaxies in the nearby universe, making it one of the largest and most comprehensive redshift surveys to date. The precise classification of SFG and AGN based on emission lines enables a robust statistical comparison between these populations. In this study, we investigate the clustering properties of SFG and AGN using statistical tools such as the two-point correlation function and nearest neighbour distribution. The mass of a galaxy is known to influence the AGN activity. However, galaxy mass is known to depend on environment. To identify any additional dependence of AGN activity on the environment, we will compare the spatial clustering and physical properties of the SFG and AGN after matching their stellar mass distributions. This approach will allow us to assess any residual environmental impact on AGN activity by comparing the spatial clustering and physical properties of SFG and AGN at similar masses across varying densities. Additionally, analyzing AGN and SFG properties in different environments at the same mass could clarify the influence of large-scale environment and assembly bias (Gao, Springel, and White 2005; Wechsler et al. 2006; Gao and White 2007; Croton, Gao, and White 2007). The dark matter halos of similar mass may have distinct assembly histories leading to different halo concentration, merger rates, or gas accretion rates, potentially impacting the AGN activity. In this study, we will explore the possible roles of assembly bias on the AGN activity in galaxies.

We use a Λ CDM cosmological model with $\Omega_{m0} = 0.315$, $\Omega_{\Lambda 0} = 0.685$ and h = 0.674 (Planck Collaboration et al. 2020) throughout the present work.

The outline of our work is as follows. In Section 2, we describe our data and the methods of analysis. Section 3 presents our results, and in Section 4, we provide our conclusions.

2. Data and method of analysis

2.1 SDSS data

We use data from the 17th data release (DR17) of SDSS (Abdurro'uf et al. 2022), which is a multi-band imaging and spectroscopic redshift survey. The SDSS employs a 2.5 m optical telescope (Gunn et al. 2006) at Apache Point Observatory in New Mexico, USA, to gather photometric and spectroscopic data on galaxies across one-quarter of the entire sky. DR17 covers 14555 square degrees and includes spectroscopic information for 2863635 galaxies. For our analysis, we focus on the Main Galaxy Sample (Strauss et al. 2002) of the SDSS. The data are accessed via the SDSS CasJobs service^a using Structured Query Language (SQL).

We select a contiguous region of the sky in equatorial coordinates, specifically the area spanning $130^\circ \le \alpha \le 230^\circ$

a. https://skyserver.sdss.org/casjobs/

and $0^{\circ} \leq \delta \leq 60^{\circ}$, for our analysis. From this region, we download the spectroscopic data for galaxies with redshifts in the range $0 \leq z \leq 0.2$ and r-band apparent Petrosian magnitudes $m_r < 17.77$. These criteria yield a total of 392292 galaxies.

We use the *galSpecExtra* table, which is derived from the MPA-IHU spectroscopic catalog of galaxies ^b, to classify the objects as AGN or SFG based on the BPT diagram (Brinchmann et al. 2004). In this table, SFG are flagged with a value of 1, while AGN are flagged with a value of 4. Our AGN sample primarily consists of high signal-to-noise ratio (SNR) narrow line AGN excluding the composite galaxies (flag 3) and galaxies with low-ionization nuclear emission-line regions (LIN-ERs). The information about the stellar mass and SFR are also provided in the galSpecExtra table. The stellar masses of the galaxies are estimated using the methodology outlined in Kauffmann, Heckman, Tremonti, et al. 2003, applied to photometric data as detailed in Salim et al. 2007. Star formation rates are calculated according to the approach discussed in Brinchmann et al. 2004. The aperture corrections are made by estimating star formation rates from SED fits to the photometry outside the fiber, following the methodology described in Salim et al. 2007. Estmating SFR in AGN through model fitting gives unreliable results since different lines are affected by AGN in different ways. The sSFR for AGN in MPA-JHU catalogue are calculated using D4000 values. The D4000, which indicate the mean age of the stellar population in galaxies (Balogh et al. 1999), are retrieved from the *galSpecIndx* table. To characterize the morphology of galaxies, we use the concentration index, $\frac{r_{90}}{r_{50}}$ (Shimasaku et al. 2001), where r_{90} and r_{50} represent the radii that contain 90% and 50% of the Petrosian flux, respectively. These values are obtained from the *PhotoObjAll* table.

We construct a volume-limited sample by applying a cut on the K-corrected and extinction-corrected r-band absolute magnitude, selecting galaxies with $M_r \leq -21$. This corresponds to a redshift cut of $z \leq 0.12$. The resulting sample consists of a total of 111671 galaxies (Figure 1), which include 38606 unclassified galaxies, 17282 star-forming galaxies, 22943 low SNR star-forming galaxies, 10028 composite galaxies, 5828 AGNs, and 16984 low SNR LINERs.

We extract the largest cube that can be fitted within the volume-limited sample. This datacube has a side length of 267.5 Mpc and contains a total of 30860 galaxies, of which 5184 are SFG and 1883 are AGN. The primary objective of this work is to compare the spatial clustering and physical properties of AGN and SFG. Therefore, we focus our analysis on these two galaxy types. The spatial distributions of AGN and SFG within the extracted datacube are shown in Figure 2.

2.2 Methods of analysis

b. https://www.sdss4.org/dr17/spectro/galaxy_mpajhu/

Figure 1. This shows the definition of the volume limited sample in the redshift-absolute magnitude plane. The volume limited sample comprises of the galaxies lying within the rectangular region in this diagram.

2.2.1 Matching the stellar mass distributions of the AGN and SFG

The stellar mass of a galaxy is a key factor influencing the onset of AGN activity. AGN abundance tends to increase with the stellar mass of the host galaxy (Kauffmann, Heckman, Tremonti, et al. 2003; Silverman et al. 2009). This strong correlation between AGN activity and galaxy mass could introduce significant bias into our study if not properly accounted for. To address this, we match the stellar mass distributions of AGN and SFG in our sample using the criterion $\left|\frac{m_{SFG}}{m_{AGN}} - 1\right|$ < 10^{-3} . The stellar mass distributions for both AGN and SFG, before and after matching, are shown in the left and right panels of Figure 4, respectively. We apply a Kolmogorov-Smirnov (KS) test to compare the distributions after matching and find that the null hypothesis can be rejected with very low confidence (p-value < 1%).

We calculate the fraction of AGN as a function of stellar mass for the galaxies in our datacube and present the results in Figure 3. The left panel of Figure 3 shows that the AGN fraction $\frac{AGN}{AGN+SFG}$ increases steadily with stellar mass for galaxies with masses greater than $\sim 10^{10.5} M_{\odot}$. The sharp rise in the ratio $\frac{AGN}{SEG}$ at higher masses, shown in the right panel of Figure 3, is due to the lower abundance of SFG at these mass scales. Galaxies with masses above $3 \times 10^{10} M_{\odot}$ are predominantly quiescent, bulge-dominated galaxies, while those with lower masses are typically actively star-forming and have disk-like morphologies (Kauffmann, Heckman, White, et al. 2003) distances for both AGN and SFG galaxies, using all 30860 Hydrodynamical simulations suggest that a transition occurs around this critical mass from cold-mode to hot-mode accretion, leading to mass quenching in galaxies (Birnboim and Dekel 2003; Dekel and Birnboim 2006; Kereš et al. 2005; Gabor et al. 2010). In these more massive galaxies, the halo gas can eventually cool and collapse to form stars. However, AGN feedback can provide additional heating, preventing this cooling and maintaining a hot halo (Fabian 2012; McNamara and Nulsen 2012). The higher AGN fraction observed in more massive galaxies suggests that these galaxies provide a more conducive environment for AGN activity. Moreover,

the more massive galaxies are strongly clustered and tend to reside in high-density regions. This implies that any comparison of clustering between SFG and AGN would be influenced by the mass dependence of clustering.

The primary goal of this study is to compare the clustering and physical properties of SFG and AGN with similar stellar masses. Since the environment, clustering, and physical properties of galaxies are strongly influenced by its mass, we match the stellar mass distributions of the two populations to ensure that our results are not biased by mass-dependent factors. Although only about 20% of the most massive galaxies in our SFG sample are available for comparison with AGN, this approach allows us to explore the roles of other potential factors, beyond stellar mass, that might contribute to AGN activity.

2.2.2 Two-point correlation function

The two-point correlation function quantifies the strength of galaxy clustering at a given scale by measuring the excess probability of finding two galaxies at a specific separation, compared to a random Poisson distribution. We calculate the two-point correlation function separately for the AGN and SFG samples, after matching their stellar mass distributions. The data extracted from the volume-limited sample includes 1883 AGN and 5184 SFG. After stellar mass matching, we obtain 1285 AGN and 1285 SFG galaxies.

The two-point correlation function is computed using the Landy and Szalay estimator (Landy and Szalay 1993):

$$\xi(r) = \frac{DD(r) - 2DR(r) + RR(r)}{RR(r)} \tag{1}$$

where DD(r), RR(r) and DR(r) are normalized counts for datadata, random-random and data-random pairs at separation r. To estimate the error bars, we generate 50 jackknife resamplings for each dataset.

2.2.3 Distribution of the n^{th} nearest neighbour distance and the local density

Galaxies in denser environments are expected to have closer neighbours. The distance to the n^{th} nearest neighbour, r_n , can serve as a proxy for the local environment (Casertano and Hut 1985) of a galaxy, with n representing the number of neighbours considered. In our analysis, we focus on threedimensional space and select n = 5 for the present study.

We calculate the distribution of the 5^{th} nearest neighbour galaxies in our dataset.

The local galaxy density around an AGN or SFG is defined as,

$$\eta_n = \frac{n-1}{V(r_n)} \tag{2}$$

where, $V(r_n) = \frac{4}{3}\pi r_n^3$ is the volume within a radius r_n .

Due to the sharp boundaries of our samples, the local density can be underestimated near the edges. To address this, we calculate the minimum distance r_h from each galaxy to the

Figure 2. The left and right panels of this figure, respectively show the spatial distributions of the AGN and SFG within the datacube extracted from the volume limited sample.

boundary of the sample and only include galaxies for which $r_n < r_b$ in our local density calculations.

3. Results and Discussions

Table 1. This table shows the best fit values of r_0 and γ for the two-point correlation functions of AGN and SFG. The two-point correlation functions are fitted to a power law of the form $(\frac{r}{m})^{-\gamma}$ upto a scale of 25 Mpc.

Class	Correlation length (r_0)	Slope (γ)
AGN	$r_0 = 10.82 \pm 3.41$	γ = 1.09 ± 0.13
SFG	$r_0 = 8.36 \pm 2.57$	γ = 1.29 \pm 0.12

3.1 The two-point correlation function and the 5th nearest neighbour distribution of the mass-matched AGN and SFG

In the top-left and top-right panels of Figure 5, we show the two-point correlation function and the probability density function (PDF) of the 5th nearest neighbour distance for the mass-matched AGN and SFG populations, respectively. The bottom left panel of Figure 5 reveals that AGN are somewhat more strongly clustered than SFG at fixed stellar mass. However, the statistical significance of these differences are not strong enough to confirm the differences in their clustering strength. We also repeat our calculations for the twopoint correlation functions of AGN and SFG using the publicly available code *Corrfunc* (Sinha and Garrison 2020) and obtained the same results as presented in this work.

The two-point correlation functions for AGN and SFG are analyzed in redshift space, where a power-law fit provides a reasonable approximation on scales below 25 Mpc (Hawkins et al. 2003). We fit the two-point correlation functions to a power law of the form $\xi(r) = (\frac{r}{r_0})^{-\gamma}$ using least squares fitting and present the fitted values for the correlation length (r_0) and slope (γ) in Table 1. The results show that the two-point correlation function of AGN has a larger correlation length and

a shallower slope compared to SFG, even after matching their stellar mass distributions. However, the errors associated with these parameters (see Table 1) suggest that r_0 and γ for AGN are consistent with SFG within 1σ .

The bottom-right panel of Figure 5 compares the 5th nearest neighbour distributions for AGN and SFG using a KS test. The KS test shows that the null hypothesis can be rejected at the 95% confidence level. The distance to the 5th nearest neighbour is smaller for AGNs than for SFGs, indicating that AGN are hosted in relatively higher-density regions compared to SFG. However, the significance of these differences are not sufficiently strong that can unambiguously provide an evidence in favour of a stronger clustering of AGN compared to SFG. Several earlier studies reported a stronger clustering for AGN (Gilli et al. 2009; Mandelbaum et al. 2009; Kollatschny, Reichstein, and Zetzl 2012; Donoso et al. 2014; Hale et al. 2018). Further investigations with larger datasets are necessary to confirm the differences in the clustering of AGN host galaxies and star-forming galaxies at fixed stellar mass.

3.2 Comparing the distributions of different physical properties of the mass-matched AGN and SFG

The triggering of AGN activity may require specific physical conditions within a galaxy, and the onset of AGN activity can, in turn, affect certain physical properties of the host galaxy. Understanding the differences between the physical properties of AGN host galaxies and star-forming galaxies is crucial. The mass of a galaxy is known to be the most influential factor in determining its physical properties (Cooray and Sheth 2002). Moreover, the AGN fraction is strongly correlated with the stellar mass of galaxies (Figure 3). It is therefore of interest to compare the distributions of various physical properties for the two populations after matching their stellar mass distributions.

We compare the distributions of the (u-r) colour, concentration index $\binom{r_{90}}{r_{50}}$, SFR, and the D4000 for AGN host galaxies and star-forming galaxies at fixed stellar mass. These distri-

Figure 3. The left panel shows the fraction $\frac{AGN}{AGN+SFG}$ and the right panel shows $\frac{AGN}{SFG}$ as a function of stellar mass.

Figure 4. The left panel of this figure shows the stellar mass distributions of the AGN and SFG. We match the AGN and SFG stellar mass distributions, which are shown together in the right panel.

Figure 5. The top left panel of this figure shows the two-point correlation function as a function of length scale (r) for the AGN and SFG. The ratio of the two-point correlation functions for AGN and SFG is plotted as a function of r in the bottom left panel. The 1 σ errorbars in these figures are obtained from 50 jackknife samples drawn from the original dataset. The top right panel shows the PDFs of the 5th nearest neighbour distance for AGN and SFG. The two distributions are compared using a KS test, and the results are shown in the bottom right panel. The comparisons are carried out after matching the stellar mass distributions of AGN and SFG.

Figure 6. The different panels of this figure show the distributions of the (u - r) colour, SFR, D4000 and $\frac{r_{90}}{r_{50}}$ for the AGN and SFG after matching their stellar mass distributions. We use KS-test to compare the distributions for the AGN and SFG in each case. The corresponding p-values are extremely small, and the null hypothesis can be rejected at > 99.99% confidence level in each case.

Figure 7. The four left panels of this figure show the PDFs of (u - r) colour, SFR, D4000 and $\frac{r_{90}}{r_{50}}$ for the mass-matched AGN and SFG in the low density regions. The four right panels show the same in the high density regions. The KS test shows that the null hypothesis can be rejected at > 99.99% confidence level in each case.

butions are shown in different panels of Figure 6. To quantify the dissimilarity between the two distributions in each case, we apply the KS test. The results indicate that the null hypothesis can be rejected with a confidence level greater than 99.99% in all cases.

The different panels of Figure 6 show that the PDFs for AGN and SFG cover similar ranges but peak at different values. In the top-left panel of Figure 6, we observe that most SFG are located in the blue cloud ((u - r) < 2.22) (Strateva et al. 2001), while the colour distribution of AGN host galaxies peaks in the green valley and extends into both the blue cloud and the red sequence.

The blue colours of SFG are primarily due to the presence of young, hot, and massive stars that dominate the emission from the galaxy. These stars emit substantial ultraviolet and blue light, giving SFG their characteristic blue colour. In contrast, AGN tend to have redder colours, which can be attributed to the dust and gas surrounding the central black hole. This dust absorbs and scatters the blue and ultraviolet light emitted by the accretion disk, causing the galaxy to appear redder. Additionally, the redder colours may result from the thermal emission of dust heated by the radiation, contributing to the infrared part of the spectrum. An older stellar population in AGN host galaxies can also contribute to their redder appearance.

We compare the SFR distributions of AGN and SFG in the top-right panel of Figure 6. The SFR distributions for SFG and AGN peak around ~ $4 M_{\odot}$ /yr and ~ $1 M_{\odot}$ / yr, respectively. Both distributions are positively skewed and extend to higher SFRs (up to $15 M_{\odot}$ / yr). However, the abundance of AGN decreases significantly compared to SFG for SFRs above $3 M_{\odot}$ /yr.

The bottom-left panel of Figure 6 shows the distributions of the 4000 Å break measurements for AGN and SFG. The 4000 Å break is strongly correlated with the ratio of the past average SFR to the present SFR in galaxies (Kauffmann, Heckman, White, et al. 2003), and it serves as an indicator of the galaxy's recent star formation history. The distribution for AGN peaks at a higher value of D4000 (\sim 1.63) and is negatively skewed, while the distribution for SFG peaks around ~ 1.38 and is nearly symmetrical. Lower values of D4000 (< 1.5) are associated with younger stellar populations, indicating recent star formation or a completed starburst. Conversely, higher values (> 1.8) correspond to older stellar populations (Kauffmann and Heckman 2009). The higher D4000 values for AGN suggest that their host galaxies are primarily composed of older stellar populations. However, we also observe that some AGN host galaxies exhibit D4000 values below 1.5, implying that AGN activity can coexist with starburst activity in certain galaxies.

We compare the distributions of the concentration index for AGN and SFG in the bottom right panel of Figure 6. The concentration index is strongly correlated with galaxy morphology (Shimasaku et al. 2001). A concentration index of $\frac{r_{90}}{r_{50}}$ = 2.3 corresponds to a pure exponential profile (Strateva et al. 2001), while $\frac{r_{90}}{r_{50}}$ = 3.33 describes a pure de

Vaucouleurs profile (Blanton et al. 2001). Higher values of the concentration index are typically associated with elliptical and bulge-dominated galaxies, whereas disk-dominated spiral galaxies have lower concentration indices (< 2.6) (Strateva et al. 2001). For our sample, the concentration index distributions for AGN and SFG peak at around ~ 2.8 and \sim 2.3, respectively. This suggests that most SFG have disklike morphologies, while AGN are more commonly found in bulge-dominated systems. We also note that the distribution for AGN is negatively skewed, whereas the distribution for SFG is positively skewed. This indicates that AGN can also occur in disk-dominated galaxies, and some SFG may exhibit bulge-dominated morphologies. These findings are consistent with previous studies showing that barred spiral galaxies in groups often display AGN activity (Alonso, Coldwell, and Lambas 2014), and that some elliptical galaxies can undergo rejuvenation in isolated environments (Zezas et al. 2003; Lacerna et al. 2016).

3.3 Comparing the distributions of different physical properties of the mass-matched AGN and SFG in low and high density regions

Figure 6 shows that the physical properties of AGN and SFG differ significantly at fixed stellar masses. Analysis of the twopoint correlation function and the distribution of the 5th nearest neighbours (Figure 5) also reveals that AGN exhibit moderately stronger clustering than SFG. AGN tend to prefer denser regions, while SFG are more commonly found in less dense environments. However, these environmental differences can not be confirmed at a high significance level from this analysis. The local density may have a role in triggering AGN activity. It would be interesting to explore whether the observed differences in the physical properties of AGN and SFG, as shown in Figure 6, persist in regions of different density. To investigate this, we divide the mass-matched AGN and SFG into two categories based on local density. Galaxies residing in regions with a density below the median of the combined sample are classified as "low density", while those in regions with a density above the median are classified as "high density".

We calculate the PDFs of four galaxy properties for AGN and SFG in both low-density and high-density regions. The comparisons of physical properties for AGN and SFG in lowdensity regions are shown in the four left panels of Figure 7, while the comparisons in high-density regions are displayed in the four right panels. The differences between the PDFs in each panel are quantified using the KS-test. The results show that the null hypothesis can be rejected with a confidence level greater than 99.99% in all cases, indicating that the differences in the physical properties of AGN and SFG persist in both low- and high-density regions.

AGN activity can be triggered in both high- and lowdensity environments, and its presence significantly alters the physical properties of the host galaxy compared to those of a SFG. Notably, the differences in physical properties between AGN and SFG persist regardless of local environmental density. This indicates that such differences can not be explained by variations in local density.

4. Conclusion

We use a volume-limited sample from the SDSS to compare the clustering and physical properties of SFG and AGN host galaxies at fixed stellar mass. Our analysis with two-point correlation function and the 5th nearest neigbour distance reveals that the clustering strength of AGN are moderately stronger than SFG. However, the statistical significance of these differences are not sufficiently strong to confirm these environmental differences. The weak significance may arise due to the small size of our samples. Further analysis with larger datasets are required for conclusive evidence.

We further compare the distributions of (u - r) colour, concentration index, SFR, and D4000 for AGN and SFG at fixed stellar mass and find statistically significant differences at a confidence level exceeding 99.99%. These distributions are also examined across varying densities while maintaining fixed stellar mass, revealing that the differences persist at the same significance level in both high and low density environments (Figure 7). This suggests that the observed differences in the physical properties of AGN and SFG cannot be attributed solely to their local density. Instead, density may play an indirect role in AGN activity by increasing the likelihood of galaxy interactions (Ellison et al. 2011; Sabater, Best, and Heckman 2015; Singh et al. 2023). In relaxed systems, gas is unable to flow toward the central SMBH due to angular momentum conservation. Interactions can generate torques or instabilities that funnel gas toward the SMBH, thereby triggering AGN activity (Woods and Geller 2007; Rogers et al. 2009). Although the number density of galaxies in cluster environments is much higher than in the field, the higher velocities of galaxies, particularly those newly infalling near the cluster center, can inhibit interactions. Haines et al. (2012) provide evidence suggesting that galaxy interactions may still play an important role in the cluster outskirts, offering a scenario where such interactions are more likely to occur. Ehlert et al. (2015) suggested that galaxy mergers could play a significant role in contributing to the AGN population within clusters. Several other works Koulouridis, Gkini, and Drigga (2024) and Drigga et al. (2025) presented additional evidence in support of this idea. Notably, our results indicate that AGN activity can also be sustained through secular processes in low density environments.

Galaxies with similar stellar masses can exhibit significantly different assembly histories, creating uncertainties about whether a galaxy of a given stellar mass can host the conditions necessary for AGN activity. Two key prerequisites for AGN activity are the presence of a bulge and the availability of gas (Ruffa et al. 2019; Shangguan et al. 2020; Ellison et al. 2021; Sampaio et al. 2023). However, these favorable conditions are met only in a subset of galaxies at a given stellar mass, with their prevalence depending on both stellar mass and assembly history. Studies indicate that the frequency of bulge formation increases with stellar mass (Erwin and Debattista 2017) and is influenced by assembly history (Kruk et al. 2019). Hy-

drodynamical simulations further suggest that assembly bias can lead to substantial variations in the cold gas content of galaxies (Cui et al. 2021). For instance, galaxies with higher stellar masses tend to reside in early-formed halos, which are more likely to accumulate large reservoirs of cold gas. Consequently, the availability of cold gas is governed by both stellar mass and the assembly history of the host halos.

The observed increase in AGN fraction with stellar mass is linked to the greater likelihood of bulge dominance and the presence of larger cold gas reservoirs in more massive galaxies. Additionally, massive halos, which reside in denser environments, are subject to more frequent interactions. These interactions can influence AGN activity and may be reflected in the clustering properties of galaxies. Croton, Gao, and White 2007 demonstrate that assembly bias alters the two-point correlation function of galaxies by $\sim 10\%$. It would be difficult to confirm the role of assembly bias from such small differences in the observed two-point correlation functions. Using information theoretic measures, several studies show that galaxy morphology and colour are significantly impacted by large-scale environment (Pandey and Sarkar 2017; Sarkar and Pandey 2020; Sarkar, Pandey, and Das 2022). Such dependence hints towards possible roles of assembly bias in shaping the galaxy properties. We plan to compare the large-scale environment of SFG and AGN in future work.

Massive galaxies predominantly inhabit denser environments, and AGN hosts are typically high-mass galaxies. Since galaxy clustering is strongly influenced by mass, our SFG and AGN samples are matched in stellar mass. AGN exhibit only a moderately stronger clustering than SFG, suggesting that local density may not have a significant role in triggering AGN activity. Further, the observed differences in the physical properties of mass-matched SFG and AGN remain largely independent of environmental density. This also indicates that the local environment is unlikely to be the primary driver of AGN activity.

Our findings hint at a potential role of assembly history in influencing AGN activity. However, the current analysis does not provide conclusive evidence, necessitating further investigation. The relationship between assembly bias and AGN activity is inherently complex, involving an intricate interplay between the formation histories of galaxies, the properties of their host dark matter halos, and the mechanisms that trigger and regulate AGN activity. A deeper understanding of these connections is essential to uncover the influence of assembly bias on AGN activity. We plan to use hydrodynamical simulations, such as EAGLE (Schaye et al. 2015) and IllustrisTNG (Nelson et al. 2019) in future work, to explore these aspects in greater detail.

Acknowledgement

The authors thank an anonymous reviewer and the associate editor for the valuable comments and suggestions that helped to improve the draft. BP would like to acknowledge financial support from the SERB, DST, Government of India through the project CRG/2019/001110. BP would also like to acknowledge IUCAA, Pune, for providing support through the associateship programme. AN acknowledges the financial support from the Department of Science and Technology (DST), Government of India through an INSPIRE fellowship. The authors thank Tapas Kumar Das for some interesting discussions.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

Data Availability Statement The SDSS data are publicly available at https://skyserver.sdss.org/casjobs/. The data generated in this work will be shared on reasonable request to the authors.

References

- Abadi, Mario G., Ben Moore, and Richard G. Bower. 1999. Ram pressure stripping of spiral galaxies in clusters. MNRAS 308, no. 4 (October): 947–954. https://doi.org/10.1046/j.1365-8711.1999.02715.x. arXiv: astro-ph/9903436 [astro-ph].
- Abdurro'uf, Katherine Accetta, Conny Aerts, Victor Silva Aguirre, Romina Ahumada, Nikhil Ajgaonkar, N. Filiz Ak, et al. 2022. The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. ApJS 259, no. 2 (April): 35. https://doi.org/10.3847/1538-4365/ac4414. arXiv: 2112.02026 [astro-ph.GA].
- Aird, James, and Alison L. Coil. 2021. The AGN-galaxy-halo connection: the distribution of AGN host halo masses to z = 2.5. MNRAS 502, no. 4 (April): 5962–5980. https://doi.org/10.1093/mnras/stab312. arXiv: 2010.02957 [astro-ph.GA].
- Alexander, D. M., and R. C. Hickox. 2012. What drives the growth of black holes? New A Rev. 56, no. 4 (June): 93–121. https://doi.org/10.1016/j. newar.2011.11.003. arXiv: 1112.1949 [astro-ph.GA].
- Alonso, M. Sol, Diego G. Lambas, Patricia Tissera, and Georgina Coldwell. 2007. Active galactic nuclei and galaxy interactions. MNRAS 375, no. 3 (March): 1017–1024. https://doi.org/10.1111/j.1365-2966.2007. 11367.x. arXiv: astro-ph/0701192 [astro-ph].

- Alonso, Sol, Georgina Coldwell, and Diego G. Lambas. 2014. AGN spiral galaxies in groups: effects of bars. A&A 572 (December): A86. https://doi.org/10.1051/0004-6361/201424523. arXiv: 1410.0902 [astro-ph.GA].
- Amiri, Amirnezam, Saeed Tavasoli, and Gianfranco De Zotti. 2019. Role of Environment on Nuclear Activity. ApJ 874, no. 2 (April): 140. h ttps://doi.org/10.3847/1538-4357/ab08e7. arXiv: 1902.08757 [astro-ph.GA].
- Antonuccio-Delogu, V., and Joseph Silk. 2010. Active galactic nuclei activity: self-regulation from backflow. MNRAS 405, no. 2 (June): 1303–1314. https://doi.org/10.1111/j.1365-2966.2010.16532.x.
- Baldry, Ivan K., Karl Glazebrook, Jon Brinkmann, Željko Ivezić, Robert H. Lupton, Robert C. Nichol, and Alexander S. Szalay. 2004. Quantifying the Bimodal Color-Magnitude Distribution of Galaxies. ApJ 600, no. 2 (January): 681–694. https://doi.org/10.1086/380092. arXiv: astroph/0309710 [astro-ph].
- Balogh, Michael L., Ivan K. Baldry, Robert Nichol, Chris Miller, Richard Bower, and Karl Glazebrook. 2004. The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment. ApJ 615, no. 2 (November): L101–L104. https://doi.org/10.1086/426079. arXiv: astro-ph/0406266 [astro-ph].
- Balogh, Michael L., Simon L. Morris, H. K. C. Yee, R. G. Carlberg, and Erica Ellingson. 1999. Differential Galaxy Evolution in Cluster and Field Galaxies at z~0.3. ApJ 527, no. 1 (December): 54–79. https://doi.org/ 10.1086/308056. arXiv: astro-ph/9906470 [astro-ph].
- Baron, Dalya, Hagai Netzer, J. Xavier Prochaska, Zheng Cai, Sebastiano Cantalupo, D. Christopher Martin, Mateusz Matuszewski, Anna M. Moore, Patrick Morrissey, and James D. Neill. 2018. Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGNdriven winds. MNRAS 480, no. 3 (November): 3993–4016. https://doi. org/10.1093/mnras/sty2113. arXiv: 1804.03150 [astro-ph.GA].
- Behroozi, Peter S., Risa H. Wechsler, and Charlie Conroy. 2013. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8. ApJ 770, no. 1 (June): 57. https://doi.org/10.1088/0004-637X/770/1/57. arXiv: 1207.6105 [astro-ph.CO].
- Birnboim, Yuval, and Avishai Dekel. 2003. Virial shocks in galactic haloes? MNRAS 345, no. 1 (October): 349–364. https://doi.org/10.1046/j. 1365-8711.2003.06955.x. arXiv: astro-ph/0302161 [astro-ph].
- Blanton, Michael R., Julianne Dalcanton, Daniel Eisenstein, Jon Loveday, Michael A. Strauss, Mark SubbaRao, David H. Weinberg, et al. 2001. The Luminosity Function of Galaxies in SDSS Commissioning Data. AJ 121, no. 5 (May): 2358–2380. https://doi.org/10.1086/320405. arXiv: astro-ph/0012085 [astro-ph].
- Blanton, Michael R., David W. Hogg, Neta A. Bahcall, Ivan K. Baldry, J. Brinkmann, István Csabai, Daniel Eisenstein, et al. 2003. The Broadband Optical Properties of Galaxies with Redshifts 0.02<z<0.22. ApJ 594, no. 1 (September): 186–207. https://doi.org/10.1086/375528. arXiv: astro-ph/0209479 [astro-ph].
- Boselli, Alessandro, Matteo Fossati, and Ming Sun. 2022. Ram pressure stripping in high-density environments. A&A Rev. 30, no. 1 (December): 3. https://doi.org/10.1007/s00159-022-00140-3. arXiv: 2109.13614 [astro-ph.GA].
- Bradshaw, E. J., O. Almaini, W. G. Hartley, R. W. Chuter, C. Simpson, C. J. Conselice, J. S. Dunlop, R. J. McLure, and M. Cirasuolo. 2011. Environments of active galactic nuclei at z < 1.5 in the UKIDSS Ultra-Deep Survey. MNRAS 415, no. 3 (August): 2626–2636. https://doi.org/10. 1111/j.1365-2966.2011.18888.x. arXiv: 1104.2904 [astro-ph.GA].
- Brinchmann, J., S. Charlot, S. D. M. White, C. Tremonti, G. Kauffmann, T. Heckman, and J. Brinkmann. 2004. The physical properties of starforming galaxies in the low-redshift Universe. MNRAS 351, no. 4 (July): 1151–1179. https://doi.org/10.1111/j.1365-2966.2004.07881.x. arXiv: astro-ph/0311060 [astro-ph].

- Brusa, M., F. Fiore, P. Santini, A. Grazian, A. Comastri, G. Zamorani, G. Hasinger, et al. 2009. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN. A&A 507, no. 3 (December): 1277–1289. https://doi.org/ 10.1051/0004-6361/200912261. arXiv: 0910.1007 [astro-ph.CO].
- Bruton, Sean T., Xinyu Dai, Eduardo Guerras, and Ferah A. Munshi. 2020. Deficit of luminous and normal red galaxies in cosmic voids. MNRAS 491, no. 2 (January): 2496-2505. https://doi.org/10.1093/mnras/ stz2876. arXiv: 1910.04750 [astro-ph.GA].
- Bufanda, E., D. Hollowood, T. E. Jeltema, E. S. Rykoff, E. Rozo, P. Martini, T. M. C. Abbott, et al. 2017. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey. MNRAS 465, no. 3 (March): 2531-2539. https://doi.org/10.1093/mnras/stw2824. arXiv: 1606.06775 [astro-ph.HE].
- Casertano, S., and P. Hut. 1985. Core radius and density measurements in N-body experiments Connections with theoretical and observational definitions. ApJ 298 (November): 80-94. https://doi.org/10.1086/ 163589.
- Ceccarelli, Laura, Fernanda Duplancic, and Diego Garcia Lambas. 2021. The https://doi.org/10.48550/arXiv.2111.11488. arXiv: 2111.11488 [astro-ph.GA].
- Choi, Yun-Young, Jong-Hak Woo, and Changbom Park. 2009. Environmental Dependence of Active Galactic Nucleus Activity. I. The Effects of Host Galaxy. ApJ 699, no. 2 (July): 1679–1689. https://doi.org/10. 1088/0004-637X/699/2/1679. arXiv: 0904.2579 [astro-ph.CO].
- Cielo, Salvatore, Rebekka Bieri, Marta Volonteri, Alexander Y. Wagner, and Yohan Dubois. 2018. AGN feedback compared: jets versus radiation. MNRAS 477, no. 1 (June): 1336-1355. https://doi.org/10.1093/mnras/ sty708. arXiv: 1712.03955 [astro-ph.GA].
- Cimatti, A., M. Brusa, M. Talia, M. Mignoli, G. Rodighiero, J. Kurk, P. Cassata, C. Halliday, A. Renzini, and E. Daddi. 2013. Active Galactic Nucleus Feedback at z ~2 and the Mutual Evolution of Active and Inactive Galaxies. ApJ 779, no. 1 (December): L13. https://doi.org/10.1088/ 2041-8205/779/1/L13. arXiv: 1311.4401 [astro-ph.GA].
- Constantin, Anca, Fiona Hoyle, and Michael S. Vogeley. 2008. Active Galactic Nuclei in Void Regions. ApJ 673, no. 2 (February): 715–729. https: //doi.org/10.1086/524310. arXiv: 0710.1631 [astro-ph].
- Cooray, Asantha, and Ravi Sheth. 2002. Halo models of large scale structure. Phys. Rep. 372, no. 1 (December): 1-129. https://doi.org/10.1016/ S0370-1573(02)00276-4. arXiv: astro-ph/0206508 [astro-ph].
- Croton, Darren J., Liang Gao, and Simon D. M. White. 2007. Halo assembly bias and its effects on galaxy clustering. MNRAS 374, no. 4 (February): 1303-1309. https://doi.org/10.1111/j.1365-2966.2006.11230.x. arXiv: astro-ph/0605636 [astro-ph].
- Cui, Weiguang, Romeel Davé, John A. Peacock, Daniel Anglés-Alcázar, and Xiaohu Yang. 2021. The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation. Nature Astronomy 5 (October): 1069-1076. https://doi.org/10.1038/s41550-021-01404-1. arXiv: 2105.12145 [astro-ph.GA].
- Das, Apashanka, Biswajit Pandey, and Suman Sarkar. 2023a. Do Minor Interactions Trigger Star Formation in Galaxy Pairs? Research in Astronomy and Astrophysics 23, no. 9 (September): 095026. https://doi.org/10.1088/ 1674-4527/aceccb. arXiv: 2207.03968 [astro-ph.GA].
 - -. 2023b. Galaxy Interactions in Filaments and Sheets: Effects of the Large-scale Structures Versus the Local Density. Research in Astronomy and Astrophysics 23, no. 2 (February): 025016. https://doi.org/10.1088/ 1674-4527/acab44. arXiv: 2209.14194 [astro-ph.GA].
 - -. 2023c. Galaxy interactions in filaments and sheets: insights from EA-GLE simulations. arXiv e-prints (March): arXiv:2303.16826. https://doi. org/10.48550/arXiv.2303.16826. arXiv: 2303.16826 [astro-ph.GA].

- Dekel, Avishai, and Yuval Birnboim. 2006. Galaxy bimodality due to cold flows and shock heating. MNRAS 368, no. 1 (May): 2-20. https://doi. org/10.1111/j.1365-2966.2006.10145.x. arXiv: astro-ph/0412300 [astro-ph].
- Dekel, Avishai, Re'em Sari, and Daniel Ceverino. 2009. Formation of Massive Galaxies at High Redshift: Cold Streams, Clumpy Disks, and Compact Spheroids. ApJ 703, no. 1 (September): 785-801. https://doi.org/10. 1088/0004-637X/703/1/785. arXiv: 0901.2458 [astro-ph.GA].
- Di Matteo, Tiziana, Volker Springel, and Lars Hernquist. 2005. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, no. 7026 (February): 604-607. https://doi. org/10.1038/nature03335. arXiv: astro-ph/0502199 [astro-ph].
- Donoso, E., Lin Yan, D. Stern, and R. J. Assef. 2014. The Angular Clustering of WISE-selected Active Galactic Nuclei: Different Halos for Obscured and Unobscured Active Galactic Nuclei. ApJ 789, no. 1 (July): 44. htt ps://doi.org/10.1088/0004-637X/789/1/44. arXiv: 1309.2277 [astro-ph.CO].
- Drigga, E., E. Koulouridis, E. Pouliasis, Y. Toba, M. Akiyama, C. Vignali, I. Georgantopoulos, et al. 2025. XXL-HSC: Host properties of X-ray de-
- impact of void environment on AGN. arXiv e-prints (November): arXiv:2111.11488.tected AGNs in XXL clusters. arXiv e-prints (April): arXiv:2504.03422. https://doi.org/10.48550/arXiv.2504.03422. arXiv: 2504.03422 [astro-ph.GA].
 - Dunlop, J. S., R. J. McLure, M. J. Kukula, S. A. Baum, C. P. O'Dea, and D. H. Hughes. 2003. Quasars, their host galaxies and their central black holes. MNRAS 340, no. 4 (April): 1095-1135. https://doi.org/10.1046/j.1365-8711.2003.06333.x. arXiv: astro-ph/0108397 [astro-ph].
 - Eckert, Dominique, Massimo Gaspari, Fabio Gastaldello, Amandine M. C. Le Brun, and Ewan O'Sullivan. 2021. Feedback from Active Galactic Nuclei in Galaxy Groups. Universe 7, no. 5 (May): 142. https://doi.org/ 10.3390/universe7050142. arXiv: 2106.13259 [astro-ph.GA].
 - Ehlert, S., S. W. Allen, W. N. Brandt, R. E. A. Canning, B. Luo, A. Mantz, R. G. Morris, A. von der Linden, and Y. Q. Xue. 2015. X-ray bright active galactic nuclei in massive galaxy clusters - III. New insights into the triggering mechanisms of cluster AGN. MNRAS 446, no. 3 (January): 2709–2729. https://doi.org/10.1093/mnras/stu2091. arXiv: 1407.8181 [astro-ph.GA].
 - Ehlert, S., A. von der Linden, S. W. Allen, W. N. Brandt, Y. Q. Xue, B. Luo, A. Mantz, R. G. Morris, D. Applegate, and P. Kelly. 2014. X-ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei. MNRAS 437, no. 2 (January): 1942-1949. https://doi.org/10.1093/mnras/stt2025. arXiv: 1310.5711 [astro-ph.CO].
 - Ellison, Sara L., David R. Patton, J. Trevor Mendel, and Jillian M. Scudder. 2011. Galaxy pairs in the Sloan Digital Sky Survey - IV. Interactions trigger active galactic nuclei. MNRAS 418, no. 3 (December): 2043-2053. https://doi.org/10.1111/j.1365-2966.2011.19624.x. arXiv: 1108.2711 [astro-ph.CO].
 - Ellison, Sara L., Tony Wong, Sebastian F. Sánchez, Dario Colombo, Alberto Bolatto, Jorge Barrera-Ballesteros, Rubén García-Benito, et al. 2021. The EDGE-CALIFA survey: central molecular gas depletion in AGN host galaxies - a smoking gun for quenching? MNRAS 505, no. 1 (July): L46-L51. https://doi.org/10.1093/mnrasl/slab047. arXiv: 2105.02916 [astro-ph.GA].
 - Erwin, Peter, and Victor P. Debattista. 2017. The frequency and stellar-mass dependence of boxy/peanut-shaped bulges in barred galaxies. MNRAS 468, no. 2 (June): 2058–2080. https://doi.org/10.1093/mnras/stx620. arXiv: 1703.01602 [astro-ph.GA].
 - Fabian, A. C. 1999. Active Galactic Nuclei. Proceedings of the National Academy of Science 96, no. 9 (April): 4749-4751. https://doi.org/10.1073/pnas. 96.9.4749.
 - -. 2012. Observational Evidence of Active Galactic Nuclei Feedback. ARA&A 50 (September): 455-489. https://doi.org/10.1146/annurevastro-081811-125521. arXiv: 1204.4114 [astro-ph.CO].

- Fassbender, R., R. Šuhada, and A. Nastasi. 2012. AGN Triggering in the Infall Regions of Distant X-Ray Luminous Galaxy Clusters at 0.9 < z <~1.6. Advances in Astronomy 2012 (January): 138380. https://doi.org/10.1155/ 2012/138380. arXiv: 1203.5337 [astro-ph.CO].
- Gabor, J. M., R. Davé, K. Finlator, and B. D. Oppenheimer. 2010. How is star formation quenched in massive galaxies? MNRAS 407, no. 2 (September): 749–771. https://doi.org/10.1111/j.1365-2966.2010.16961.x. arXiv: 1001.1734 [astro-ph.CO].
- Gao, Liang, Volker Springel, and Simon D. M. White. 2005. The age dependence of halo clustering. MNRAS 363, no. 1 (October): L66–L70. https://doi.org/10.1111/j.1745-3933.2005.00084.x. arXiv: astroph/0506510 [astro-ph].
- Gao, Liang, and Simon D. M. White. 2007. Assembly bias in the clustering of dark matter haloes. MNRAS 377, no. 1 (April): L5–L9. https://doi. org/10.1111/j.1745-3933.2007.00292.x. arXiv: astro-ph/0611921 [astro-ph].
- Gatica, Caleb, Ricardo Demarco, Hervé Dole, Maria Polletta, Brenda Frye, Clement Martinache, and Alessandro Rettura. 2024. The AGN fraction in high-redshift protocluster candidates selected by Planck and Herschel. MNRAS 527, no. 2 (January): 3006–3017. https://doi.org/10. 1093/mnras/stad3404. arXiv: 2311.01658 [astro-ph.GA].
- Georgakakis, A., J. Comparat, A. Merloni, L. Ciesla, J. Aird, and A. Finoguenov. 2019. Exploring the halo occupation of AGN using dark-matter cosmological simulations. MNRAS 487, no. 1 (July): 275–295. https://doi. org/10.1093/mnras/sty3454. arXiv: 1812.04025 [astro-ph.HE].
- Gilli, R., G. Zamorani, T. Miyaji, J. Silverman, M. Brusa, V. Mainieri, N. Cappelluti, et al. 2009. The spatial clustering of X-ray selected AGN in the XMM-COSMOS field. A&A 494, no. 1 (January): 33–48. https://do i.org/10.1051/0004-6361:200810821. arXiv: 0810.4769 [astro-ph].
- Gilmour, R., M. E. Gray, O. Almaini, P. Best, C. Wolf, K. Meisenheimer, C. Papovich, and E. Bell. 2007. Environmental dependence of active galactic nuclei activity in the supercluster A901/2. MNRAS 380, no. 4 (October): 1467–1487. https://doi.org/10.1111/j.1365-2966.2007. 12127.x. arXiv: 0707.1517 [astro-ph].
- Grogin, Norman A., and Margaret J. Geller. 2000. An Imaging and Spectroscopic Survey of Galaxies within Prominent Nearby Voids. II. Morphologies, Star Formation, and Faint Companions. AJ 119, no. 1 (January): 32–43. https://doi.org/10.1086/301179. arXiv: astro-ph/9910096 [astro-ph].
- Gunn, James E., and III Gott J. Richard. 1972. On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution. ApJ 176 (August): 1. https://doi.org/10.1086/151605.
- Gunn, James E., Walter A. Siegmund, Edward J. Mannery, Russell E. Owen, Charles L. Hull, R. French Leger, Larry N. Carey, et al. 2006. The 2.5 m Telescope of the Sloan Digital Sky Survey. AJ 131, no. 4 (April): 2332–2359. https://doi.org/10.1086/500975. arXiv: astro-ph/0602326 [astro-ph].
- Haines, C. P., M. J. Pereira, A. J. R. Sanderson, G. P. Smith, E. Egami, A. Babul, A. C. Edge, A. Finoguenov, S. M. Moran, and N. Okabe. 2012. LoCuSS: A Dynamical Analysis of X-Ray Active Galactic Nuclei in Local Clusters. ApJ 754, no. 2 (August): 97. https://doi.org/10.1088/ 0004-637X/754/2/97. arXiv: 1205.6818 [astro-ph.CO].
- Hale, C. L., M. J. Jarvis, I. Delvecchio, P. W. Hatfield, M. Novak, V. Smolčić, and G. Zamorani. 2018. The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field. MNRAS 474, no. 3 (March): 4133–4150. https://doi.org/10.1093/mnras/stx2954. arXiv: 1711.05201 [astro-ph.GA].
- Harrison, C. M. 2017. Impact of supermassive black hole growth on star formation. Nature Astronomy 1 (July): 0165. https://doi.org/10.1038/ s41550-017-0165. arXiv: 1703.06889 [astro-ph.GA].

- Hashiguchi, Aoi, Yoshiki Toba, Naomi Ota, Masamune Oguri, Nobuhiro Okabe, Yoshihiro Ueda, Masatoshi Imanishi, et al. 2023. AGN number fraction in galaxy groups and clusters at z < 1.4 from the Subaru Hyper Suprime-Cam survey. PASJ 75, no. 6 (December): 1246–1261. https: //doi.org/10.1093/pasj/psad066. arXiv: 2309.01926 [astro-ph.GA].
- Hasinger, G. 2008. Absorption properties and evolution of active galactic nuclei. A&A 490, no. 3 (November): 905–922. https://doi.org/10.1051/0004-6361:200809839. arXiv: 0808.0260 [astro-ph].
- Hawkins, Ed, Steve Maddox, Shaun Cole, Ofer Lahav, Darren S. Madgwick, Peder Norberg, John A. Peacock, et al. 2003. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe. MNRAS 346, no. 1 (November): 78–96. https://doi. org/10.1046/j.1365-2966.2003.07063.x. arXiv: astro-ph/0212375 [astro-ph].
- Heckman, Timothy M., and Philip N. Best. 2014. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. ARA&A 52 (August): 589–660. https://doi.org/10. 1146/annurev-astro-081913-035722. arXiv: 1403.4620 [astro-ph.GA].
- Hernquist, Lars. 1989. Tidal triggering of starbursts and nuclear activity in galaxies. Nature 340, no. 6236 (August): 687–691. https://doi.org/10. 1038/340687a0.
- Hopkins, A. M. 2004. On the Evolution of Star-forming Galaxies. ApJ 615, no. 1 (November): 209–221. https://doi.org/10.1086/424032. arXiv: astro-ph/0407170 [astro-ph].
- Hopkins, Philip F., and Lars Hernquist. 2006. Fueling Low-Level AGN Activity through Stochastic Accretion of Cold Gas. ApJS 166, no. 1 (September): 1–36. https://doi.org/10.1086/505753. arXiv: astro-ph/0603180 [astro-ph].
- Hopkins, Philip F., Dale D. Kocevski, and Kevin Bundy. 2014. Do we expect most AGN to live in discs? MNRAS 445, no. 1 (November): 823–834. https://doi.org/10.1093/mnras/stu1736. arXiv: 1309.6321 [astro-ph.CO].
- Hoyle, Fiona, Randall R. Rojas, Michael S. Vogeley, and Jon Brinkmann. 2005. The Luminosity Function of Void Galaxies in the Sloan Digital Sky Survey. ApJ 620, no. 2 (February): 618–628. https://doi.org/10. 1086/427176. arXiv: astro-ph/0309728 [astro-ph].
- Jiang, Yan-Fei, James M. Stone, and Shane W. Davis. 2013. On the Thermal Stability of Radiation-dominated Accretion Disks. ApJ 778, no. 1 (November): 65. https://doi.org/10.1088/0004-637X/778/1/65. arXiv: 1309.5646 [astro-ph.HE].
- Kauffmann, Guinevere, and Timothy M. Heckman. 2009. Feast and Famine: regulation of black hole growth in low-redshift galaxies. MNRAS 397, no. 1 (July): 135–147. https://doi.org/10.1111/j.1365-2966.2009. 14960.x. arXiv: 0812.1224 [astro-ph].
- Kauffmann, Guinevere, Timothy M. Heckman, Christy Tremonti, Jarle Brinchmann, Stéphane Charlot, Simon D. M. White, Susan E. Ridgway, et al. 2003. The host galaxies of active galactic nuclei. MNRAS 346, no. 4 (December): 1055–1077. https://doi.org/10.1111/j.1365-2966.2003. 07154.x. arXiv: astro-ph/0304239 [astro-ph].
- Kauffmann, Guinevere, Timothy M. Heckman, Simon D. M. White, Stéphane Charlot, Christy Tremonti, Eric W. Peng, Mark Seibert, et al. 2003. The dependence of star formation history and internal structure on stellar mass for 10⁵ low-redshift galaxies. MNRAS 341, no. 1 (May): 54–69. https://doi.org/10.1046/j.1365-8711.2003.06292.x. arXiv: astro-ph/0205070 [astro-ph].
- Kauffmann, Guinevere, Simon D. M. White, Timothy M. Heckman, Brice Ménard, Jarle Brinchmann, Stéphane Charlot, Christy Tremonti, and Jon Brinkmann. 2004. The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies. MNRAS 353, no. 3 (September): 713–731. https://doi.org /10.1111/j.1365-2966.2004.08117.x. arXiv: astro-ph/0402030 [astro-ph].

- Kawata, D., and B. K. Gibson. 2005. Self-regulated active galactic nuclei heating in elliptical galaxies. MNRAS 358, no. 1 (March): L16–L20. https://doi.org/10.1111/j.1745-3933.2005.00018.x. arXiv: astroph/0409068 [astro-ph].
- Kereš, Dušan, Neal Katz, David H. Weinberg, and Romeel Davé. 2005. How do galaxies get their gas? MNRAS 363, no. 1 (October): 2–28. https:// doi.org/10.1111/j.1365-2966.2005.09451.x. arXiv: astro-ph/0407095 [astro-ph].
- Kollatschny, W., A. Reichstein, and M. Zetzl. 2012. The environment of AGNs and the activity degree of their surrounding galaxies. A&A 548 (December): A37. https://doi.org/10.1051/0004-6361/201118174. arXiv: 1210.6854 [astro-ph.CO].
- Kormendy, John, and Luis C. Ho. 2013. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A 51, no. 1 (August): 511– 653. https://doi.org/10.1146/annurev-astro-082708-101811. arXiv: 1304.7762 [astro-ph.CO].
- Koulouridis, E., A. Gkini, and E. Drigga. 2024. AGNs in massive galaxy clusters: Role of galaxy merging, infalling groups, cluster mass, and dynamical state. A&A 684 (April): A111. https://doi.org/10.1051/0004-6361/202348212. arXiv: 2401.05747 [astro-ph.GA].
- Koulouridis, E., M. Ricci, P. Giles, C. Adami, M. Ramos-Ceja, M. Pierre, M. Plionis, et al. 2018. The XXL Survey. XXXV. The role of cluster mass in AGN activity. A&A 620 (December): A20. https://doi.org/10.1051/ 0004-6361/201832974. arXiv: 1809.00683 [astro-ph.GA].
- Krishnan, Charutha, Nina A. Hatch, Omar Almaini, Dale Kocevski, Elizabeth A. Cooke, William G. Hartley, Guenther Hasinger, David T. Maltby, Stuart I. Muldrew, and Chris Simpson. 2017. Enhancement of AGN in a protocluster at z = 1.6. MNRAS 470, no. 2 (September): 2170–2178. https://doi.org/10.1093/mnras/stx1315. arXiv: 1705.10799 [astro-ph.GA].
- Kruk, Sandor J., Peter Erwin, Victor P. Debattista, and Chris Lintott. 2019. Revealing the cosmic evolution of boxy/peanut-shaped bulges from HST COSMOS and SDSS. MNRAS 490, no. 4 (December): 4721– 4739. https://doi.org/10.1093/mnras/stz2877. arXiv: 1910.04768 [astro-ph.GA].
- Lacerna, I., H. M. Hernández-Toledo, V. Avila-Reese, J. Abonza-Sane, and A. del Olmo. 2016. Isolated elliptical galaxies in the local Universe. A&A 588 (April): A79. https://doi.org/10.1051/0004-6361/201527844. arXiv: 1511.08809 [astro-ph.GA].
- Landy, Stephen D., and Alexander S. Szalay. 1993. Bias and Variance of Angular Correlation Functions. ApJ 412 (July): 64. https://doi.org/10. 1086/172900.
- Larson, R. B., B. M. Tinsley, and C. N. Caldwell. 1980. The evolution of disk galaxies and the origin of S0 galaxies. ApJ 237 (May): 692–707. https://doi.org/10.1086/157917.
- Lee, Jaehyun, Jihye Shin, Owain N. Snaith, Yonghwi Kim, C. Gareth Few, Julien Devriendt, Yohan Dubois, et al. 2021. The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Gigaparsec Scales. ApJ 908, no. 1 (February): 11. https://doi. org/10.3847/1538-4357/abd08b. arXiv: 2006.01039 [astro-ph.GA].
- Lehmer, B. D., A. B. Lucy, D. M. Alexander, P. N. Best, J. E. Geach, C. M. Harrison, A. E. Hornschemeier, et al. 2013. Concurrent Supermassive Black Hole and Galaxy Growth: Linking Environment and Nuclear Activity in z = 2.23 Hα Emitters. ApJ 765, no. 2 (March): 87. https://doi.org/10.1088/0004-637X/765/2/87. arXiv: 1301.3922 [astro-ph.CO].
- Lopes, P. A. A., A. L. B. Ribeiro, and S. B. Rembold. 2017. NoSOCS in SDSS - VI. The environmental dependence of AGN in clusters and field in the local Universe. MNRAS 472, no. 1 (November): 409–418. https:// doi.org/10.1093/mnras/stx2046. arXiv: 1708.02242 [astro-ph.GA].

- Luo, Wentao, John D. Silverman, Surhud More, Andy Goulding, Hironao Miyatake, Takahiro Nishimichi, Chiaki Hikage, et al. 2022. Dark matter halos of luminous AGNs from galaxy-galaxy lensing with the HSC Subaru Strategic Program. arXiv e-prints (April): arXiv:2204.03817. h ttps://doi.org/10.48550/arXiv.2204.03817. arXiv: 2204.03817 [astro-ph.GA].
- Madau, Piero, Henry C. Ferguson, Mark E. Dickinson, Mauro Giavalisco, Charles C. Steidel, and Andrew Fruchter. 1996. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z~4. MNRAS 283, no. 4 (December): 1388–1404. https://doi.org/ 10.1093/mnras/283.4.1388. arXiv: astro-ph/9607172 [astro-ph].
- Man, Zhong-yi, Ying-jie Peng, Xu Kong, Ke-xin Guo, Cheng-peng Zhang, and Jing Dou. 2019. The dependence of AGN activity on environment in SDSS. MNRAS 488, no. 1 (September): 89–98. https://doi.org/10. 1093/mnras/stz1706. arXiv: 1907.01563 [astro-ph.GA].
- Mandelbaum, Rachel, Cheng Li, Guinevere Kauffmann, and Simon D. M. White. 2009. Halo masses for optically selected and for radio-loud AGN from clustering and galaxy-galaxy lensing. MNRAS 393, no. 2 (February): 377–392. https://doi.org/10.1111/j.1365-2966.2008.14235.x. arXiv: 0806.4089 [astro-ph].
- Martini, Paul, E. D. Miller, M. Brodwin, S. A. Stanford, Anthony H. Gonzalez, M. Bautz, R. C. Hickox, et al. 2013. The Cluster and Field Galaxy Active Galactic Nucleus Fraction at z = 1-1.5: Evidence for a Reversal of the Local Anticorrelation between Environment and AGN Fraction. ApJ 768, no. 1 (May): 1. https://doi.org/10.1088/0004-637X/768/1/1. arXiv: 1302.6253 [astro-ph.CO].
- Martini, Paul, John S. Mulchaey, and Daniel D. Kelson. 2007. The Distribution of Active Galactic Nuclei in Clusters of Galaxies. ApJ 664, no. 2 (August): 761–776. https://doi.org/10.1086/519158. arXiv: 0704.3455 [astro-ph].
- McNamara, B. R., and P. E. J. Nulsen. 2012. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. *New Journal of Physics* 14, no. 5 (May): 055023. https://doi.org/10.1088/1367-2630/14/5/055023. arXiv: 1204.0006 [astro-ph.CO].
- Miller, Christopher J., Robert C. Nichol, Percy L. Gómez, Andrew M. Hopkins, and Mariangela Bernardi. 2003. The Environment of Active Galactic Nuclei in the Sloan Digital Sky Survey. ApJ 597, no. 1 (November): 142–156. https://doi.org/10.1086/378383. arXiv: astro-ph/0307124 [astro-ph].
- Miraghaei, Halime. 2020. The Effect of Environment on AGN Activity: The Properties of Radio and Optical AGN in Void, Isolated, and Group Galaxies. AJ 160, no. 5 (November): 227. https://doi.org/10.3847/1538-3881/abafb1. arXiv: 2102.11331 [astro-ph.GA].
- Mishra, Hora D., and Xinyu Dai. 2020. Lower AGN Abundance in Galaxy Clusters at z < 0.5. AJ 159, no. 2 (February): 69. https://doi.org/10. 3847/1538-3881/ab6225. arXiv: 1912.10342 [astro-ph.GA].
- Mishra, Hora D., Xinyu Dai, and Eduardo Guerras. 2021. Active Galactic Nuclei Abundance in Cosmic Voids. ApJ 922, no. 1 (November): L17. https://doi.org/10.3847/2041-8213/ac36d9. arXiv: 2111.05503 [astro-ph.GA].
- Moore, Ben, Neal Katz, George Lake, Alan Dressler, and Augustus Oemler. 1996. Galaxy harassment and the evolution of clusters of galaxies. Nature 379, no. 6566 (February): 613–616. https://doi.org/10.1038/ 379613a0. arXiv: astro-ph/9510034 [astro-ph].
- Morganti, Raffaella. 2017. The many routes to AGN feedback. *Frontiers in Astronomy and Space Sciences* 4 (November): 42. https://doi.org/10. 3389/fspas.2017.00042. arXiv: 1712.05301 [astro-ph.GA].
- Nandra, K., A. Georgakakis, C. N. A. Willmer, M. C. Cooper, D. J. Croton, M. Davis, S. M. Faber, D. C. Koo, E. S. Laird, and J. A. Newman. 2007. AEGIS: The Color-Magnitude Relation for X-Ray-selected Active Galactic Nuclei. ApJ 660, no. 1 (May): L11–L14. https://doi.org/ 10.1086/517918. arXiv: astro-ph/0607270 [astro-ph].

- Nelson, Dylan, Volker Springel, Annalisa Pillepich, Vicente Rodriguez-Gomez, Paul Torrey, Shy Genel, Mark Vogelsberger, et al. 2019. The IllustrisTNG simulations: public data release. *Computational Astrophysics and Cosmology* 6, no. 1 (May): 2. https://doi.org/10.1186/s40668-019-0028-x. arXiv: 1812.05609 [astro-ph.GA].
- Pandey, Biswajit. 2020. A method for classification of red, blue, and green galaxies using fuzzy set theory. MNRAS 499, no. 1 (November): L31– L35. https://doi.org/10.1093/mnrasl/slaa152. arXiv: 2005.11678 [astro-ph.GA].
- Pandey, Biswajit, and Somnath Bharadwaj. 2008. Exploring star formation using the filaments in the Sloan Digital Sky Survey Data Release Five. MNRAS 387, no. 2 (June): 767–771. https://doi.org/10.1111/j.1365-2966.2008.13262.x. arXiv: 0804.0072 [astro-ph].
- Pandey, Biswajit, and Suman Sarkar. 2017. How much a galaxy knows about its large-scale environment?: An information theoretic perspective. MN-RAS 467, no. 1 (May): L6–L10. https://doi.org/10.1093/mnrasl/slw250. arXiv: 1611.00283 [astro-ph.C0].
- 2020. Exploring galaxy colour in different environments of the cosmic web with SDSS. MNRAS 498, no. 4 (November): 6069–6082. https ://doi.org/10.1093/mnras/staa2772. arXiv: 2002.08400 [astro-ph.GA].
- Peng, Y., R. Maiolino, and R. Cochrane. 2015. Strangulation as the primary mechanism for shutting down star formation in galaxies. Nature 521, no. 7551 (May): 192–195. https://doi.org/10.1038/nature14439. arXiv: 1505.03143 [astro-ph.GA].
- Pierre, M., F. Pacaud, C. Adami, S. Alis, B. Altieri, N. Baran, C. Benoist, et al. 2016. The XXL Survey. I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme. A&A 592 (June): A1. https://doi.org/10.1051/0004-6361/201526766. arXiv: 1512.04317 [astro-ph.CO].
- Pimbblet, K. A., S. S. Shabala, C. P. Haines, A. Fraser-McKelvie, and D. J. E. Floyd. 2013. The drivers of AGN activity in galaxy clusters: AGN fraction as a function of mass and environment. MNRAS 429, no. 2 (February): 1827–1839. https://doi.org/10.1093/mnras/sts470. arXiv: 1212. 0261 [astro-ph.CO].
- Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, et al. 2020. Planck 2018 results. VI. Cosmological parameters. A&A 641 (September): A6. https://doi.org/10. 1051/0004-6361/201833910. arXiv: 1807.06209 [astro-ph.CO].
- Porqueres, Natàlia, Jens Jasche, Torsten A. Enßlin, and Guilhem Lavaux. 2018. Imprints of the large-scale structure on AGN formation and evolution. A&A 612 (April): A31. https://doi.org/10.1051/0004-6361/ 201732141. arXiv: 1710.07641 [astro-ph.GA].
- Ricciardelli, E., A. Cava, J. Varela, and V. Quilis. 2014. The star formation activity in cosmic voids. MNRAS 445, no. 4 (December): 4045– 4054. https://doi.org/10.1093/mnras/stu2061. arXiv: 1410.0023 [astro-ph.GA].
- Rogers, Ben, Ignacio Ferreras, Sugata Kaviraj, Anna Pasquali, and Marc Sarzi. 2009. Star formation and nuclear activity in close pairs of early-type galaxies. MNRAS 399, no. 4 (November): 2172–2182. https://doi.org/1 0.1111/j.1365-2966.2009.15422.x. arXiv: 0905.3386 [astro-ph.CO].
- Ruffa, Ilaria, Timothy A. Davis, Isabella Prandoni, Robert A. Laing, Rosita Paladino, Paola Parma, Hans de Ruiter, Viviana Casasola, Martin Bureau, and Joshua Warren. 2019. The AGN fuelling/feedback cycle in nearby radio galaxies - II. Kinematics of the molecular gas. MNRAS 489, no. 3 (November): 3739–3757. https://doi.org/10.1093/mnras/ stz2368. arXiv: 1908.09229 [astro-ph.GA].
- Sabater, J., P. N. Best, and M. Argudo-Fernández. 2013. Effect of the interactions and environment on nuclear activity. MNRAS 430, no. 1 (March): 638-651. https://doi.org/10.1093/mnras/sts675. arXiv: 1212.4836 [astro-ph.CO].

- Sabater, J., P. N. Best, and T. M. Heckman. 2015. Triggering optical AGN: the need for cold gas, and the indirect roles of galaxy environment and interactions. MNRAS 447, no. 1 (February): 110–116. https://doi.org/ 10.1093/mnras/stu2429. arXiv: 1411.5031 [astro-ph.GA].
- Salim, Samir, R. Michael Rich, Stéphane Charlot, Jarle Brinchmann, Benjamin D. Johnson, David Schiminovich, Mark Seibert, et al. 2007. UV Star Formation Rates in the Local Universe. ApJS 173, no. 2 (December): 267–292. https://doi.org/10.1086/519218. arXiv: 0704.3611 [astro-ph].
- Sampaio, V. M., A. Aragón-Salamanca, M. R. Merrifield, R. R. de Carvalho, S. Zhou, and I. Ferreras. 2023. The co-evolution of strong AGN and central galaxies in different environments. MNRAS 524, no. 4 (October): 5327–5339. https://doi.org/10.1093/mnras/stad2211. arXiv: 2307.10435 [astro-ph.GA].
- Santoro, F., C. Tadhunter, D. Baron, R. Morganti, and J. Holt. 2020. AGNdriven outflows and the AGN feedback efficiency in young radio galaxies. A&A 644 (December): A54. https://doi.org/10.1051/0004-6361/ 202039077. arXiv: 2009.11175 [astro-ph.GA].
- Sarkar, Suman, and Biswajit Pandey. 2020. A study on the statistical significance of mutual information between morphology of a galaxy and its large-scale environment. MNRAS 497, no. 4 (October): 4077–4090. htt ps://doi.org/10.1093/mnras/staa2236. arXiv: 2003.13974 [astro-ph.GA].
- Sarkar, Suman, Biswajit Pandey, and Apashanka Das. 2022. On the origin of red spirals: does assembly bias play a role? J. Cosmology Astropart. Phys. 2022, no. 3 (March): 024. https://doi.org/10.1088/1475-7516/ 2022/03/024. arXiv: 2111.11252 [astro-ph.GA].
- Satyapal, Shobita, Sara L. Ellison, William McAlpine, Ryan C. Hickox, David R. Patton, and J. Trevor Mendel. 2014. Galaxy pairs in the Sloan Digital Sky Survey – IX. Merger-induced AGN activity as traced by the Wide-field Infrared Survey Explorer. MNRAS 441, no. 2 (June): 1297– 1304. https://doi.org/10.1093/mnras/stu650. arXiv: 1403.7531 [astro-ph.GA].
- Schaye, Joop, Robert A. Crain, Richard G. Bower, Michelle Furlong, Matthieu Schaller, Tom Theuns, Claudio Dalla Vecchia, et al. 2015. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, no. 1 (January): 521–554. https://doi.org/ 10.1093/mnras/stu2058. arXiv: 1407.7040 [astro-ph.GA].
- Shangguan, Jinyi, Luis C. Ho, Franz E. Bauer, Ran Wang, and Ezequiel Treister. 2020. AGN Feedback and Star Formation of Quasar Host Galaxies: Insights from the Molecular Gas. ApJ 899, no. 2 (August): 112. https://doi.org/10.3847/1538-4357/aba8a1. arXiv: 2007.11286 [astro-ph.GA].
- Shimasaku, Kazuhiro, Masataka Fukugita, Mamoru Doi, Masaru Hamabe, Takashi Ichikawa, Sadanori Okamura, Maki Sekiguchi, et al. 2001. Statistical Properties of Bright Galaxies in the Sloan Digital Sky Survey Photometric System. AJ 122, no. 3 (September): 1238–1250. https:// doi.org/10.1086/322094. arXiv: astro-ph/0105401 [astro-ph].
- Silverman, J. D., K. Kovač, C. Knobel, S. Lilly, M. Bolzonella, F. Lamareille, V. Mainieri, et al. 2009. The Environments of Active Galactic Nuclei within the zCOSMOS Density Field. ApJ 695, no. 1 (April): 171–182. https://doi.org/10.1088/0004-637X/695/1/171. arXiv: 0812.3402 [astro-ph].
- Silverman, J. D., V. Mainieri, B. D. Lehmer, D. M. Alexander, F. E. Bauer, J. Bergeron, W. N. Brandt, et al. 2008. The Evolution of AGN Host Galaxies: From Blue to Red and the Influence of Large-Scale Structures. ApJ 675, no. 2 (March): 1025–1040. https://doi.org/10.1086/527283. arXiv: 0709.3455 [astro-ph].
- Singh, Ankit, Changbom Park, Ena Choi, Juhan Kim, Hyunsung Jun, Brad K. Gibson, Yonghwi Kim, Jaehyun Lee, and Owain Snaith. 2023. On the Effects of Local Environment on Active Galactic Nucleus (AGN) in the Horizon Run 5 Simulation. ApJ 953, no. 1 (August): 64. https://doi. org/10.3847/1538-4357/acdd6b. arXiv: 2308.01584 [astro-ph.GA].

- Sinha, Manodeep, and Lehman H. Garrison. 2020. CORRFUNC a suite of blazing fast correlation functions on the CPU. MNRAS 491, no. 2 (January): 3022–3041. https://doi.org/10.1093/mnras/stz3157. arXiv: 1911.03545 [astro-ph.CO].
- Somerville, Rachel S., Philip F. Hopkins, Thomas J. Cox, Brant E. Robertson, and Lars Hernquist. 2008. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. MNRAS 391, no. 2 (December): 481–506. https://doi.org/10.1111/j.1365-2966.2008. 13805.x. arXiv: 0808.1227 [astro-ph].
- Springel, Volker, Tiziana Di Matteo, and Lars Hernquist. 2005. Modelling feedback from stars and black holes in galaxy mergers. MNRAS 361, no. 3 (August): 776–794. https://doi.org/10.1111/j.1365-2966.2005. 09238.x. arXiv: astro-ph/0411108 [astro-ph].
- Storchi-Bergmann, Thaisa, and Allan Schnorr-Müller. 2019. Observational constraints on the feeding of supermassive black holes. *Nature Astron*omy 3 (January): 48–61. https://doi.org/10.1038/s41550-018-0611-0. arXiv: 1904.03338 [astro-ph.GA].
- Stoughton, Chris, Robert H. Lupton, Mariangela Bernardi, Michael R. Blanton, Scott Burles, Francisco J. Castander, A. J. Connolly, et al. 2002. Sloan Digital Sky Survey: Early Data Release. AJ 123, no. 1 (January): 485–548. https://doi.org/10.1086/324741.
- Strateva, Iskra, Željko Ivezić, Gillian R. Knapp, Vijay K. Narayanan, Michael A. Strauss, James E. Gunn, Robert H. Lupton, et al. 2001. Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data. AJ 122, no. 4 (October): 1861–1874. https://doi.org/10.1086/323301. arXiv: astro-ph/0107201 [astro-ph].
- Strauss, Michael A., David H. Weinberg, Robert H. Lupton, Vijay K. Narayanan, James Annis, Mariangela Bernardi, Michael Blanton, et al. 2002. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample. AJ 124, no. 3 (September): 1810–1824. https://doi.org/ 10.1086/342343. arXiv: astro-ph/0206225 [astro-ph].
- Umehata, H., M. Fumagalli, I. Smail, Y. Matsuda, A. M. Swinbank, S. Cantalupo, C. Sykes, et al. 2019. Gas filaments of the cosmic web located around active galaxies in a protocluster. *Science* 366, no. 6461 (October): 97–100. https://doi.org/10.1126/science.aaw5949. arXiv: 1910.01324 [astro-ph.GA].
- Vito, F., W. N. Brandt, A. Comastri, R. Gilli, R. J. Ivison, G. Lanzuisi, B. D. Lehmer, I. E. Lopez, P. Tozzi, and C. Vignali. 2024. Fast supermassive black hole growth in the SPT2349–56 protocluster at z = 4.3. A&A 689 (September): A130. https://doi.org/10.1051/0004-6361/202450225. arXiv: 2406.13005 [astro-ph.GA].
- Wagner, A. Y., M. Umemura, and G. V. Bicknell. 2013. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback. ApJ 763, no. 1 (January): L18. https://doi.org/10.1088/2041-8205/763/1/L18. arXiv: 1211.5851 [astro-ph.C0].
- Wang, Lixin, and Cheng Li. 2019. Revisiting the clustering of narrow-line AGN in the local Universe: Joint dependence on stellar mass and colour. MNRAS 483, no. 2 (February): 1452–1467. https://doi.org/10.1093/ mnras/sty3204. arXiv: 1807.06395 [astro-ph.GA].
- Wechsler, Risa H., Andrew R. Zentner, James S. Bullock, Andrey V. Kravtsov, and Brandon Allgood. 2006. The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation. ApJ 652, no. 1 (November): 71–84. https://doi.org/10.1086/507120. arXiv: astroph/0512416 [astro-ph].
- Woo, Jong-Hak, and C. Megan Urry. 2002. Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities. ApJ 579, no. 2 (November): 530–544. https://doi.org/10.1086/342878. arXiv: astro-ph/0207249 [astro-ph].
- Woods, Deborah Freedman, and Margaret J. Geller. 2007. Minor Galaxy Interactions: Star Formation Rates and Galaxy Properties. AJ 134, no. 2 (August): 527–540. https://doi.org/10.1086/519381. arXiv: astroph/0703729 [astro-ph].

- Zezas, A., L. Hernquist, G. Fabbiano, and J. Miller. 2003. NGC 4261 and NGC 4697: Rejuvenated Elliptical Galaxies. ApJ 599, no. 2 (December): L73–L77. https://doi.org/10.1086/380895. arXiv: astro-ph/0310567 [astro-ph].
- Zhang, Ziwen, Huiyuan Wang, Wentao Luo, H. J. Mo, Zhixiong Liang, Ran Li, Xiaohu Yang, et al. 2021. Hosts and triggers of AGNs in the Local Universe. A&A 650 (June): A155. https://doi.org/10.1051/0004-6361/202040150. arXiv: 2012.10640 [astro-ph.GA].