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Abstract
We analyze a volume-limited sample from the Sloan Digital Sky Survey (SDSS) to compare the spatial clustering and physical properties
of active galactic nuclei (AGN) and star-forming galaxies (SFG) at fixed stellar mass. We find no statistically significant difference
in clustering strength or local density between AGN and SFG. However, after matching their stellar mass distributions, we detect
statistically significant differences (at a confidence level > 99.99%) in colour, star formation rate (SFR), 4000 Å break measurements
(D4000), and morphology. These differences persist across both low- and high-density environments, suggesting that AGN are not
driven by environmental factors. The development of favourable conditions for AGN activity within a galaxy may depend on the
diverse evolutionary histories of galaxies. Our results imply that AGN activity may arise stochastically, modulated by the complex
assembly history of galaxies.
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1. Introduction
AGN rank among the brightest astrophysical sources in the
universe, emitting radiation across the entire electromagnetic
spectrum with bolometric luminosities around 1047 – 1048

erg/s (Fabian 1999; Woo and Urry 2002). This intense ra-
diation is believed to stem from the accretion of matter onto
supermassive black holes (SMBH) located at the centers of
massive galaxies. As gas clouds spiral toward the SMBH, los-
ing angular momentum, their gravitational potential energy
is converted into electromagnetic radiation (Jiang, Stone, and
Davis 2013; Cielo et al. 2018). This radiation can then heat the
surrounding gas, hindering its cooling and delaying star for-
mation (Kawata and Gibson 2005; Antonuccio-Delogu and
Silk 2010; Wagner, Umemura, and Bicknell 2013). Addition-
ally, energy and momentum from AGN-driven outflows and
radio jets can either heat or expel gas (Morganti 2017; Baron
et al. 2018; Santoro et al. 2020), thereby limiting black hole
growth and suppressing further star formation.

AGN feedback is widely regarded as fundamental to the
co-evolution of galaxies and their central black holes (Somerville
et al. 2008; Kormendy and Ho 2013; Heckman and Best 2014;
Harrison 2017). Observations indicate a decline in the star
formation rate after z ∼ 1 (Madau et al. 1996; Hopkins 2004;
Behroozi, Wechsler, and Conroy 2013). The observed bi-
modality in the colour distribution (Strateva et al. 2001; Blan-
ton et al. 2003; Balogh et al. 2004; Baldry et al. 2004; Pandey
2020) indicates that the galaxies are transitioning from the ac-
tively star-forming blue population to a passively evolving red
sequence. The exact physical processes driving this transition,
particularly the quenching of star formation in the transitional
“green valley”, remain uncertain (Das, Pandey, and Sarkar
2023a). However, numerous studies propose that AGN feed-

back may play a crucial role in quenching star formation in
this phase (Nandra et al. 2007; Hasinger 2008; Silverman et
al. 2008; Cimatti et al. 2013; Zhang et al. 2021). The models
of galaxy formation and evolution increasingly rely on AGN
feedback to replicate observed galaxy properties, making it an
essential element in theoretical, numerical, and semi-analytic
models (Springel, Di Matteo, and Hernquist 2005; Di Matteo,
Springel, and Hernquist 2005; Eckert et al. 2021).

Nearly all massive galaxies harbour a supermassive black
hole (SMBH) at their center, yet only a subset exhibit AGN
activity at any given time. Understanding what triggers AGN
activity in these galaxies is critical, as various internal and ex-
ternal factors shape the likelihood of such activity. Internal
characteristics, such as gas availability in the central region,
host galaxy kinematics, and morphology, significantly influ-
ence the accretion of gas onto the central SMBH (Ruffa et
al. 2019; Shangguan et al. 2020; Ellison et al. 2021; Sampaio
et al. 2023). Additionally, the mass of the host dark matter
halo affects gas reservoir availability and the galaxy’s capacity
to draw gas from its surroundings. Larger halos, with deeper
potential wells, facilitate gas inflow toward the galactic cen-
ter, thus making AGN activity more probable (Georgakakis
et al. 2019; Aird and Coil 2021; Luo et al. 2022). Observa-
tional data also reveal that AGN activity is more frequent in
massive galaxies (Dunlop et al. 2003; Brusa et al. 2009; Pimb-
blet et al. 2013).

The SMBH mass itself plays a vital role in AGN dynam-
ics. The larger black holes exert stronger gravitational forces,
enabling higher accretion rates and boosting AGN luminos-
ity. Meanwhile, AGN feedback can limit black hole growth
by modulating gas supply. Massive galaxies, often found in
high-mass dark matter halos within dense environments like
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galaxy clusters and cosmic web filaments, may experience in-
direct influence from these environments. Observations sug-
gest that galaxy colour and star formation rates are sensitive
to cosmic web environments (Pandey and Sarkar 2020; Das,
Pandey, and Sarkar 2023b, 2023c). Furthermore, gas inflow
along cosmic web filaments can initiate and sustain AGN ac-
tivity within galaxies (Umehata et al. 2019).

Numerous studies indicate that AGN are more strongly
clustered than SFG (Gilli et al. 2009; Mandelbaum et al. 2009;
Kollatschny, Reichstein, and Zetzl 2012; Donoso et al. 2014;
Hale et al. 2018). Using SDSS data, Satyapal et al. (2014)
observe that the fraction of AGN increases as the distance to
neighbouring galaxies decreases. Similarly, Zhang et al. (2021)
find that AGN have more neighbouring galaxies compared
to SFG. Results from the Horizon Run 5 simulation (Lee et
al. 2021), as analyzed by Singh et al. (2023), show that AGN
activity rises in response to both higher background densi-
ties and closer proximity to neighbouring galaxies. Physical
mechanisms, including major and minor mergers (Di Mat-
teo, Springel, and Hernquist 2005; Alonso et al. 2007; Elli-
son et al. 2011; Storchi-Bergmann and Schnorr-Müller 2019),
disk instability (Hopkins and Hernquist 2006; Dekel, Sari,
and Ceverino 2009; Hopkins, Kocevski, and Bundy 2014),
and tidal effects (Moore et al. 1996), are thought to enhance
the supply of cold gas to the central SMBH, thereby boosting
AGN activity. Interactions and mergers, more common in
clusters and filaments, often drive gas inflows toward galac-
tic centers, further promoting AGN activity (Hernquist 1989;
Springel, Di Matteo, and Hernquist 2005; Alexander and Hickox
2012).

While AGN are generally more common in dense envi-
ronments, extremely high-density regions like massive galaxy
clusters present a more complex picture. The pressure from
the hot intracluster medium (ICM) at the centers of massive
galaxy clusters can cause ram pressure stripping of the cold
gas that fuels the AGN activity (Gunn and Gott 1972; Abadi,
Moore, and Bower 1999; Boselli, Fossati, and Sun 2022). Ad-
ditionally, the cluster halo may capture the cold gas, prevent-
ing accretion towards the inner regions by strangulation (Lar-
son, Tinsley, and Caldwell 1980; Peng, Maiolino, and Cochrane
2015). These processes often suppress AGN activity near the
centers of massive galaxy clusters. Ehlert et al. (2014) observe
that the fraction of X-ray bright AGN rises with increas-
ing distance from the centers of galaxy clusters, and Lopes,
Ribeiro, and Rembold (2017) find that AGN are more fre-
quently located in low-mass groups, field environments, and
cluster outskirts. The XXL survey (Pierre et al. 2016), as an-
alyzed by Koulouridis et al. (2018), reveals that the relation-
ship between X-ray-selected AGN and environment differs
between high- and low-mass clusters. Studies of X-ray se-
lected clusters from ROSAT by Mishra and Dai (2020) show
a lower AGN fraction in clusters compared to fields, while
Ceccarelli, Duplancic, and Garcia Lambas (2021) find AGN
activity significantly stronger in voids compared to field en-
vironments.

Low-density regions, such as voids, tend to host less evolved
galaxies due to the lack of external processes, like gas stripping

and frequent mergers, and contain large reservoirs of pristine
gas. Galaxies in these environments evolve through inter-
nal, or secular, processes and are typically fainter, bluer, and
exhibit higher star formation rates than galaxies in average-
density environments (Grogin and Geller 2000; Hoyle et al. 2005;
Ricciardelli et al. 2014; Bruton et al. 2020). Constantin, Hoyle,
and Vogeley (2008) find that moderately luminous AGN are
more common in voids than walls, but the abundance of brighter
AGN are comparable in the two environments. Kauffmann,
Heckman, Tremonti, et al. (2003) observe a decreasing AGN
fraction in massive galaxies as density increases, and several
other works report a higher prevalence of AGN in low- to
moderate-density environments (Kauffmann et al. 2004; Gilmour
et al. 2007; Choi, Woo, and Park 2009; Sabater, Best, and
Argudo-Fernández 2013; Miraghaei 2020; Mishra, Dai, and
Guerras 2021). This trend suggests that galaxies in voids may
experience a higher frequency of one-on-one interactions,
which may be key to triggering AGN activity in these re-
gions.

The environmental dependence of AGN activity at higher
redshifts has been investigated in several studies. Using data
from the zCOSMOS spectroscopic survey up to z ∼ 1, Sil-
verman et al. (2009) find that massive galaxies hosting AGN
tend to reside in low-density regions. In contrast, Bradshaw
et al. (2011) analyze the UKIDSS Ultra-deep Survey in the
redshift range z ∼ 1 – 1.5 and observe that AGN are more
frequently found in high-density environments. More re-
cent studies provide growing evidence for a positive evolution
of AGN activity with redshift, particularly in dense environ-
ments such as galaxy clusters. Several works have demon-
strated that the fraction of AGN in clusters increases with red-
shift, implying a stronger connection between environment
and AGN triggering at earlier times (Fassbender, Šuhada, and
Nastasi 2012; Martini et al. 2013; Bufanda et al. 2017; Hashiguchi
et al. 2023). Numerous studies also reported a high incidence
of AGN in proto-cluster environments, further supporting
the idea that dense regions at high redshift are conducive to
AGN activity (Lehmer et al. 2013; Krishnan et al. 2017; Gat-
ica et al. 2024; Vito et al. 2024).

Several other studies suggest that AGN activity shows little
to no dependence on environmental factors. Miller et al. (2003)
report that the fraction of optically selected AGN remains con-
sistent from the cores of galaxy clusters to field regions, a
finding mirrored by Martini, Mulchaey, and Kelson (2007)
for X-ray-selected AGN. Similarly, Pandey and Bharadwaj
(2008) analyze SDSS data, comparing filamentarity in the dis-
tributions of SFG and AGN, and find no significant differ-
ence. Pimbblet et al. (2013) observe that the fraction of opti-
cally selected AGN does not vary with distance from the clus-
ter center, while Sabater, Best, and Heckman (2015) find no
statistically significant effect of environment on optical AGN
activity. Likewise, Amiri, Tavasoli, and De Zotti (2019) re-
port only a weak correlation between local galaxy density and
AGN activity, and Man et al. (2019), analyzing SDSS data,
find minimal to no environmental influence on AGN occur-
rence. Some studies find no significant differences in the clus-
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tering of AGN and non-AGN galaxies (Porqueres et al. 2018;
Wang and Li 2019). These apparently conflicting results sug-
gest that the role of environment in AGN activity remains an
open question, underscoring the need for further research to
resolve the uncertainties.

The SDSS (Stoughton et al. 2002) provides high-quality
spectra and imaging for a large number galaxies in the nearby
universe, making it one of the largest and most comprehensive
redshift surveys to date. The precise classification of SFG and
AGN based on emission lines enables a robust statistical com-
parison between these populations. In this study, we investi-
gate the clustering properties of SFG and AGN using statisti-
cal tools such as the two-point correlation function and near-
est neighbour distribution. The mass of a galaxy is known to
influence the AGN activity. However, galaxy mass is known
to depend on environment. To identify any additional de-
pendence of AGN activity on the environment, we will com-
pare the spatial clustering and physical properties of the SFG
and AGN after matching their stellar mass distributions. This
approach will allow us to assess any residual environmental
impact on AGN activity by comparing the spatial clustering
and physical properties of SFG and AGN at similar masses
across varying densities. Additionally, analyzing AGN and
SFG properties in different environments at the same mass
could clarify the influence of large-scale environment and
assembly bias (Gao, Springel, and White 2005; Wechsler et
al. 2006; Gao and White 2007; Croton, Gao, and White 2007).
The dark matter halos of similar mass may have distinct assem-
bly histories leading to different halo concentration, merger
rates, or gas accretion rates, potentially impacting the AGN
activity. In this study, we will explore the possible roles of
assembly bias on the AGN activity in galaxies.

We use a ΛCDM cosmological model with Ωm0 = 0.315,
ΩΛ0 = 0.685 and h = 0.674 (Planck Collaboration et al. 2020)
throughout the present work.

The outline of our work is as follows. In Section 2, we de-
scribe our data and the methods of analysis. Section 3 presents
our results, and in Section 4, we provide our conclusions.

2. Data and method of analysis
2.1 SDSS data
We use data from the 17th data release (DR17) of SDSS (Ab-
durro’uf et al. 2022), which is a multi-band imaging and spec-
troscopic redshift survey. The SDSS employs a 2.5 m optical
telescope (Gunn et al. 2006) at Apache Point Observatory in
New Mexico, USA, to gather photometric and spectroscopic
data on galaxies across one-quarter of the entire sky. DR17
covers 14555 square degrees and includes spectroscopic in-
formation for 2863635 galaxies. For our analysis, we focus on
the Main Galaxy Sample (Strauss et al. 2002) of the SDSS. The
data are accessed via the SDSS CasJobs servicea using Struc-
tured Query Language (SQL).

We select a contiguous region of the sky in equatorial co-
ordinates, specifically the area spanning 130◦ ≤ α ≤ 230◦

a. https://skyserver.sdss.org/casjobs/

and 0◦ ≤ δ ≤ 60◦, for our analysis. From this region, we
download the spectroscopic data for galaxies with redshifts in
the range 0 ≤ z ≤ 0.2 and r-band apparent Petrosian mag-
nitudes mr < 17.77. These criteria yield a total of 392292
galaxies.

We use the galSpecExtra table, which is derived from the
MPA-JHU spectroscopic catalog of galaxies b, to classify the
objects as AGN or SFG based on the BPT diagram (Brinch-
mann et al. 2004). In this table, SFG are flagged with a value of
1, while AGN are flagged with a value of 4. Our AGN sample
primarily consists of high signal-to-noise ratio (SNR) narrow
line AGN excluding the composite galaxies (flag 3) and galax-
ies with low-ionization nuclear emission-line regions (LIN-
ERs). The information about the stellar mass and SFR are
also provided in the galSpecExtra table. The stellar masses of
the galaxies are estimated using the methodology outlined
in Kauffmann, Heckman, Tremonti, et al. 2003, applied to
photometric data as detailed in Salim et al. 2007. Star for-
mation rates are calculated according to the approach dis-
cussed in Brinchmann et al. 2004. The aperture corrections
are made by estimating star formation rates from SED fits to
the photometry outside the fiber, following the methodol-
ogy described in Salim et al. 2007. Estmating SFR in AGN
through model fitting gives unreliable results since different
lines are affected by AGN in different ways. The sSFR for
AGN in MPA-JHU catalogue are calculated using D4000 val-
ues. The D4000, which indicate the mean age of the stel-
lar population in galaxies (Balogh et al. 1999), are retrieved
from the galSpecIndx table. To characterize the morphology
of galaxies, we use the concentration index, r90

r50
(Shimasaku

et al. 2001), where r90 and r50 represent the radii that contain
90% and 50% of the Petrosian flux, respectively. These values
are obtained from the PhotoObjAll table.

We construct a volume-limited sample by applying a cut
on the K-corrected and extinction-corrected r-band absolute
magnitude, selecting galaxies with Mr ≤ –21. This corre-
sponds to a redshift cut of z ≤ 0.12. The resulting sample
consists of a total of 111671 galaxies (Figure 1), which in-
clude 38606 unclassified galaxies, 17282 star-forming galax-
ies, 22943 low SNR star-forming galaxies, 10028 composite
galaxies, 5828 AGNs, and 16984 low SNR LINERs.

We extract the largest cube that can be fitted within the
volume-limited sample. This datacube has a side length of
267.5 Mpc and contains a total of 30860 galaxies, of which
5184 are SFG and 1883 are AGN. The primary objective of
this work is to compare the spatial clustering and physical
properties of AGN and SFG. Therefore, we focus our anal-
ysis on these two galaxy types. The spatial distributions of
AGN and SFG within the extracted datacube are shown in
Figure 2.

2.2 Methods of analysis

b. https://www.sdss4.org/dr17/spectro/galaxy_mpajhu/
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Figure 1. This shows the definition of the volume limited sample in the
redshift-absolute magnitude plane. The volume limited sample comprises
of the galaxies lying within the rectangular region in this diagram.

2.2.1 Matching the stellar mass distributions of the AGN and
SFG
The stellar mass of a galaxy is a key factor influencing the on-
set of AGN activity. AGN abundance tends to increase with
the stellar mass of the host galaxy (Kauffmann, Heckman,
Tremonti, et al. 2003; Silverman et al. 2009). This strong cor-
relation between AGN activity and galaxy mass could intro-
duce significant bias into our study if not properly accounted
for. To address this, we match the stellar mass distributions of
AGN and SFG in our sample using the criterion | mSFG

mAGN
– 1| <

10–3. The stellar mass distributions for both AGN and SFG,
before and after matching, are shown in the left and right
panels of Figure 4, respectively. We apply a Kolmogorov-
Smirnov (KS) test to compare the distributions after matching
and find that the null hypothesis can be rejected with very low
confidence (p-value < 1%).

We calculate the fraction of AGN as a function of stellar
mass for the galaxies in our datacube and present the results in
Figure 3. The left panel of Figure 3 shows that the AGN frac-
tion AGN

AGN+SFG increases steadily with stellar mass for galax-
ies with masses greater than ∼ 1010.5 M⊙. The sharp rise
in the ratio AGN

SFG at higher masses, shown in the right panel
of Figure 3, is due to the lower abundance of SFG at these
mass scales. Galaxies with masses above 3× 1010 M⊙ are pre-
dominantly quiescent, bulge-dominated galaxies, while those
with lower masses are typically actively star-forming and have
disk-like morphologies (Kauffmann, Heckman, White, et al. 2003).
Hydrodynamical simulations suggest that a transition occurs
around this critical mass from cold-mode to hot-mode accre-
tion, leading to mass quenching in galaxies (Birnboim and
Dekel 2003; Dekel and Birnboim 2006; Kereš et al. 2005;
Gabor et al. 2010). In these more massive galaxies, the halo
gas can eventually cool and collapse to form stars. However,
AGN feedback can provide additional heating, preventing this
cooling and maintaining a hot halo (Fabian 2012; McNamara
and Nulsen 2012). The higher AGN fraction observed in
more massive galaxies suggests that these galaxies provide a
more conducive environment for AGN activity. Moreover,

the more massive galaxies are strongly clustered and tend to
reside in high-density regions. This implies that any com-
parison of clustering between SFG and AGN would be influ-
enced by the mass dependence of clustering.

The primary goal of this study is to compare the clustering
and physical properties of SFG and AGN with similar stellar
masses. Since the environment, clustering, and physical prop-
erties of galaxies are strongly influenced by its mass, we match
the stellar mass distributions of the two populations to ensure
that our results are not biased by mass-dependent factors. Al-
though only about 20% of the most massive galaxies in our
SFG sample are available for comparison with AGN, this ap-
proach allows us to explore the roles of other potential factors,
beyond stellar mass, that might contribute to AGN activity.

2.2.2 Two-point correlation function
The two-point correlation function quantifies the strength
of galaxy clustering at a given scale by measuring the ex-
cess probability of finding two galaxies at a specific separation,
compared to a random Poisson distribution. We calculate the
two-point correlation function separately for the AGN and
SFG samples, after matching their stellar mass distributions.
The data extracted from the volume-limited sample includes
1883 AGN and 5184 SFG. After stellar mass matching, we
obtain 1285 AGN and 1285 SFG galaxies.

The two-point correlation function is computed using the
Landy and Szalay estimator (Landy and Szalay 1993):

ξ(r) =
DD(r) – 2DR(r) + RR(r)

RR(r)
(1)

whereDD(r),RR(r) andDR(r) are normalized counts for data-
data, random-random and data-random pairs at separation r.
To estimate the error bars, we generate 50 jackknife resam-
plings for each dataset.

2.2.3 Distribution of the nth nearest neighbour distance and
the local density
Galaxies in denser environments are expected to have closer
neighbours. The distance to the nth nearest neighbour, rn,
can serve as a proxy for the local environment (Casertano and
Hut 1985) of a galaxy, with n representing the number of
neighbours considered. In our analysis, we focus on three-
dimensional space and select n = 5 for the present study.

We calculate the distribution of the 5th nearest neighbour
distances for both AGN and SFG galaxies, using all 30860
galaxies in our dataset.

The local galaxy density around an AGN or SFG is de-
fined as,

ηn =
n – 1
V(rn)

(2)

where, V(rn) = 4
3πr

3
n is the volume within a radius rn.

Due to the sharp boundaries of our samples, the local den-
sity can be underestimated near the edges. To address this, we
calculate the minimum distance rb from each galaxy to the
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Figure 2. The left and right panels of this figure, respectively show the spatial distributions of the AGN and SFG within the datacube extracted from the volume
limited sample.

boundary of the sample and only include galaxies for which
rn < rb in our local density calculations.

3. Results and Discussions

Table 1. This table shows the best fit values of r0 and γ for the two-point
correlation functions of AGN and SFG. The two-point correlation functions
are fitted to a power law of the form ( r

r0
)–γ upto a scale of 25 Mpc.

Class Correlation length (r0) Slope (γ)

AGN r0 = 10.82 ± 3.41 γ = 1.09 ± 0.13

SFG r0 = 8.36 ± 2.57 γ = 1.29 ± 0.12

3.1 The two-point correlation function and the 5th nearest
neighbour distribution of the mass-matched AGN and SFG
In the top-left and top-right panels of Figure 5, we show
the two-point correlation function and the probability den-
sity function (PDF) of the 5th nearest neighbour distance for
the mass-matched AGN and SFG populations, respectively.
The bottom left panel of Figure 5 reveals that AGN are some-
what more strongly clustered than SFG at fixed stellar mass.
However, the statistical significance of these differences are
not strong enough to confirm the differences in their clus-
tering strength. We also repeat our calculations for the two-
point correlation functions of AGN and SFG using the pub-
licly available code Corrfunc (Sinha and Garrison 2020) and
obtained the same results as presented in this work.

The two-point correlation functions for AGN and SFG
are analyzed in redshift space, where a power-law fit provides
a reasonable approximation on scales below 25 Mpc (Hawkins
et al. 2003). We fit the two-point correlation functions to a
power law of the form ξ(r) = ( r

r0 )–γ using least squares fitting
and present the fitted values for the correlation length (r0) and
slope (γ) in Table 1. The results show that the two-point cor-
relation function of AGN has a larger correlation length and

a shallower slope compared to SFG, even after matching their
stellar mass distributions. However, the errors associated with
these parameters (see Table 1) suggest that r0 and γ for AGN
are consistent with SFG within 1σ.

The bottom-right panel of Figure 5 compares the 5th near-
est neighbour distributions for AGN and SFG using a KS test.
The KS test shows that the null hypothesis can be rejected
at the 95% confidence level. The distance to the 5th near-
est neighbour is smaller for AGNs than for SFGs, indicat-
ing that AGN are hosted in relatively higher-density regions
compared to SFG. However, the significance of these differ-
ences are not sufficiently strong that can unambiguously pro-
vide an evidence in favour of a stronger clustering of AGN
compared to SFG. Several earlier studies reported a stronger
clustering for AGN (Gilli et al. 2009; Mandelbaum et al. 2009;
Kollatschny, Reichstein, and Zetzl 2012; Donoso et al. 2014;
Hale et al. 2018). Further investigations with larger datasets
are necessary to confirm the differences in the clustering of
AGN host galaxies and star-forming galaxies at fixed stellar
mass.

3.2 Comparing the distributions of different physical prop-
erties of the mass-matched AGN and SFG
The triggering of AGN activity may require specific physi-
cal conditions within a galaxy, and the onset of AGN activ-
ity can, in turn, affect certain physical properties of the host
galaxy. Understanding the differences between the physical
properties of AGN host galaxies and star-forming galaxies is
crucial. The mass of a galaxy is known to be the most influen-
tial factor in determining its physical properties (Cooray and
Sheth 2002). Moreover, the AGN fraction is strongly corre-
lated with the stellar mass of galaxies (Figure 3). It is there-
fore of interest to compare the distributions of various physical
properties for the two populations after matching their stellar
mass distributions.

We compare the distributions of the (u–r) colour, concen-
tration index ( r90

r50
), SFR, and the D4000 for AGN host galaxies

and star-forming galaxies at fixed stellar mass. These distri-
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Figure 5. The top left panel of this figure shows the two-point correlation function as a function of length scale (r) for the AGN and SFG. The ratio of the
two-point correlation functions for AGN and SFG is plotted as a function of r in the bottom left panel. The 1σ errorbars in these figures are obtained from
50 jackknife samples drawn from the original dataset. The top right panel shows the PDFs of the 5th nearest neighbour distance for AGN and SFG. The two
distributions are compared using a KS test, and the results are shown in the bottom right panel. The comparisons are carried out after matching the stellar
mass distributions of AGN and SFG.
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for the AGN and SFG after matching their stellar
mass distributions. We use KS-test to compare the distributions for the AGN and SFG in each case. The corresponding p-values are extremely small, and the
null hypothesis can be rejected at > 99.99% confidence level in each case.
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butions are shown in different panels of Figure 6. To quantify
the dissimilarity between the two distributions in each case,
we apply the KS test. The results indicate that the null hy-
pothesis can be rejected with a confidence level greater than
99.99% in all cases.

The different panels of Figure 6 show that the PDFs for
AGN and SFG cover similar ranges but peak at different val-
ues. In the top-left panel of Figure 6, we observe that most
SFG are located in the blue cloud ((u – r) < 2.22) (Strateva et
al. 2001), while the colour distribution of AGN host galaxies
peaks in the green valley and extends into both the blue cloud
and the red sequence.

The blue colours of SFG are primarily due to the pres-
ence of young, hot, and massive stars that dominate the emis-
sion from the galaxy. These stars emit substantial ultraviolet
and blue light, giving SFG their characteristic blue colour.
In contrast, AGN tend to have redder colours, which can be
attributed to the dust and gas surrounding the central black
hole. This dust absorbs and scatters the blue and ultraviolet
light emitted by the accretion disk, causing the galaxy to ap-
pear redder. Additionally, the redder colours may result from
the thermal emission of dust heated by the radiation, con-
tributing to the infrared part of the spectrum. An older stellar
population in AGN host galaxies can also contribute to their
redder appearance.

We compare the SFR distributions of AGN and SFG in the
top-right panel of Figure 6. The SFR distributions for SFG
and AGN peak around ∼ 4M⊙/yr and ∼ 1M⊙/ yr, respec-
tively. Both distributions are positively skewed and extend to
higher SFRs (up to 15M⊙/ yr). However, the abundance of
AGN decreases significantly compared to SFG for SFRs above
3M⊙/yr.

The bottom-left panel of Figure 6 shows the distributions
of the 4000 Å break measurements for AGN and SFG. The
4000 Å break is strongly correlated with the ratio of the past
average SFR to the present SFR in galaxies (Kauffmann, Heck-
man, White, et al. 2003), and it serves as an indicator of the
galaxy’s recent star formation history. The distribution for
AGN peaks at a higher value of D4000 (∼ 1.63) and is neg-
atively skewed, while the distribution for SFG peaks around
∼ 1.38 and is nearly symmetrical. Lower values of D4000
(< 1.5) are associated with younger stellar populations, indi-
cating recent star formation or a completed starburst. Con-
versely, higher values (> 1.8) correspond to older stellar popu-
lations (Kauffmann and Heckman 2009). The higher D4000
values for AGN suggest that their host galaxies are primar-
ily composed of older stellar populations. However, we also
observe that some AGN host galaxies exhibit D4000 values
below 1.5, implying that AGN activity can coexist with star-
burst activity in certain galaxies.

We compare the distributions of the concentration index
for AGN and SFG in the bottom right panel of Figure 6.
The concentration index is strongly correlated with galaxy
morphology (Shimasaku et al. 2001). A concentration in-
dex of r90

r50
= 2.3 corresponds to a pure exponential profile

(Strateva et al. 2001), while r90
r50

= 3.33 describes a pure de

Vaucouleurs profile (Blanton et al. 2001). Higher values of
the concentration index are typically associated with elliptical
and bulge-dominated galaxies, whereas disk-dominated spi-
ral galaxies have lower concentration indices (< 2.6) (Strat-
eva et al. 2001). For our sample, the concentration index
distributions for AGN and SFG peak at around ∼ 2.8 and
∼ 2.3, respectively. This suggests that most SFG have disk-
like morphologies, while AGN are more commonly found in
bulge-dominated systems. We also note that the distribution
for AGN is negatively skewed, whereas the distribution for
SFG is positively skewed. This indicates that AGN can also
occur in disk-dominated galaxies, and some SFG may exhibit
bulge-dominated morphologies. These findings are consis-
tent with previous studies showing that barred spiral galaxies
in groups often display AGN activity (Alonso, Coldwell, and
Lambas 2014), and that some elliptical galaxies can undergo
rejuvenation in isolated environments (Zezas et al. 2003; Lac-
erna et al. 2016).

3.3 Comparing the distributions of different physical prop-
erties of the mass-matched AGN and SFG in low and high den-
sity regions
Figure 6 shows that the physical properties of AGN and SFG
differ significantly at fixed stellar masses. Analysis of the two-
point correlation function and the distribution of the 5th near-
est neighbours (Figure 5) also reveals that AGN exhibit mod-
erately stronger clustering than SFG. AGN tend to prefer denser
regions, while SFG are more commonly found in less dense
environments. However, these environmental differences can
not be confirmed at a high significance level from this analysis.
The local density may have a role in triggering AGN activity.
It would be interesting to explore whether the observed dif-
ferences in the physical properties of AGN and SFG, as shown
in Figure 6, persist in regions of different density. To investi-
gate this, we divide the mass-matched AGN and SFG into two
categories based on local density. Galaxies residing in regions
with a density below the median of the combined sample are
classified as “low density”, while those in regions with a den-
sity above the median are classified as “high density”.

We calculate the PDFs of four galaxy properties for AGN
and SFG in both low-density and high-density regions. The
comparisons of physical properties for AGN and SFG in low-
density regions are shown in the four left panels of Figure 7,
while the comparisons in high-density regions are displayed
in the four right panels. The differences between the PDFs in
each panel are quantified using the KS-test. The results show
that the null hypothesis can be rejected with a confidence level
greater than 99.99% in all cases, indicating that the differences
in the physical properties of AGN and SFG persist in both
low- and high-density regions.

AGN activity can be triggered in both high- and low-
density environments, and its presence significantly alters the
physical properties of the host galaxy compared to those of a
SFG. Notably, the differences in physical properties between
AGN and SFG persist regardless of local environmental den-
sity. This indicates that such differences can not be explained
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by variations in local density.

4. Conclusion
We use a volume-limited sample from the SDSS to compare
the clustering and physical properties of SFG and AGN host
galaxies at fixed stellar mass. Our analysis with two-point cor-
relation function and the 5th nearest neigbour distance reveals
that the clustering strength of AGN are moderately stronger
than SFG. However, the statistical significance of these differ-
ences are not sufficiently strong to confirm these environmen-
tal differences. The weak significance may arise due to the
small size of our samples. Further analysis with larger datasets
are required for conclusive evidence.

We further compare the distributions of (u – r) colour,
concentration index, SFR, and D4000 for AGN and SFG at
fixed stellar mass and find statistically significant differences
at a confidence level exceeding 99.99%. These distributions
are also examined across varying densities while maintaining
fixed stellar mass, revealing that the differences persist at the
same significance level in both high and low density envi-
ronments (Figure 7). This suggests that the observed dif-
ferences in the physical properties of AGN and SFG cannot
be attributed solely to their local density. Instead, density
may play an indirect role in AGN activity by increasing the
likelihood of galaxy interactions (Ellison et al. 2011; Sabater,
Best, and Heckman 2015; Singh et al. 2023). In relaxed sys-
tems, gas is unable to flow toward the central SMBH due
to angular momentum conservation. Interactions can gener-
ate torques or instabilities that funnel gas toward the SMBH,
thereby triggering AGN activity (Woods and Geller 2007;
Rogers et al. 2009). Although the number density of galax-
ies in cluster environments is much higher than in the field,
the higher velocities of galaxies, particularly those newly in-
falling near the cluster center, can inhibit interactions. Haines
et al. (2012) provide evidence suggesting that galaxy interac-
tions may still play an important role in the cluster outskirts,
offering a scenario where such interactions are more likely to
occur. Ehlert et al. (2015) suggested that galaxy mergers could
play a significant role in contributing to the AGN population
within clusters. Several other works Koulouridis, Gkini, and
Drigga (2024) and Drigga et al. (2025) presented additional
evidence in support of this idea. Notably, our results indi-
cate that AGN activity can also be sustained through secular
processes in low density environments.

Galaxies with similar stellar masses can exhibit significantly
different assembly histories, creating uncertainties about whether
a galaxy of a given stellar mass can host the conditions nec-
essary for AGN activity. Two key prerequisites for AGN ac-
tivity are the presence of a bulge and the availability of gas
(Ruffa et al. 2019; Shangguan et al. 2020; Ellison et al. 2021;
Sampaio et al. 2023). However, these favorable conditions are
met only in a subset of galaxies at a given stellar mass, with
their prevalence depending on both stellar mass and assembly
history. Studies indicate that the frequency of bulge forma-
tion increases with stellar mass (Erwin and Debattista 2017)
and is influenced by assembly history (Kruk et al. 2019). Hy-

drodynamical simulations further suggest that assembly bias
can lead to substantial variations in the cold gas content of
galaxies (Cui et al. 2021). For instance, galaxies with higher
stellar masses tend to reside in early-formed halos, which are
more likely to accumulate large reservoirs of cold gas. Conse-
quently, the availability of cold gas is governed by both stellar
mass and the assembly history of the host halos.

The observed increase in AGN fraction with stellar mass
is linked to the greater likelihood of bulge dominance and the
presence of larger cold gas reservoirs in more massive galaxies.
Additionally, massive halos, which reside in denser environ-
ments, are subject to more frequent interactions. These in-
teractions can influence AGN activity and may be reflected in
the clustering properties of galaxies. Croton, Gao, and White
2007 demonstrate that assembly bias alters the two-point cor-
relation function of galaxies by ∼ 10%. It would be difficult
to confirm the role of assembly bias from such small differ-
ences in the observed two-point correlation functions. Us-
ing information theoretic measures, several studies show that
galaxy morphology and colour are significantly impacted by
large-scale environment (Pandey and Sarkar 2017; Sarkar and
Pandey 2020; Sarkar, Pandey, and Das 2022). Such depen-
dence hints towards possible roles of assembly bias in shaping
the galaxy properties. We plan to compare the large-scale en-
vironment of SFG and AGN in future work.

Massive galaxies predominantly inhabit denser environ-
ments, and AGN hosts are typically high-mass galaxies. Since
galaxy clustering is strongly influenced by mass, our SFG and
AGN samples are matched in stellar mass. AGN exhibit only
a moderately stronger clustering than SFG, suggesting that
local density may not have a significant role in triggering
AGN activity. Further, the observed differences in the physi-
cal properties of mass-matched SFG and AGN remain largely
independent of environmental density. This also indicates
that the local environment is unlikely to be the primary driver
of AGN activity.

Our findings hint at a potential role of assembly history in
influencing AGN activity. However, the current analysis does
not provide conclusive evidence, necessitating further investi-
gation. The relationship between assembly bias and AGN ac-
tivity is inherently complex, involving an intricate interplay
between the formation histories of galaxies, the properties of
their host dark matter halos, and the mechanisms that trigger
and regulate AGN activity. A deeper understanding of these
connections is essential to uncover the influence of assembly
bias on AGN activity. We plan to use hydrodynamical simu-
lations, such as EAGLE (Schaye et al. 2015) and IllustrisTNG
(Nelson et al. 2019) in future work, to explore these aspects in
greater detail.
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