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Abstract

Consider randomly scattered radio transceivers in R
d , each of which can transmit

signals to all transceivers in a given randomly chosen region about itself. If a signal
is retransmitted by every transceiver that receives it, under what circumstances will a
signal propagate to a large distance from its starting point? Put more formally, place
points {xi} in R

d according to a Poisson process with intensity 1. Then, independently
for each xi , choose a bounded region Axi

from some fixed distribution and let G be the
random directed graph with vertex set {xi} and edges �xixj whenever xj ∈ xi + Axi

. We
show that, for any η > 0, G will almost surely have an infinite directed path, provided
the expected number of transceivers that can receive a signal directly from xi is at least
1 + η, and the regions xi + Axi

do not overlap too much (in a sense that we shall make
precise). One example where these conditions hold, and so gives rise to percolation, is
in R

d , with each Axi
a ball of volume 1 + η centred at xi , where η → 0 as d → ∞.

Another example is in two dimensions, where the Axi
are sectors of angle εθ and area

1 + η, uniformly randomly oriented within a fixed angle (1 + ε)θ . In this case we can
let η → 0 as ε → 0 and still obtain percolation. The result is already known for the
annulus, i.e. that the critical area tends to 1 as the ratio of the radii tends to 1, while it
is known to be false for the square (l∞) annulus. Our results show that it does however
hold for the randomly oriented square annulus.
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1. Introduction

We consider an ad-hoc wireless network consisting of many transceivers randomly
distributed over a large region, some or all of which have sensors that record some local
data. Each transceiver can transmit its data to some nearby region. All the recipients of
this information then retransmit it. Under some conditions (e.g. enough power and enough
transceivers), the information can propagate a large distance. In particular, if we listen at the
boundary of the large region, we may still pick up information originating from sensors in the
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centre of the region (see [6]). We wish to prove some bounds on the power and number of
transceivers needed for this to occur.

A very natural way to model this is to suppose that the transceivers are distributed according
to a Poisson process in some region, for example a square, and that the transceivers are
omni-directional, i.e. that any transceiver within a disc about the transceiver can receive
the information (where the radius of the disc may depend on the power of the transceiver).
A limiting version of this problem is to suppose that the transceivers are distributed according
to a Poisson process in the entire plane and ask for the existence of an infinite component;
i.e. whether percolation occurs (see [5] and [8]). In this case it is known that we need the
power to be such that, on average, a transceiver can broadcast to approximately 4.512 other
transceivers (see [10] for numerical simulations and [4] for a semi-rigorous result). It is natural
to ask whether we can do better if we transmit to some other region, in particular whether
directional transmission can help. In this paper we show that, given any reasonable model of
directional transceivers, we can do better. Moreover, this can be achieved with the transceivers
randomly oriented; in particular, the transceivers do not require any global knowledge of the
arrangement.

To model this setup, fix a probability distribution D on measurable regions A ⊆ R
d \ {0}.

Construct a random digraph G by placing points {xi} in R
d according to a Poisson process with

intensity 1. Choose independently for each xi , regions Axi
according to the distribution D .

Let the vertices of G be the xi , and let the edges �xixj lie in G when xj ∈ A(xi) := xi + Axi
.

The points xi represent the locations of our transceivers, and the sets A(xi) represent the region
in which the signal strength of xi is sufficiently strong to be received by another transceiver.
We assume that the reception of a signal is not directional, so all transceivers within A(xi)

can receive data from xi . Individual transceivers may be strongly directional, so A(xi) may be
highly nonsymmetric. Indeed, even the distribution D may be very irregular, due to variation in
power, or partial failure of the transceivers, or even global bias in the direction of transmission.
We wish to know under what circumstances G has an infinite directed path.

We shall show that for an infinite directed path to exist we need only the expected volume
of Axi

to be slightly more than 1, provided there is not much overlap in the regions Axi
(in a

sense that will be made precise below), and the distribution D satisfies some mild boundedness
conditions.

Throughout this paper, we shall denote by |S| the standard Lebesgue measure of S in R
d .

We shall fix a distribution D on regions, and define two distributions derived from D . Let
D0 be the distribution of the number of points, N , of our Poisson process in A, where A is
distributed according to D . Note that if all the volumes |A| are the same then D0 is a Poisson
distribution with mean |A|. Let Dc be the probability distribution on R

d given by

PDc (S) = E(|S ∩ A|)
E(|A|) ,

where A is distributed according to D . In other words, Dc is the unconditioned probability
distribution of the location of a ‘typical’ neighbour of the point 0.

We now introduce several parameters that describe D . The most important of these, and
the most difficult to describe, is the parameter δ which will indicate the amount of overlap we
obtain between the regions A(xi).

We require, for any x1 and x2 and fixed A(x1) and A(x2), that the probability of a randomly
chosen neighbour of a randomly chosen neighbour of x1 being a neighbour of x2 is at most δ.
In addition, we also need the same result if we, rather artificially, replace Ax1 by −Ax1 . More
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formally, let the sets A and A′ be distributed according to D . Fixing A, A′, and z ∈ R
d , let

X be a random point uniformly distributed in A, and let Y be an independent random variable
with distribution Dc. Then define δ by

δ = ess sup
A,A′

sup
z

max{P(X + Y ∈ A′ + z), P(−X + Y ∈ A′ + z)}. (1)

(If A(x1) = A+x1, A(x2) = A′+x2, and z = x2−x1, then we obtain the previous description.)
Note that if D is centrally symmetric then the P(−X + Y ∈ A′ + z) term above is unnecessary
since we can replace A by −A. Note also that by changing D on a set of measure 0 we may
assume that ‘ess sup’ is the same as ‘sup’.

To illustrate this definition, consider the distribution D which gives a fixed region A with
probability 1. Then δ is given more simply by

δ = |A|−2 sup
z

∫
A−z

|(A + x) ∩ A| dx. (2)

(Write x = X∓ z and A′ = A, and note that X and Y are now both uniformly distributed in A.)
For example, suppose that A is a d-dimensional sphere with radius r centred at the origin in R

d .
Then (A + x) ∩ A is contained in a sphere of radius r

√
1 − α2/4 about the point x/2, where

α = ‖x‖. Hence, |(A + x) ∩ A| ≤ (1 − α2/4)d/2|A|. Since |(A + x) ∩ A| is decreasing for
increasing ‖x‖, the supremum in (2) occurs when z = 0. Thus,

δ ≤
∫ 1

0

(
1 − α2

4

)d/2

(dαd−1) dα.

Substituting α = e−z and using 1 − α2/4 = 1 − 1
4 e−2z ≤ 3

4 + 1
2z ≤ 3

4 e2z/3 gives

δ ≤
∫ ∞

0

(
3

4
e2z/3

)d/2

de−z(d−1)e−z dz =
(

3

4

)d/2 ∫ ∞

0
de−(2d/3)z dz = 3

2

(
3

4

)d/2

, (3)

so δ decreases exponentially with d . (By calculating (2) exactly one can show that δ =
3
2 (

∫ π/3
0 sind θ dθ)/(

∫ π/2
0 sind θ dθ). Using this, we can see that the exponential rate of decay

given by (3) is sharp, although, for example, δ = 1 − (
√

27/4π) ≈ 0.5865 when d = 2, while
(3) gives an estimate larger than 1.)

Another example is in two dimensions with A a randomly oriented thin sector of a disc. This
example models the case when the transceivers are highly directional, but not all oriented in
the same direction. To be precise, assume that each sector has angle εθ , and that the sectors are
oriented uniformly over some fixed angle θ, 0 < θ ≤ 2π , so that all the sectors lie within an
angle of (1 + ε)θ (or 2π if (1 + ε)θ ≥ 2π ). Then the probability distribution Dc has density
at most ε/|A| at any point. It is then clear that ±X + Y has probability density at most ε/|A|
anywhere, so δ = supz,A,A′ P(±X +Y ∈ A′ + z) ≤ (ε/|A|)|A′| = ε. More generally, we have
the following result.

Lemma 1. If almost all volumes |A| given by D are the same and, for almost all fixed z ∈ R
d ,

the probability that z ∈ A (A distributed according to D) is at most ε, then δ ≤ ε.

Note that in our example, for δ to be small, it is necessary that ε be small. It is not sufficient
that θ be small. Indeed, reducing θ has little effect, since by applying a suitable area-preserving
linear transformation, a small θ is the same as taking large θ and replacing the thin sectors by
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appropriate triangular-shaped regions. It is then not hard to see that if ε fails to be small, δ will
also not be small. Using Theorem 2, we can also show that in this case the area of the sectors
A must be significantly larger than 1 if an infinite directed path is to exist.

We should also note that in Lemma 1, the condition that |A| is constant is required. For
example, consider the case when A = ∅ with probability 1 − ε and A is a disc of area C/ε

with probability ε. The probability that z ∈ A is always at most ε; however, δ is the same as
if A were a disc of area C with probability 1, and is therefore independent of ε. Indeed, the
behaviour of these two models is essentially the same since we can remove the points of the
Poisson process in the first model where Axi

= ∅ without altering the percolation properties.
But then we obtain the second model scaled up by a factor 1/ε in area. Moreover, the second
model percolates only for C larger than some critical value which is known to be at least 2
(see [9]), and experimental evidence suggests that this value is about 4.512 (see [10]); hence,
in both models we need significantly more than one neighbour on average to ensure infinite
directed paths.

The other parameters we need are somewhat easier to describe. Define η so that 1 + η is
the average number of neighbours of a point in G, which is also the average volume E(|A|).
Define σ 2 to be the variance of the number of neighbours of a point. We shall see below that
σ 2 = E(|A|) + var(|A|), so σ 2 ≥ 1 + η with equality if and only if the volume |A| is almost
surely constant. We shall assume that all sets A given by our distribution D lie in a ball of
radius r0 about 0. We also assume that the root mean-square distance of a neighbour is at least
rm > 0 in any direction, i.e.

r2
m ≤ E((Y · u)2) for any unit vector u,

where Y is distributed according to Dc. We can now state the main result.

Theorem 1. There is an absolute constant c > 0 such that if η ≤ 1 and

δ < cr9
mr−9

0 η16σ−32

then G almost surely has an infinite directed path.

From Theorem 1 we can deduce two immediate corollaries.

Corollary 1. Assume that G consists of the points of a Poisson process with intensity 1 in
R

d , d ≥ 2, and that each point is joined to all other points within a ball of volume 1 + η. Then
there exists a constant c > 0, independent of d, such that if η > c(0.9911)d then G almost
surely has an infinite component.

Proof. The distribution D gives the ball with volume 1 + η with probability 1. An infinite
directed path is an infinite component since �xy ∈ G if and only if �yx ∈ G. From the
above discussion, δ ≤ 1.5(0.75)d/2. But r0/rm is bounded by a polynomial in d (in fact,
r0/rm = √

d + 2) and σ 2 = 1 +η is bounded when η ≤ 1. The result follows for large d since
0.991116 >

√
0.75. Note that, for any d ≥ 2, there does exist some η such that G has an infinite

component. To see this, divide R
d into cubes of side length L and identify each cube with a

point in Z
d in the obvious manner. Define a site percolation on Z

d by declaring a site open if
the corresponding cube contains a point of the Poisson process. Assume that η is such that the
ball of volume 1 + η has radius at least L

√
(d − 1) + 4. Then any pair of points in adjacent

cubes are joined. Thus, if the site percolation on Z
d has an infinite open component then G must

also have an infinite component. Thus, provided that we choose L such that 1 − exp(−Ld) is
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more than the critical probability of site percolation in Z
d (which is known to be strictly less

than 1), then G almost surely has an infinite component. Hence, by increasing c if necessary,
the result holds for all d ≥ 2.

Corollary 2. Assume that G consists of the points of a Poisson process with intensity 1 in R
2,

and that each point is joined to all other points within a sector of a disc of area 1+η and angle
εθ , randomly oriented over a fixed angle of θ . Then there exists a constant c > 0, independent
of both θ and ε, such that if η > cε1/16 then G almost surely has an infinite directed path.

Proof. From the above discussion we have δ ≤ ε. Assume first that ε is bounded and that
η ≤ 1, so σ 2 ≤ 2. For θ bounded away from 0, r0/rm is bounded and the result follows
from Theorem 1 for some c. As θ → 0, r0/rm → ∞, but if we apply an area-preserving
linear transformation of R

2, we can make all the sensor regions approximately triangular with
r0/rm bounded. Thus, we can choose c independently of θ for all θ > 0. Since increasing the
radius of the sectors only makes percolation more likely, the result follows for all η when ε is
sufficiently small (cε1/16 < 1).

For larger ε, note that if G has an infinite directed path for ε = ε0 with η = 1 then G still
has an infinite directed path if we increase ε (and, hence, η) while keeping the radius of the
sectors the same. Hence, by increasing c if necessary, the result follows for all ε ∈ (0, 2].
For ε > 2, the sectors always contain a fixed sector of angle (ε − 1)θ , and, thus, a triangle of
area some constant fraction of 1 + η. By a suitable linear transformation we can make these
triangles equilateral, so percolation will occur once this area is above some absolute constant,
independently of the shape of the original triangle. Thus, by increasing c again if necessary,
we obtain the result for all ε.

For another model, take A to be a fixed annulus of area 1+η and inner and outer radii r(1−ε)

and r , respectively, where r = r(η, ε) is determined by the requirement that |A| = πr2(2 −
ε)ε = 1+η. In this case, transceivers transmit data to other transceivers only if they are placed
a distance between r(1−ε) and r apart. For this model, it is already known that, for any η > 0,
we obtain percolation for sufficiently small ε (see [3] and [7]). In [3] it was also shown that
this result fails for a ‘square’ annulus, defined by A = {(x, y) : r(1 − ε) ≤ max{|x|, |y|} ≤ r}.
Indeed, we require that η > 0.014 for all ε > 0. For the square annulus, it can be shown that
δ ≥ 9

64 for any ε > 0, unlike the case of the usual annulus where δ → 0 as ε → 0. On the
other hand, the randomly oriented square annulus does have small δ by Lemma 1, so in this
case we do obtain percolation for any fixed η > 0 if ε is sufficiently small.

2. Lower bound

Before we give the proof of Theorem 1, we first note that we can give a positive lower bound
on η that is necessary for an infinite directed path to exist in G. Recall that all regions A are
assumed to lie within a ball of radius r0 about 0 and that the average number of neighbours is
1 + η.

Theorem 2. Suppose that η < (2K)−K/3, where K = �(4r0)
d + 1�. Then there is almost

surely no infinite directed path in G.

Proof. Fix x0 in the process. Let Ni be the number of points at graph distance i from x0 in G.
We need to show that, almost surely, Ni = 0 for some i. For all i, E(Ni+1 | Ni) ≤ (1 + η)Ni ,
since this is true even conditioning on the choice of A(x) and the Poisson process in A(x) for
all x within a graph distance i − 1 of x0. (All the points at graph distance i + 1 lie outside
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these regions and are contained within a union of Ni regions, each of expected volume 1 + η.)
Thus, E(Ni+1) = E(E(Ni+1 | Ni)) ≤ (1 + η) E(Ni). In particular, when η < 0, E(Ni) → 0
as i → ∞, and so almost surely some Ni = 0. Hence, we may assume that η ≥ 0. Now
E(N2 | N1) ≤ (1+η)N1. All the N2 points at graph distance 2 from x0 lie within 2r0 of x0 and
outside A(x0). Thus, we also have E(N2 | N1) ≤ (4r0)

d , since this is true even conditioning
on A(x0) and the Poisson process inside A(x0). Combining these results we have

E(N2) = E(E(N2 | N1))

≤ E(min{(1 + η)N1, (4r0)
d})

≤ (1 + η) E(N1) − 1 P(N1 ≥ (4r0)
d + 1)

≤ (1 + η)2 − P(N1 ≥ (4r0)
d + 1).

Let A = A(x0) be the neighbourhood for x0. Then, since |A| < (2r0)
d and E(|A|) ≥ 1,

P

(
|A| >

1

2

)
>

1

2(2r0)d
.

Also, conditional on |A| > 1
2 , the number of points in A stochastically dominates a Poisson

distribution with mean 1
2 . Thus,

P

(
N1 ≥ (4r0)

d + 1

∣∣∣∣ |A| >
1

2

)
≥ e−1/2

2KK! ,

where K = �(4r0)
d + 1�. Therefore,

P(N1 ≥ (4r0)
d + 1) ≥ 1

2(2r0)d

e−1/2

2KK! > (2K)−K > 3η > 2η + η2,

by assumption on η. Hence, E(N2) < (1 + η)2 − (2η + η2) = 1. However, it is clear that
E(Ni+2 | Ni) ≤ E(N2)Ni , so E(N2i ) ≤ (E(N2))

i , which tends to 0 as i → ∞. The result now
follows.

3. Proof of Theorem 1

First we convert the definition of δ into a more usable form.

Lemma 2. We can define sets B(xi) depending on A(xi) so that if z /∈ B(xi) and A is distributed
according to D then, conditional on any value of A(xi), we have

E(|(z + A) ∩ A(xi)|) ≤ √
δ E(|A|).

Moreover, for all z ∈ R
d and D-almost all choices of A and A(xi),

|(z ± A) ∩ B(xi)| ≤ √
δ|A|.

Proof. Fix A(xi), and define

B(xi) = {z ∈ R
d : E(|(z + A) ∩ A(xi)|) >

√
δ E(|A|)}.
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The first inequality then holds automatically. Now let X be uniformly distributed in A, and let
Y be distributed according to the distribution Dc. Then, for either sign choice of ‘±’ (fixed
throughout) and almost all choices of A and A(xi),

δ ≥ P(±X + Y ∈ A(xi) + z)

≥ P(±X + Y ∈ A(xi) + z | ± X ∈ B(xi) + z) P(±X ∈ B(xi) + z)

= P(W + Y ∈ A(xi) | W ∈ B(xi)) P(±X ∈ B(xi) + z)

= E(|(W + A′) ∩ A(xi)| | W ∈ B(xi))

E(|A′|)
| ± A ∩ (B(xi) + z)|

|A|
≥

√
δ|((−z) ± A) ∩ B(xi)|

|A| ,

where A′ is distributed according to D and W = ±X − z. Hence, |(z ± A) ∩ B(xi)| ≤ √
δ|A|

for all z ∈ R
d .

The sets B(xi) give regions around xi that we want to avoid, since if xj ∈ B(xi) then the
neighbourhoods of xj and xi may have a large intersection. In this case we will typically have
too few ‘new’ neighbours of xj , say, that we have not already encountered when looking for
neighbours of xi . Ideally, we would like to have B(xi) = ∅, but in general all we can guarantee
is that B(xi) has small intersection with every region A(xk).

We introduce the following parameters of the distribution D0 governing N , the number of
neighbours of a point:

E(N) = 1 + η, var(N) = σ 2, P(N = 0) = p0.

Since the regions A are bounded, N is stochastically bounded by a Poisson variable with finite
mean. Hence, all moments, including var(N), are finite, and p0 > 0. By Theorem 2, if η ≤ 0
then there will almost surely be no infinite directed path in G; hence, we shall always assume
that η > 0. We also define λ > 0, so that

E(e−λN) = e−λ.

Note that, for large x, E(e−xN) tends to p0 > 0 and, for small x, E(e−xN) = 1 − x E(N) +
O(x2) = 1 − x(1 + η) + O(x2) < e−x . Hence, by continuity, λ does indeed exist.

Lemma 3. If A is distributed according to D and η > 0 then

η = E(|A|) − 1, σ 2 = var(|A|) + E(|A|), p0 ≥ e−(1+η), λ ≥ 2η

σ 2 + (1 + η)2 .

Proof. Let A be distributed according to D , so that N , conditioned on A, is distributed as a
Poisson variable with mean |A|. For the first equation, 1+η = E(N) = E(E(N | A)) = E(|A|).
Also,

σ 2 + (E(N))2 = E(N2) = E(E(N2 | A)) = E(|A| + |A|2) = var(|A|) + (E(|A|))2 + E(|A|).
Since E(N) = E(|A|), we obtain the second equality. The probability that N = 0 is E(P(N =
0 | A)) = E(e−|A|) ≥ e−(1+η) by convexity of e−x . Finally, N is nonnegative and e−x ≤
1−x +x2/2 for x ≥ 0. Hence, E(e−λN) ≤ 1−λ E(N)+λ2 E(N2)/2. If 0 < λ < 2η/ E(N2)

then E(e−λN) < 1 − λ(1 + η) + λη = 1 − λ < e−λ, contradicting the definition of λ. Thus,
λ ≥ 2η/ E(N2) = 2η/(σ 2 + (1 + η)2).
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Our aim will be to compare the percolation process with an oriented bond percolation on Z
2.

First we shall use a linear transformation to make D somewhat more symmetric. If we apply
a volume-preserving linear transformation to R

d then the Poisson process will again give us
a Poisson process of intensity 1. Expression (1) defining δ is unchanged under any such
transformation, as are the parameters η, σ , λ, and p0, which depend only on D0. If Y is
distributed according to Dc then E((Y · u)2) is a positive definite quadratic form in u, so by
a suitable volume-preserving linear transformation we can ensure that E((Y · u)2) = r ′2

m‖u‖2

for all u and some r ′
m, the analogue of rm for the transformed process. All the parameters

of Theorem 1 remain unaltered under this transformation except for r0 and rm. Before this
transformation, E((Y · u)2) ≥ r2

m‖u‖2 and |Y · u| ≤ r0‖u‖ for all u, so

r0

rm
≥ sup

u�=0

ess supY |Y · u|√
E((Y · u)2)

= sup
L

ess supY |L(Y )|√
E(L(Y )2)

,

where L runs over all nonzero linear functionals. This last expression however is invariant
under any linear transformation and is equal to r ′

0/r ′
m, where r ′

0 is the r0 for the transformed
process. Hence, r ′

0/r ′
m ≤ r0/rm. Since Theorem 1 depends on rm and r0 only via this ratio, it

is enough to prove the result for this transformed version.
If the distribution Dc has drift, we shall however apply a second volume-preserving linear

transformation. We shall define a large constant C = C(σ, η) > 1 which is a function of σ

and η only (and, hence, is unaffected by any volume-preserving transformation on R
d ). Now

var(Y · u) + (Cr0/rm)2(E(Y · u))2 is also a positive definite quadratic form in u, so we can
apply a volume-preserving transformation such that

var(Y · u) +
(

Cr0

rm

)2

(E(Y · u))2 = E((Y · u)2) +
((

Cr0

rm

)2

− 1

)
(E(Y · u))2 = r2

s ‖u‖2

for some constant rs > 0. Since Cr0/rm > 1, this transformation compresses vectors in the
direction of E(Y ) and expands vectors orthogonal to E(Y ) by a factor rs/rm. Hence, at worst,
r0 increases by a factor rs/rm. From now on we shall replace r0 by r1 = r0rs/rm and rm by
rs in the statement of Theorem 1, noting that r1 is still a bound on the size of the transformed
regions Axi

. Finally, we shall rotate the process so that the drift E(Y ), if nonzero, points in
the direction (1, 1, 0, 0, . . . ) in R

d . Define R = Cr1. Then to summarise, in our transformed
process

r2
s var(Y · u) + R2(E(Y · u))2 = r4

s and |Y · u| ≤ r1

for any unit vector u, and we need to show that G almost surely has an infinite directed path
under the assumption that

δ < cr9
s r−9

1 η16σ−32.

Partition R
2 into 6R × 6R squares, and let the site x ∈ Z

2 correspond to the cylinder Cx =
(6Rx +[−3R, 3R)2)×R

d−2 in R
d = R

2 ×R
d−2. More generally, write Cx,k, k = 1, 2, 3, for

the cylinder Cx,k = (6Rx + [−kR, kR)2) × R
d−2 (see Figure 1 for the case in which d = 2).

Our bonds xy in Z
2 will correspond to certain good events in the corresponding cylinder Cx ∪Cy

with two-dimensional 6R × 12R rectangular cross sections. Throughout most of what follows,
we shall mostly be interested only in the first two coordinates of the points of our process,
except when intersecting regions A(xi), in which case we use all d ≥ 2 dimensions.

Roughly speaking, these good events will be the ability to get from some given set P of n

points near the middle of Cx to every point of a set P ′ of size n near the middle of Cy by paths
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Figure 1: Cylinder sets Cx and Cy .

that lie entirely within Cx ∪ Cy . Here n is some fixed large number that will be determined
later. Using n points instead of just one increases the chances of success since in practice it is
very unlikely that there is a path from a given single point in Cx to Cy . But if there is then there
are often many points in Cy that we can reach. Nevertheless, provided that we choose our sets
consistently (so the P ′ for x becomes the P for y), an infinite directed path in Z

2 from x will
result in an infinite path in G from at least one of the points of P .

To construct these paths, we shall need to ‘explore’ the graph G. When we encounter a
vertex z, there are random choices of A(z) and the Poisson process within A(z). If we condition
on these, we effectively fix these choices. When we encounter subsequent vertices w, the choice
of A(w) is independent of this conditioning event, but the Poisson process in A(w) is already
determined in A(z) ∩ A(w). However, the Poisson process in A(z) \ A(w) is independent of
the conditioning event. Thus, we can imagine ‘growing’ G by, at each step, fixing A(w) and
the Poisson process in the subset of points of A(w) that do not lie in any previously seen A(z).
Since the previous A(z) contain vertices of G that we have encountered already, we want most
of A(w) to be new. To do this, we must control the number of regions A(z) we have previously
looked at (i.e. conditioned on). Hence, when constructing our paths from P in Cx ∪ Cy , we
shall allow ourselves to ‘test’ only regions A(z) around at most N points (N to be determined
below). The set of points we test will be called Q′. Also, prior to constructing these paths,
there will be a set Q of up to 3N points in Cx ∪ Cy that have been tested when constructing
earlier bonds, and we shall need to avoid the regions A(z) about these points as well. Since we
wish to avoid points in A(z) for z /∈ Cx ∪ Cy , we shall only consider points at least r1 from the
boundary of this set, and so we write Co

xy = {z ∈ Cx ∪ Cy : d(z, ∂(Cx ∪ Cy)) ≥ r1}. We shall
assume that we can get to x ∈ Z

2 from the origin in our percolation on Z
2, and, hence, we can

get to every point in P . In doing so we have fixed points of P ∪ Q, the choice of A(z) for
z ∈ Q, and the state of the Poisson process in A(z) for z ∈ Q. Note in particular that we have
conditioned on an event that implies that there are at least n points in Cx . Having conditioned
on this data, we still have a Poisson process in the remaining region of Co

xy and a choice of
A(z) for points in this process as well as for z ∈ P . Points outside Co

xy will be ignored when
considering the bond xy of Z

2.

Now we make things more formal. Fix points P = {x1, . . . , xn} and Q = {y1, . . . , yk}, k ≤
3N , in Cx ∪ Cy corresponding to an bond xy of Z

2, where y = x + (0, 1) or y = x + (1, 0).
Fix the choice of neighbourhood regions A(yj ), yi ∈ Q, and the Poisson process within
these A(yj ). In what follows, everything will be conditioned on this data. Some regions
outside Co

xy will also be conditioned on, owing to the construction of previous bonds. Since
we shall not consider points outside Co

xy when considering the bond xy, it will be convenient
to assume that we have conditioned on the entire process outside Co

xy as well. We shall not
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however condition on the choice of regions A(xi), xi ∈ P , or on the Poisson process in the
rest of Co

xy . We shall make the following assumptions.

(A1) The points xi lie in the central cylinder Cx,2 for all xi ∈ P .

(A2) xi /∈ B(yj ) for all xi ∈ P and all yj ∈ Q.

(A3) P(xi ∈ B(xj )) ≤ 4
√

δ for all xi, xj ∈ P, i �= j .

In (A3), the choice of Axj
and, hence, B(xj ) is random, and the probability refers to this

choice which is made in accordance with the distribution D . Assumptions (A2) and (A3) will
be required to ensure that the neighbourhoods A(z) that we construct are unlikely to overlap
too much. Assumption (A1) avoids problems that may occur near the boundary of Co

xy .
Given the situation described above, we shall construct sets of points P ′ = {x′

1, . . . , x
′
r} and

Q′ = {y′
1, . . . , y

′
k′ }, r + k′ ≤ N , of the Poisson process in Co

xy with the following properties.

(C1) The points x′
i lie in the central cylinder Cy,2 for all x′

i ∈ P ′.

(C2) x′
i /∈ B(z) for all x′

i ∈ P ′ and all z ∈ P ∪ Q ∪ Q′.

(C3) P(x′
i ∈ B(x′

j )) ≤ 4
√

δ for all x′
i , x

′
j ∈ P ′, i �= j .

(C4) z /∈ A(yi) for all z ∈ P ′ ∪ Q′ and all yi ∈ Q.

(C5) For all x′
i ∈ P ′, some xj ∈ P are joined to x′

i by a sequence of points y′
i1
, . . . , y′

it
of Q′.

The construction will depend on the choice of A(z) and the Poisson process restricted to
A(z) for z ∈ P ∪ Q′, but it will not depend on the values of A(z) for z ∈ P ′. Hence, the
probability in (C3), which is over all choices of Ax′

j
according to the distribution D , makes

sense.
We shall declare the bond �xy open with respect to P and Q if in this construction we can

take r = |P ′| = n. In this case, conditions (C1)–(C3) ensure that P ′ and Q′ can be used in the
construction of the next bond �yz of Z

2. (The Q for �yz will include any points of P ∪ Q ∪ Q′
that lie in Cyz.) Note that the openness of �xy depends on the choices of P and Q as well as the
restriction of the process to the region Co

xy . Condition (C4) ensures that we never look at the
process in

⋃
yi∈Q A(yi), as these regions will have been tested earlier. Condition (C5) ensures

that every point of P ′ is reachable from some point of P in G, so that an infinite path in the Z
2

process will ensure an infinite path in G.
The sets P and Q will depend on the construction of previous bonds, which will introduce

complex dependencies between the bonds. Nevertheless, we start by showing that an individual
bond is open with high probability, regardless of the choice of P and Q and regardless of the
Poisson process in

⋃
yi∈Q A(yi) or outside Co

xy .
The proof of the bound is complicated by the fact that the regions A(z) intersect, so we shall

first consider the simpler case when we ignore these intersections and model the percolation
by a branching process (see, for example, [1, pp. 1–8]). We shall generally refer to the points
of a branching process as nodes to avoid confusion with the points of our Poisson process. We
shall first prove two simple results about branching processes. The parameters η, σ , p0, and λ

are as defined before Lemma 3.

Lemma 4. Consider a branching process where at each step each node branches into several
new nodes independently according to the distribution D0. Let Nt be the number of nodes at
time t > 0. Then P(Nt ≥ (1 + η)t ) ≥ ηp2

0/σ 2.
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Proof. It is easy to show by induction on t (see, e.g. [1, p. 4]) that

E(Nt ) = (1 + η)t and var(Nt ) = σ 2(1 + η)t−1((1 + η)t − 1)

η
.

Let Xt = Nt/ E(Nt ), so that E(Xt ) = 1 and var(Xt ) < σ 2/η. By the Cauchy–Schwarz
inequality,

E(1Xt≥1) E((Xt − 1)2) ≥ (E((Xt − 1) 1Xt≥1))
2.

Now

E((Xt − 1)2) = var(Xt ) <
σ 2

η
,

E((Xt − 1) 1Xt≥1) = E((1 − Xt) 1Xt≤1) ≥ P(Xt = 0) ≥ P(N1 = 0) = p0.

Hence, P(Nt ≥ (1 + η)t ) = E(1Xt≥1) ≥ ηp2
0/σ 2.

Lemma 5. Consider a branching process where at each step each node branches into several
new nodes independently according to the distribution D0. Suppose also that we randomly
remove nodes, if necessary, so there are at most K nodes at each step, and assume that T ≤
λeλ(K−1)/2. Then the probability that there is at least one node at time T is at least 1 − e−λ/2.

Proof. Let Nt be the number of nodes at time t , and consider the random variable Xt defined
by Xt = exp(−λNt). Now

Nt+1 = min(N ′
t+1, K), where N ′

t+1 =
Nt∑
i=1

Yi

and Yi are independent random variables with distribution D0. Recall that λ is defined so that

E(exp(−λYi)) = e−λ.

Hence,

E(exp(−λN ′
t+1) | Nt) =

Nt∏
i=1

E(exp(−λYi)) =
Nt∏
i=1

e−λ = exp(−λNt) = Xt .

But, if Nt+1 �= N ′
t+1 then K = Nt+1 < N ′

t+1. Therefore,

0 ≤ E(exp(−λNt+1) − exp(−λN ′
t+1) | Nt) ≤ e−λK,

so E(Xt+1 | Nt) ≤ Xt + e−λK , and, thus, E(Xt+1) ≤ E(Xt )+ e−λK . But E(Xt ) ≥ P(Nt = 0)

and E(X0) = exp(−λN0) = e−λ. Hence,

P(NT = 0) ≤ E(XT ) ≤ e−λ + T e−λK ≤
(

1 + λ

2

)
e−λ ≤ e−λ/2

and P(NT > 0) ≥ 1 − e−λ/2, as required.
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We now consider a simplified version of our percolation process in which each step is
independent of all previous steps. We define a branching process of nodes. Each node is assigned
a region Av independently of all previous nodes according to the distribution D , and then
branches into a number of new nodes, where the number of child nodes is Poisson distributed
with mean |Av|. As a consequence, the number of child nodes has overall distribution D0.
Also, for each child node u of v, we choose δu uniformly from the set Av independently of all
other δus. Unconditioned on Av , δu then has probability distribution Dc. Fix a position z0 in
R

d for the root node, and define the position zv of a node v to be z0 + ∑
u δu, where the sum

runs over all predecessors u of v back to the root node. Let T be the random graph with vertices
zv and edges �zvzu for all child nodes u of v. Set T t to be the set of nodes that are t steps from
the root node in the graph T . The process T approximates the percolation process G, but it
differs in that the distribution of points (child nodes) in A(zv) = Av + zv is independent of the
process up to that point, whereas in G the points in A(zv) will depend on points in previously
encountered regions A(zu) where they intersect. Effectively, the difference between T and G
is that when we encounter a node zu in T we ‘regenerate’ the Poisson process in the whole of
A(zu), whereas in G we only generate a Poisson process in the region of A(zu) that we have not
already seen. To simplify the notation, we shall generally identify a node u with its position
zu ∈ R

d , so, for example, we shall denote A(zu) by A(u).
In T , any path from the root gives rise to a random walk in R

d . We shall analyse this
walk by comparison with a Brownian motion. Recall that a Brownian motion (with drift) is a
continuous-time stochastic process Bt ∈ R such that, for all t1 > t2, Bt1 − Bt2 is given by a
normal distribution with mean β(t2 − t1) and variance γ (t2 − t1), and is independent of Bt for
t < t1. We call β the drift and γ the unit time variance of Bt . We start with a well-known
result.

Lemma 6. If Bt is a Brownian motion with drift β and unit time variance γ , then the probability
of Bt hitting 1 before hitting 0 starting at x ∈ [0, 1] is given by

f (x) = 1 − e−2xβ/γ

1 − e−2β/γ
(β �= 0) or f (x) = x (β = 0).

Proof. Let f (x) be the solution of the equation

γ

2

d2f

dx2 + β
df

dx
= 0, f (0) = 0, f (1) = 1.

Then E(f (Bt+δt )−f (Bt ) | Bt = x) = E(f (x+Z)−f (x)), where Z is normal with mean βδt

and variance γ δt . By solving the above differential equation we see that |f ′′′(x)| = O(C|x|)
for some C. Thus, f (x + Z) − f (x) = Zf ′(x) + 1

2Z2f ′′(x) + O(Z3C|Z|), and

E(f (x + Z) − f (x)) = βδtf ′(x) + 1
2 (γ δt + β2δt2)f ′′(x) + O(δt3/2) = o(δt).

Taking δt → 0 and summing between t = t1 and t = t2, we see that E(f (Bt2) | f (Bt1)) =
f (Bt1) for all t2 > t1, i.e. f (Bt ) is a martingale. Since f is bounded on [0, 1] and Bt is almost
surely continuous, f (x) = E(f (B0)) = E(f (BT )), where T is the stopping time inf{t : Bt = 0
or 1}. But f (0) = 0 and f (1) = 1, so this is just the probability that Bt hits 1 before hitting 0.
Solving the above differential equation gives the result.

Lemma 7. There exist absolute constants c1, c2, c3 > 0 with the following property. Assume
that we are given a random walk Zi in R

2 with independent and identically distributed steps
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Yi = Zi+1 − Zi . Assume that the mean step size E(Yi) is either 0 or in the direction (1, 1) and
that there is a constant r > 0 such that, for any unit vector u, r2 var(Yi ·u)+ (E(Yi ·u))2 = r4.
Assume further that the maximum step size is at most c1 and that the random walk starts at
Z0 ∈ [−2, 2] × [−2, 2]. Then the probability of the random walk entering [5, 7] × [−1, 1]
before getting within c1 of the boundary of the rectangle [−3, 9] × [−3, 3] and before time
c2/r2 is at least c3.

Proof. Introduce the coordinates x1 = (x + y)/
√

2 and x2 = (y − x)/
√

2, so the (x1, x2)

coordinates are obtained from the (x, y) coordinates by a rotation of 45 degrees. Then E(Yi)

lies on the x1-axis. Assume that ‖E(Yi)‖ = αr2, so the variance of the step size is (1 − α2)r2

in the x1-direction and r2 in the x2-direction. Note that the maximum step size must be at
least r , so r ≤ c1. Consider a two-dimensional Brownian motion with independent x1 and
x2 coordinates, drift α in the x1-direction, unit time variance 1 − α2 in the x1-direction, and
unit time variance 1 in the x2-direction. Let fα(z) be the probability of this Brownian motion
starting at z ∈ R

2 hitting D = [5.1, 6.9] × [−0.9, 0.9] before leaving C = [−3, 9] × [−3, 3]
(see Figure 2). Then arguing as in Lemma 6 we can show that fα(z) satisfies the following
partial differential equation:

1

2

∂2fα

∂x2
2

+ 1

2
(1 − α2)

∂2fα

∂x2
1

+ α
∂fα

∂x1
= 0.

Now, for α ∈ [0, 1], fα(z) is a smooth function in the interior of C \ D which is 1 on ∂D,
0 on ∂C, and 0 ≤ fα(z) ≤ 1 on C \ D. Note that fα(z) > 0 in [−2, 2] × [−2, 2] for all α;
indeed fα(z) > 0 for all z in the interior of C \ D except in the region x1 ≥ 7.8/

√
2 when

α = 1. Choose c3 > 0 so that

3c3 ≤ inf{fα(x, y) : (x, y) ∈ [−2, 2] × [−2, 2], α ∈ [0, 1]}. (4)

x

yx2 x1

D

C

[–2,2]2

α = 0

α = 0.8 α = 1

Figure 2: Function fα in C. Curves are the contours fα = 0.005, 0.03, 0.1, 0.2,…, 0.9. Values of fα

are strictly positive in C except when α = 1 and x1 ≥ 7.8/
√

2.
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We shall assume that c3 < 0.1. As z approaches ∂C, fα(z) tends to 0, uniformly in both z and α.
To see this, note that, for y ∈ [−3, −2], fα(x, y) is at most the probability of the Brownian
motion hitting y = −2 before y = −3, since if it hits y = −3 then it has definitely hit ∂C,
whereas to hit ∂D it must have hit y = −2 first. If we project the Brownian motion onto the
y-coordinate, we obtain a Brownian motion with drift α/

√
2 and unit time variance 1 − α2/2,

so by Lemma 6 we have

fα ≤ 1 − exp(−εα
√

2/(2 − α2))

1 − exp(−α
√

2/(2 − α2))

when we are within ε of the y = −3 side of ∂C. This expression is maximised when α = 1,
so we obtain fα ≤ (1 − e−ε

√
2)/(1 − e−√

2) ≤ 1.87ε. A similar argument applies starting with
y ∈ [2, 3], except in this case the drift helps us and the maximum occurs at α = 0 with fα ≤ ε

when we are within ε of y = 3. Projecting onto the x-coordinate deals with the remaining two
sides of ∂C and gives smaller bounds. Thus, if c4 > 0 is sufficiently small (c4 ≤ c3/1.87), we
can assume that |fα(x)| < c3 when d(x, ∂C) < c4. We shall assume that c4 < 0.1. Since all
derivatives of fα(x) exist and are continuous on the interior of C \ D, we can assume that the
second and third directional derivatives D2

ufα(x) and D3
ufα(x) are bounded by a constant M ,

uniformly in u, x, and α, provided that x is at a distance at least c4/2 from the boundary
of C \D. Provided that Zi is further than c4 from ∂C ∪ ∂D, we can estimate E(fα(Zi+1) | Zi)

by approximating f (x) near x = Zi . Indeed, if c1 < c4/2 then Zi+1 must be at least c4/2
from ∂C ∪ ∂D and so

fα(Zi+1) − fα(Zi) =
2∑

j=1

uj

∂fα

∂xj

+ 1

2

2∑
j,k=1

ujuk

∂2fα

∂xj ∂xk

+ θ(Yi)‖Yi‖3,

where Yi = (u1, u2) and |θ(Yi)| ≤ M/6. However, E(u1) = αr2, E(u2) = E(u1u2) = 0,
E(u2

1) = (1 − α2)r2 + α2r4, and E(u2
2) = r2, so

E(fα(Zi+1) − fα(Zi) | Zi)

= αr2 ∂fα

∂x2
+ 1

2
((1 − α2)r2 + α2r4)

∂2fα

∂x2
2

+ 1

2
r2 ∂2fα

∂x2
1

+ E(θ(Yi)‖Yi‖3)

= 1

2
α2r4 ∂2fα

∂x2
2

+ E(θ(Yi)‖Yi‖3).

Since r ≤ c1 < 1 and α ≤ 1, we obtain

| E(fα(Zi+1) − fα(Zi) | Zi)| ≤ 1
2α2r4M + 1

6Mc1r
2 ≤ Mc1r

2.

Run the random walk until the stopping time T = min{i : d(Zi, ∂C ∪ ∂D) < c4}. We shall
now show that T is unlikely to be very large. Writing (Zt )2 for the x2-coordinate of Zt we
have E((Zt+1)

2
2 | Zt) = (Zt )

2
2 + r2, so if we set g(t) = E((Zmin(t,T ))

2
2) then g(t + 1) =

g(t) + r2 P(T > t). Since (Zmin(t,T ))
2
2 is bounded above by supC x2

2 = (12/
√

2)2 = 72 and
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P(T > t) is monotonically decreasing in t , we have tr2 P(T > t) ≤ g(t + 1) − g(1) ≤ 72 for
all t . Hence, if c2 ≥ 72/c3, P(T > c2/r2) ≤ c3. Since fα(z) is bounded between 0 and 1,

E(fα(ZT )) ≥ P

(
T ≤ c2

r2

)
E(fα(Zmin{T ,c2/r2}))

≥ (1 − c3)

(
fα(Z0) − Mc1r

2 c2

r2

)

≥ 0.9(3c3 − Mc1c2),

which is at least 2c3 for sufficiently small c1 (c1 < 0.7c3/M is enough). Hence, if p =
P(d(ZT , ∂D) < c4) then (1)(p) + (c3)(1 − p) ≥ E(fα(ZT )) ≥ 2c3, so p ≥ c3. Therefore,
with probability at least c3, the random walk gets closer than c4 to D (and, hence, enters
[5, 7] × [−1, 1]) before time c2/r2 and before getting within c4 > c1 of the boundary of the
rectangle [−3, 9] × [−3, 3].

The numerical values of c1, c2, and c3 given by this proof are not very good. Indeed,
simulations suggest that the bound on 3c3 given by (4) is just over 0.005, so we can take
c3 = 1

600 , c4 = 1
1200 , and c2 = 43 200. We can show that, for this c4, we can set M = 1023 (the

worst case is near the (6.9, 0.9) corner of D when α = 1), and then we can take c1 = 10−31.

Lemma 8. Assume that c1, c2, and c3 are as in Lemma 7. Consider the branching process
T defined above where z0 lies in Cx,2. Run T for time T = �c2R

2/r2
s �, except that at each

step (if necessary) we remove nodes (randomly, independent of their positions) so there are at
most K nodes left from T t . Assume that R ≥ r1/c1, and let E be the event that, for a node
w uniformly randomly chosen from T T , some ancestor v of w lies in the region Cy,1 and all
ancestors of v lie in Co

xy . Then P(E | T T �= ∅) ≥ c3.

Proof. Conditioning on T T �= ∅, pick a node w uniformly at random from T T . Then, for
any t < T , the unique ancestor of w in T t is equally likely to be any element of T t . (The number
of descendants of each u ∈ T t is independent of the process up to u.) Hence, the locations of
the nodes on the path from the root node to w form a random walk with steps taken from the
distribution Dc. If we project onto the first two coordinates, translate so that the centre of Cx is
at the origin, and scale by a factor of 1/R, this random walk will start in [−2, 2]×[−2, 2], have
maximum step size r1/R ≤ c1, and, for any unit vector u, r2 var(Y ·u)+(E(Y ·u))2 = r4, where
r = rs/R. The drift (if any) is in the (1, 1) direction. By Lemma 7, with probability at least c3,
the walk enters [5, 7] × [−1, 1] before getting within c1 of the boundary of [−3, 9] × [−3, 3]
and before time c2(R/rs)

2. Thus, with probability at least c3, the original walk enters Cy,1
before getting within c1R ≥ r1 of the boundary of Cx ∪ Cy and before time T .

Theorem 3. There exists an absolute constant c > 0 such that if δ < cr9
s r−9

1 η16σ−32 then we
can choose N , n, and R = Cr1 such that the probability of a bond being open with respect to
any P and Q satisfying assumptions (A1)–(A3), conditioned on the choices of A(z), z ∈ Q,
and the Poisson process outside of Co

xy \ ⋃
z∈Q A(z), is at least 0.9.

Proof. The strategy of the proof is to find some path from xi ∈ P to some point x′′
i in Cy,1

in the T process, and by coupling, show that, with reasonable probability, a corresponding path
will exist in the G process. We shall then couple the percolation for R/r1 further steps to obtain
at least n points x′

j . These will lie in Cy,2, as we cannot travel more than a distance R in R/r1
steps. Since the probability of success is fairly small, we apply this process to each xi ∈ P and
show that it is very likely that we will succeed for at least one xi .
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Run n independent truncated branching processes for T steps starting at the points x1, . . . , xn

as in Lemma 8, where

T =
⌊

c2R
2

r2
s

⌋
, (5)

K =
⌈

1

λ
log

2T

λ
+ 1

⌉
. (6)

Let T = ⋃n
i=1 Ti be the union of these processes, so that T is a union of n trees, with the

ith tree Ti starting at xi . We shall couple T with G one level at a time, and within each level
T t , sequentially run through all nodes in the previous level, and couple all the children of this
node, one at a time (i.e. after coupling one node, we continue with each of its siblings before
processing any other node). We shall declare some nodes u to be good. For these nodes, the
positions and choice of Au will have been successfully coupled so that they are equal to the
corresponding values in the G process. However, we shall also require them to avoid certain
sets B(z), and for their sets B(u) to avoid certain other nodes. We shall not attempt to couple the
descendants of a node u or the process inside A(u) unless u is good. (Technically, we couple
the process independently with no requirement that the existence of v, position of v, or region
A(v) defined in the T process matches with anything in the G process when v is a descendant
of a bad node u.)

The set Q(u) will be the points of Q together with the set of all good nodes that have had all
their children coupled before u. Before coupling u we will have fixed the Poisson process in⋃

z∈Q(u) A(z) and outside Co
xy . Let P(u) be the set of good nodes found that are not in Q(u).

These are nodes which have uncoupled children, and in particular include pu, the parent of u.
For these nodes (other than pu), we have not yet fixed the Poisson process in the A(z) (see
Figure 3).

We shall ensure that we do not consider more than N new points of G in Co
xy , where

N = n

(
KT +

⌊
R

r1

⌋)
. (7)

Hence, in particular, |Q(u) ∪ P(u)| ≤ N + |Q| ≤ 4N for all u.

�
xi

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................�

........................................................................................................................................................................................................................................................................�.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
............................................................

............................................................
............................................................

............................................................
....�

pu
............................................................

............................................................
............................................................

............................................................
.....

.....................................................................................................................................................................................................................................................u
..............................................................................................................................................................................................................................................�.....................................................................................................................

.....................................................................................................................
.................................................................

............................................................
............................................................

............................................................
....�............................................................

............................................................
............................................................

............................................................
.........................................................................................................................................................................................................................................................
............................................................

............................................................
............................................................

............................................................
....

....................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................

......................................................

......................................................

P(u)Q(u)

Figure 3: The situation just before processing node u of T . All nodes v ∈ P(u) ∪ Q(u) have been
coupled to points xv in G, and the choice of Av has been matched to that of A(xv). For nodes marked
with a ‘�’, we have also coupled the Poisson process in A(xv) where it does not overlap previously fixed

regions.
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Step 1. We start by coupling the choices of Axi
in T to match those in G for each xi ∈ P .

Recall that Axi
determines B(xi). Define Ei to be the event that xj ∈ B(xi) for some xj �= xi .

By assumption (A3), the probability of Ei is bounded above is

p1 = n
4
√

δ.

If Ei occurs, we declare xi to be bad, and we do not couple the process in A(xi), or any
descendant of xi . Otherwise, xi is good. After step 1, but before processing the first child u of
the first xi , we have Q(u) = Q, and P(u) = Pg is the subset of good nodes in P .

Step 2. We process each node of T in turn as described above, but before coupling any
children of pu we check if pu ∈ Cy,1. In this case we do not couple any children of pu, and
pu will remain in P(v) for all subsequent nodes v.

Step 3. Couple the Poisson process in A(pu) in T with the same region in G so that they are
the same where A(pu) does not overlap previously coupled regions A(z), or lies in one of the
areas we have conditioned on (i.e. they should agree in Co

xy \ ⋃
z∈Q(u) A(z)).

Step 4. For each child u of pu, we couple the position of u in R
d to the position of a point

in G provided that

u ∈ Co
xy, u /∈ A(z) for all z ∈ Q(u), u /∈ B(z) for all z ∈ Q(u) ∪ P(u).

Otherwise the node u will be bad and we shall not couple the process in the region A(u), or any
descendant of u. Note that (by step 3) the first two conditions are essential if we are to couple
the T and G processes so that the locations of the nodes agree with the points in G. The last
condition (u /∈ B(z)) will be used to ensure that the children of u are unlikely to lie in some
previously coupled set A(z).

Step 5. Couple Au with the corresponding choice in G. This now defines B(u). We require
that

z /∈ B(u) for all z ∈ P(u).

Otherwise, we again call u bad and ignore it and all its descendants. The reason is that if
z ∈ B(u) then coupling the descendants of z would be prejudiced.

Repeat steps 4 and 5 for each child of pu before continuing with the next parent node (with
step 2). Note that, for xi ∈ Pg, we do not need to (and cannot) insist that xi /∈ A(z) for all
z ∈ Q. However, by step 1 and assumption (A2), xi /∈ B(z) for all z ∈ Q ∪ Pg.

Assume that T T
i �= ∅, and pick a node uniformly at random from T T

i . We wish to estimate
the probability that all nodes on the path from xi to this node are good. Consider a node u on
this path and assume that all its predecessors are good. The parent pu does not lie in B(z) for
any z ∈ Q(u), since Q(u) ⊆ Q(pu) ∪ P(pu) and pu is good (or since Q(u) ⊆ Q ∪ Pg and
pu is good in the case where pu = xi ∈ P ). However, u − pu is distributed according to Dc,
so by Lemma 2 and the definition of Dc, the probability that u ∈ A(z) for some z ∈ Q(u) is
bounded above by |Q(u)|√δ ≤ 4N

√
δ.

By Lemma 2, the probability that u ∈ B(z) for some z ∈ Q(u) ∪ P(u) is also at most
4N

√
δ. Note that if z is a sibling of u then we must assume that A(pu) is fixed, so we need the

full strength of Lemma 2, that is, that |(A + pu) ∩ B(z)| ≤ √
δ|A| for almost all A, not just

averaged over A.
Finally, the probability that z ∈ B(u) for some z ∈ P(u) is at most 4N

√
δ, since, even

conditioned on Au and Apu , the probability that a fixed z lies in B(u) is the same as the
probability that z−u lies in Bu = B(u)−u, and z−u is uniformly distributed in (z−pu)−Apu .
By Lemma 2, the probability that z ∈ B(u) is then at most

√
δ for each z.
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Ignoring the possibility that we have left Co
xy or entered Cy,1, the probability that Ei did not

occur, but we failed to couple the path in Ti with G, is at most 12NT
√

δ. We shall require that
the parameters n and R are chosen below so that

12NT
√

δ ≤ c3

2
, (8)

where c3 is the constant given in Lemma 7.
Now, conditioning on T T

i �= ∅, the above path in Ti hits Cy,1 before leaving Co
xy with

probability at least c3. Hence, with probability at least c3 − c3/2 = c3/2, either Ei occurred or
the coupling above stopped at a good node x′′

i ∈ Cy,1. Now put all the other coupled nodes of
Ti into Q(u) and run another T process starting at the points x′′

i , i = 1, . . . , n, that are good
and lie in Cy,1. We run this second T process for another �R/r1� steps. We couple this T
process with G as above. Of course, this time we do not stop coupling if we hit Cy,1, and we
cannot leave Co

xy (or even Cy,2) in �R/r1� steps. One minor difference is that in each level we
do not couple the A(u)s, and, hence, we do not insist on z /∈ B(u) for z and u in the current
level, until all nodes from that level are processed. If there are at least n nodes left in this level,
we stop and set P ′ equal to n of these nodes. Otherwise, we apply step 5 to all the good nodes
of this level (checking both the u /∈ B(z) and z /∈ B(u) conditions of step 4 and step 5) before
starting the next level. The reason for this complication is that we do not want to couple the
choice of Aus for u ∈ P ′.

Assuming that x′′
i exists, we now estimate the probability that a node u of this new process

is bad, conditioned on all its predecessors being good, and on any event involving the existence
of its descendants. As above, this probability is at most 12N

√
δ, and we shall require that

12N
√

δ <
η

2
. (9)

Thus, the good nodes stochastically dominate a branching process with one-step mean 1+η/2,
variance at most σ 2 + (1+η)2 − (1+η/2)2 ≤ σ 2 +2 ≤ 3σ 2 (as η ≤ 1), and the probability of
zero children being at least p0. Hence, by Lemma 4 we will have more than n good descendants
of x′′

i within time �R/r1� with probability at least ηp2
0/(6σ 2) provided that

n ≤
(

1 + η

2

)�R/r1�
. (10)

If at any level we find n good points (without the condition that z /∈ B(u) for z ∈ P(u))
then we stop the process and set P ′ to be these n points. Any other good points found will be
placed in the set Q′. The probability that either Ei occurs or we get n good descendants of xi

in Cy,2 is now at least

p2 = (1 − e−λ/2)

(
c3

2

)(
ηp2

0

6σ 2

)
, (11)

where 1−e−λ/2 bounds the probability that T T
i �= ∅ (by Lemma 5), c3/2 bounds the probability

that given this either Ei occurs or we obtain a good x′′
i , and ηp2

0/(6σ 2) bounds the probability
that a good x′′

i has n good descendants at some level.
Since P(Ei ) ≤ p1, we obtain n good descendants of xi with probability at least p2 − p1,

regardless of the success or otherwise at any other xj . Hence, we will fail to obtain n good
descendants in Cy,2 of any xi with probability at most (1 − (p2 − p1))

n ≤ exp(−(p2 − p1)n).
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This clearly bounds the probability of failing to obtain n good descendants from all xi combined.
We shall require that

p2 ≥ 3.05

n
(12)

and
n2 4

√
δ < 0.05, (13)

so that p1 = n
4
√

δ ≤ 0.05/n and exp(−(p2 − p1)n) ≤ exp(−3) ≤ 0.05. The number of
points considered is at most nKT in the first T process and at most n�R/r1� in the second
T process. Thus, |Q′ ∪ P ′| = |(Q(u) ∪ P(u)) \ Q| ≤ N by (7). Finally, we need to ensure
that assumption (A3) holds for the x′

i . Now, for any Au, the probability (choosing u uniformly
from Av) that z ∈ B(u) is at most

√
δ. Hence, the probability that a random Au generates

P(z ∈ B(u)) ≥ 4
√

δ is at most 4
√

δ. Thus, condition (C3) will fail for some pair (x′
i , x

′
j ) with

probability at most n2 4
√

δ ≤ 0.05. Hence, the bond xy will be open with probability at least
1−0.05−0.05 = 0.9. The result now follows provided that we choose the parameters n and R

so that (8)–(13) are satisfied. Lemma 3 implies that, for η ≤ 1, λ = (η/σ 2) and p0 = (1).
Hence, by (11), p2 = (η2/σ 4) and (12) is satisfied if we take n = �3.05/p2� = (σ 4/η2).
Equation (10) is then satisfied if we take

R = �

(
r1

η
log

(
σ 4

η2

))
;

however, we shall in fact set

R = 

(
r1σ

2

η
log

(
σ 2

η

))
,

which is sufficiently large since σ 2 > 1. This will ensure that C = R/r1 can be taken to be
independent of r1 and rs , and that (

R

r1

)2

> n, (14)

which will be used in the proof of Theorem 1. Equations (5)–(7) then imply that

T = 

(
r2

1 σ 4

r2
s η2 log2

(
σ 2

η

))
, K = 

(
σ 2

η
log

(
r1σ

2

rsη

))
,

and N = 

(
r2

1 σ 10

r2
s η5

log3
(

r1σ
2

rsη

))
.

Then

NT = 

(
r4

1 σ 14

r4
s η7 log5

(
r1σ

2

rsη

))
,

so that (8), (9), and (13) are then satisfied provided that δ = O(r9
s r−9

1 η16σ−32).

Proof of Theorem 1. Using Theorem 3, we complete the proof. We define the oriented
percolation on Z

2. Order the bonds in the first quadrant of Z
2 by their l1 distance from the

origin, and, for each distance k, order the bonds at distance k from the origin as

(0, k)(0, k + 1), (0, k)(1, k), (1, k − 1)(1, k), . . . , (k, 0)(k + 1, 0).
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e7
e8

e3
e4

e1
e2

e9
e10

e5
e6

e11
e12

Figure 4: Ordering of the bonds of Z
2 in the proof of Theorem 1.

Suppose that the bonds in this order are {e1, e2, . . . } (see Figure 4). We shall declare some
bonds open in such a way that if there is an infinite directed open path in Z

2 from (0, 0) then
(with positive probability) there is an infinite path in G. To this end, we shall inductively define,
for each bond ei , a subset Qi of the Poisson process with Qi−1 ⊆ Qi , and, for each vertex x

joined by an open path to the origin in Z
2, a subset Px of the Poisson process inside Cx .

Initially, set Q0 = ∅, and set P(0,0) to be any subset of n points of the Poisson process that
lie in C(0,0),2 and such that each pair of points in P(0,0) is at least 2r1 apart. It is easy to check,
using (14), that such a set exists with high probability (probability 1 if d > 2).

Now suppose that we have defined the openness of the bonds ej for j < i and the set Qi

and all relevant Px . We now consider the bond ei = xy.

(a) If there is no directed path consisting of open bonds from (0, 0) to x, set xy to be open
and Qi+1 = Qi .

(b) If there is a directed open path from (0, 0) to x, declare xy to be open if it is open with
respect to P = Px and Q = Qi ∩ (Cx ∪ Cy). If xy is open and Py is not yet defined, set
Py = P ′ and Qi+1 = Qi ∪ Q′, otherwise set Qi+1 = Qi ∪ Q′ ∪ P ′.

Condition (a) is a technical condition which clearly does not affect whether or not (0, 0) is in
an infinite cluster.

By (b), at each step |Qi ∩ Cz| ≤ kN , where k is the number of bonds ej , j < i, meeting z.
Thus, given the ordering of bonds as above, if ei is a vertical bond, |Qi ∩ Cx | ≤ 2N and
|Qi ∩Cy | ≤ N , whereas if ei is a horizontal bond, |Qi ∩Cx | ≤ 3N and |Qi ∩Cy | = 0. Hence,
the set Q in (b) always satisfies |Q| ≤ 3N .

There are two bonds ei = xy with a given value of y, so there are two chances for Py to be
defined in (b). Clearly, Py is defined if and only if y is joined to (0, 0) by an open path.

If x is joined to (0, 0) by an open path (0, 0) = x0, . . . , xk = x then each point in Pxi+1 is
joined by a path in G from a point in Pxi

. Hence, there is a path to any point of Px from one of
the n points of P(0,0).

Finally, by Theorem 3, if δ < cr9
s r−9

1 η16σ−32 then each bond xy is open with probability
bounded below by 0.9 even when conditioned on the state of all previous bonds and regions of
R

2 that they depend on (the A(z) around the points z ∈ Qi), except for the other bond starting
at x. The two bonds starting at x however can be strongly dependent. Define an oriented site
percolation on Z

2 by declaring x ∈ Z
2 to be open if both oriented bonds from x are open.

This process now stochastically dominates an independent oriented site percolation with site
probability 0.8. However, (0, 0) is then in an infinite cluster with positive probability (see, for
example, [2]). The result now follows.
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