
J. Functional Programming 5 (4): 593-635, October 1995 © 1995 Cambridge University Press 5 9 3

A unifying type-theoretic framework
for objects

MARTIN HOFMANN AND BENJAMIN PIERCE
Department of Computer Science, University of Edinburgh,

The King's Buildings, Edinburgh EH9 3JZ, UK

Abstract

We give a direct type-theoretic characterization of the basic mechanisms of object-oriented
programming, including objects, methods, message passing, and subtyping, by introducing an
explicit constructor for object types and suitable introduction, elimination, and equality rules.
The resulting abstract framework provides a basis for justifying and comparing previous
encodings of objects based on recursive record types (Cardelli, 1984; Cardelli, 1992; Bruce,
1994; Cook et al., 1990; Mitchell, 1990a) and encodings based on existential types (Pierce &
Turner, 1994).

Capsule Review

This paper provides an axiomatic treatment of some of the basic features of object-oriented
programming. In particular, it handles objects, dynamic dispatch, encapsulation, message
passing and subtyping. It does not address inheritance, and for most of the paper object
interfaces are required to be covariant in the representation type. This means that objects
cannot include binary methods. This limitation is not as severe as it might initially appear,
since it is possible to write binary functions that have special access to the states of their
arguments. The paper includes a running example of points that helps to motivate the
various axioms. Existing axiomatic approaches to object systems model delegation-based
object-oriented languages, while the approach given here is class-based. Previous models of
class-based languages have been fairly complex encodings, not direct treatments.

1 Introduction

Research on the foundations of object-oriented programming languages has pro-
duced a series of increasingly ambitious attempts to capture the static typing prop-
erties of well-behaved programs in conventional object-oriented languages (Cardelli,
1984; Wand, 1987; Cook et al, 1990; Mitchell, 1990a; Cardelli, 1992; Bruce, 1994;
Castagna et al, 1994; Pierce & Turner, 1994; Abadi, 1994; Abadi & Cardelli, 1994a;
Abadi & Cardelli, 1994b; Fisher & Mitchell, 1994, etc.). These proposals have often
focused on encodings of high-level syntax for objects into more primitive construc-
tions in various typed /i-calculi, the semantics of objects being understood simply as
the semantics of their encodings. Our goal here is to use the tools of type theory to

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

594 M. Hofmann and B. Pierce

give a more direct account of objects and message passing, with the aim of isolating
high-level principles for reasoning about objects.

An object in the sense of Smalltalk (Goldberg & Robson, 1983) can be thought
of as a state of some hidden representation type together with a collection of
methods that are used to analyse or change the state. For example, take simple one-
dimensional point objects with the operations set and get, where set is expressed in
a functional style, returning an object with an updated state rather than modifying
the state in-place. Such objects can be implemented by choosing a representation
type, say Int, a state, say 5, and two method implementations, say

set = fun(state:Int) fun(newX:Int) newX
get = fun(state:Int) state

and packaging them together so that the state is protected from external access except
via the methods. Because we are mainly concerned here with the typing properties
of object-oriented features, this very simple example will suffice for our purposes
throughout the article. The applicability of these techniques to larger examples and
to objects with mutable state are discussed in Pierce and Turner (1994).

Unlike the elements of ordinary abstract data types, different point objects may
have different internal representations: every point comes with its own implemen-
tation of the set and get methods, appropriate to its internal representation type.
Thus, another implementation of point objects might use the more interesting
representation type {x:Int,other:Int}, the initial state {x=5,other=8}, and the fol-
lowing methods:

set = fun(state:{x:Int,other:Int>) fun(i:Int) {x=i, other=state.other}

get = fun(state:(x:Int.other:Int}) state.x

This flexibility is central to the spirit of object-oriented programming. Although it is
not found in its most general form in some object-oriented languages (e.g. Smalltalk
and C++ (Stroustrup, 1986), which do not allow multiple implementations of a
class), equivalent mechanisms like 'virtual classes' are then used in its place. The
crucial point is that when a message is sent to an object, the identity of the object
itself determines what code is executed in response. Thus, a program manipulating
a point object must do so 'generically' - by calling the point's methods to analyze
and update its state as necessary - rather than concretely, by direct operations on
the state. In other words, it uses a uniform function

Point'set : Point -> Int -> Point

that, given a point, invokes its internal set method and packages the resulting
concrete representation into a new Point, and another function

Point'get : Point -> Int

that uniformly invokes the internal get method of any point and returns the
resulting integer. One of our goals below will be to define the word 'uniform'
rigorously. Intuitively, it means that the behaviour of a message-sending function is
completely determined by the implementation of the corresponding method of the

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 595

object; in particular, a message-sending function cannot involve a 'typecase' on its
argument's representation.

Our purpose is to study the mechanisms of encapsulation and message passing
in a type-theoretic setting. In Sections 2 and 3, we introduce the basic constructions
of our abstract framework. We state a simple syntactic condition on object types,
capturing the intuition that methods can only access the state of one object at a
time, and show that this yields a natural definition of uniform method invocation.
In Section 4, we extend this framework to include subtyping. Section 5 justifies the
framework by showing that a simple encoding of objects in terms of existential
types satisfies our axioms. Section 6 shows that the more familiar encoding of object
types as recursive records also satisfies the axioms; Section 7 discusses the special
case of F-bounded quantification. In Section 8 we use our abstract framework
to sketch a high-level concrete syntax for object type declarations and message
passing operations. Section 9 extends the framework to mixed-variance method
signatures, illustrating the correspondence between our approach and previously
studied encodings of mixed-variance objects; here, recursive types turn out to be
unavoidable. Section 10 offers concluding remarks.

Appendices A through E develop the formal foundations of the type theories
used in the body of the article. We begin in Appendix A with the typed A-calculus
Fg (an extension of Girard's System Fw with subtyping), reviewing the standard
typing and subtyping rules and presenting a new equational theory generalizing
the one developed by Cardelli et al. (1994) for F^, the second-order fragment of
Fg. Following the informal development in Section 3, Appendix B extends F£
with a predicate pos for testing the positivity of type operators and a polymorphic
constant map that can be used to 'map a given function through a positive operator'.
Appendix C summarizes the typing, subtyping and equational rules for the Object
type constructor and its associated term constructors. (These rules are introduced, by
a series of refinements, in the body of the article. The purpose of Appendix C is to
collect the final versions in a single place.) Appendices D and E describe extensions
of Fg with existential types and recursive types. For existential types we offer an
equational theory, which can be shown to be sound in a standard PER model and
which satisfies the laws in Appendix C The extension with recursive types is more
problematic: it appears difficult to give a purely equational axiomatization from
which, for example, the laws governing map in Appendix B can be derived. Instead,
we offer an argument from semantic considerations.

Our presentation is self-contained. However, basic familiarity with Girard's f",
type systems with subtyping, other type-theoretic treatments of objects, and basic
terminology of category theory will be helpful. Background reading in these areas
can be found elsewhere (Barendregt, 1992; Pierce et al, 1989; Cardelli et al, 1994;
Barr & Wells, 1990; Fisher & Mitchell, 1994) and elsewhere in the references.

2 Motivation

The representation type of an object is hidden from external view: its interface is
just the types of its methods. Type-theoretically, the interface can be modeled as a

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

596 M. Hofmann and B. Pierce

type operator with one argument, thought of as a type with one free variable that
stands for the hidden representation type. For example, the interface of point objects
is described by the operator

PointM = Fun(X) {set: X->Int->X, get: X->Int}.

For now, we leave unspecified the "ambient type theory" in which our definitions
are embedded. In Sections 5 and 6, we will be using two extensions of the higher-
order polymorphic A-calculus System Fm (Girard, 1972) with subtyping; these are
summarized in the appendices. The calculus under consideration will determine the
precise force of the equational constraints expressed by the diagrams.

To characterize the set of objects sharing a common interface, we introduce a new
type constructor Object, which turns an interface specification (a type operator of
kind Type—>Type, i.e. a map from types to types) into a type:

F h M : Type—* Type
— -1— (K-OBJ*)

Y\-Object {M) : Type v ;

(We will alter this rule slightly later on; final versions of all the rules are given
in Appendix C. Rules that will be superseded by others appearing later are given
names ending with a *.) The type of point objects is Point = Object (PointM).

Elements of an object type are created using the term constructor object. Given
an interface specification M, a concrete representation type R, a collection m of
methods, and an initial value s of the representation type, we use object to package
them together into an element objectM (R, s, m) : Object (M). For example, two
point objects with different representation types can be created as follows:

ml = {set = fun(state:Int) fun(i:Int) i, get = fun(state:Int) state}
: PointM(Int)

pi = object_PointM(Int, 5, ml)
: Point

m2 = {set = fun(state:{x: Int, other: Int})
fun(i:Int) {x=i , other=state.other},

get = fun(state:(x:Int,other:Int}) state.x}
: PointM({x:Int,other:Int})

p2 = object_PointM({x:Int,other:Int}, {x=5,other=8}, m2)
: Point

The object constructor has the following typing rule.

r\-M : Type^Type F h s : K T \-m : M(R)

T h objectM (K, s, m) : Object (M)
(T-OBJ-I*)

For the elimination of elements of object types, we might use an unpacking rule in
the style of the existential elimination rule of Mitchell and Plotkin (1988). But this
runs counter to the spirit of object-style programming, in which objects are never

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 597

"opened" but are acted on externally by sending messages to invoke their internal
methods. We want to capture this mechanism directly.

Since every point object must implement the set method, there should be a
uniform function

Point'set : Point -> Int -> Point

that, given a point, invokes its set method. More generally, for each operator M
representing the interface of an object type, we introduce a term constant GMM

denoting the whole collection of uniform message-sending functions corresponding
to this signature.

T\-M : Type^Type
(T-GM*)T h GMM : M(Object (M))

We call this the "generic method" for objects with interface M. Then

GM.Point : {set: Point->Int->Point, get: Point->Int}

Point'set = GM_Point.set.

Such uniform method invocation functions do not necessarily exist. For example,
we might extend our first implementation of points with an equality method

eq = fun(statel:Int) fun(state2:Int) eqlnt statel state2

(where eqlnt : lnt->lnt->Bool is the equality function on integers), but we cannot
expect to be able to invoke this eq uniformly — that is, we cannot expect to write
a function

Point'eq : Point -> Point -> Bool

that calls the eq method of its first parameter and passes it the internal represen-
tations of both parameters: such an invocation of the low-level eq function would
only be well typed when the two points passed as arguments to Point' eq happen to
have identical representation types, which is in general not the case.

This example illustrates a well-known, inherent limitation of object-style encapsu-
lation (Reynolds, 1978; Cook, 1991). In most object-oriented languages, there is no
way to write a method that has concrete access to the internal state of more than one
object at a time. This limitation can be modeled abstractly as a syntactic restriction
on M, capturing the intuition that the methods should all be unary functions of the
representation type. A unary operator M is one of the form

M(X) = {h :X

or, more simply,

M(X) = X - • N(X)

for N{X) = {li:Ni(X), ...,ln:Nn(X)}, where N^ through Nn contain X only in
positive positions. For example, we can express the signature of points as

Fun(R) R -> PointN(R)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

598 M. Hofmann and B. Pierce

where PointN = Fun(R) {set: Int->R, get: Int}. The restriction to a single record-
valued method is purely a matter of formal convenience; in practice, one could allow
several methods here.

Formally, a variable appears only positively in a type if every occurrence is on
the left hand side of an even number of arrows; for polymorphic types, recursive
types, and type operators, some additional considerations apply. For the case of F^,
positive occurrences are defined in Appendix B by induction on the structure of types.
We write pos(N) in formulas to assert that the parameter A only appears positively
in the body T of the operator N = Fun (A) T. Such operators are called positive.

3 Objects

We will henceforth restrict our attention to objects with unary methods, using the
positive operator N rather than M = Fun (R) R —• N(R) as the parameter to the
Object type constructor. This entails a small modification to our typing rules for the
object constructor and the generic method:

r h N : Type^Type
y v (K-OBJ)

(T-OBJ-I)

(T-GM**)

It might seem cleaner here to allow the formation of Object (N) only when pos(N).
But formulating the rules in this way would require, in Section 4, that we be able
to quantify over positive operators, since there we will need to consider object types
of the form Object (N) where TV is a variable. The study of a refined type theory in
which this would be possible is an interesting topic for future research, but using
such a type theory would significantly complicate our formal development without
adding much insight.

Next, we need a suitable axiomatization of the behavior of generic methods. This
should reflect the intuition that a generic method should be a "packaged version"
of the method that was originally used to build an object. More precisely, the result
of applying the generic method to a newly built object should be the same as the
result of applying the concrete method to the object's state and then "repacking"
the result — i.e., the informal diagram

Object (N) GMN ' N(Object (N))

ri-
rh

ri-

r
-N
• s :

h Object (N) :

: Type—*Type
R fhm :

• objectN (R, s, m) :

- N

rt- GMN

: Type—*Type

: Object (JV)-»

Type

pos(N)
R-+N(R)

Object (N)

pos(N)

N (Object (N))

object N (R, —,m)\ "repack"

R m N(R)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 599

should commute, where objectN (R, —, m) stands for the packing function fun (x :
R) objectN (R, x, m). Note that, for any given R and m, this specification can be
satisfied trivially by setting Object (N) — R and GMAT = m; the force of the diagram
lies in the fact that Object (N) and GMN independent of R — a consequence of the
typing rules.

In the case of our simpler implementation of points, this diagram can equivalently
be written as a pair of equations

(GM_PointN (object_PointN(Int,s,m))).set(i)
= object_PointN(Int, (m s) . se t i , m)

(GM_PointN (object_PointN(Int,s,m))).get
= s,

corresponding to the set and get methods, respectively, where

m = fun(s:Int) {set = fun(i:Int) i , get = s}.

The arrow labeled "repack" in this case is the function

fun(r: {set:Int->Int,get:

{set = fun(i:Int) object_PointN(Int, r.set i, m),

get = r.get}.

This special case brings us to a technical cornerstone of the article: the observation
that, in the general case, this repacking function can be expressed using the idea of
"mapping a function through a positive type operator."

In higher-order polymorphic A-calculi like Fm and Fg, the action of a positive
type operator N on a function / : X-> Y can be interpreted as "applying / to each
occurrence of X in N(X)" — that is, given an element n : N(X), decompose n,
apply / to each component of type X, and use the results to rebuild an element of
N(Y). For example, if N(X) = {a:X, b:Int, c:Bool -* X}, this procedure yields

{a = f(n.a), b = n.b, c =fun(p:Bool)f(n.c v)}
: {a:Y,b:Int,c:Bool-+Y}

= N(Y)

We will henceforth assume that the ambient type theory supports a predicate
pos(N) on elements N of Type—*Type and an appropriate function mapN for every
N with pos(N). Appendices B, D, and E show how pos(N) and mapN can be defined
for the type theories under consideration.

3.1 Definition: A type theory extending Fa is said to include positivity if it provides
a predicate pos on operators of kind Type-*Type and, for each N with pos(N), there
is a polymorphic function

mapN : AlHX)All(Y) (X-*Y) - (N(X)^N(Y))

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

600 M. Hofmann and B. Pierce

such that

rhJV : Type^Type pos(N)
Ph f : X^>Y Thg : Y^Z

(EQ-MAP-TRANS)r\-mapN [X] [Z](/ ;g)
= (mapN [X] [Y] /) ; (mapN [Y] [Z] g)

ThiV : Type^Type pos(N) T \-X : Type

r h mapN [X] [X] (id [X]) = id [N(X)] : N(X)^N(X) (A?~ ° j

where f;g = Xx. g(f(x)) denotes composition in diagrammatic order and id is the
polymorphic identity function.

Using map, we can specify the behavior of generic methods for an arbitrary
positive operator N. Given a representation type R, a state s : R, and a concrete
method m : R—>N(R), we require that the diagram

Object (N) GMN. N(Object (N))

objectN (R, —, m)
mapN

[R] [Object (N)] (EQ-OBJ-MAP*)

objectN (R, —, m)

R m N(R)

commute, or equivalently that the following equation be satisfied:

GMN(objectN (R, s, m)) = mapN [R] [Object (N)] (objectN (R, —, m)) (m s)
: N(Object(N)).

We close this section with several technical remarks. First, it is interesting to note
that by orienting this equation from left to right, we obtain a natural computation
rule for objects. This suggests that a different kind of semantics for our abstract
calculus — besides those developed in Sections 5 and 6 — could be obtained by
adding this reduction to a standard operational semantics for F£.

Next, note that the diagram constrains only the behavior of those elements of
Object (N) that lie in the image of the packing function objectN (R, —, m). Opera-
tionally this is sufficient, since every object occurring in a program must at some
stage have been constructed with the packing function. However, it may be desirable
to internalize this observation by imposing an additional f/-like equation:

T h x : Object(N)

f h x = objectN(Object(N), x, GMN) : Object(N)

We prefer to regard this axiom as optional, since it places a strong constraint on the
encodings we discuss below.

Our map operator arises from the concept of functorial strength in category
theory (Kock, 1970; Moggi, 1989): an endofunctor N : C—>C on a cartesian closed
category C is called "strong" if its action on morphisms can be internalized, i.e., if

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 601

there exists a natural transformation mapXY '• (X => Y) —> (N(X) => N(Y)) that
captures the action of N.

Finally, it is interesting to note that our abstract specification of objects exactly
amounts to denning Object (N) as a weakly terminal co-algebra for the functor N.
Indeed, our encoding of objects using existential types in Section 5 corresponds
exactly to the impredicative coding of weakly terminal co-algebras proposed by
Wraith (1989). It is worth considering modeling objects by strongly terminal co-
algebras instead. The introduction rule and generic method would remain unchanged
in this case, but we would have, in addition, a coarser equality for objects given by
bisimulation equivalence. This intuition also underlies the categorical approach to
object semantics proposed by Reichel (1995).

4 Objects and subtyping

Next, we extend our abstract characterization of objects and message passing to
include another important concept from object-oriented programming languages:
subtyping. The issues we must deal with are as follows:

1. The ^-calculus in which the model is expressed must be extended with sub-
typing.

2. The subtyping behaviour of the Object type constructor must be specified.
For example, if we introduce a type of colored point objects whose interface
includes setC and getc methods in addition to set and get, then we want to
be able to consider every coloured point as a point.

3. The generic method of a given object type should be applicable to elements
of object types with more demanding specifications. Moreover, the fact that
sending a message is a kind of update operation must be reflected in the typing
of the generic method; for example, the generic method of points should be
applicable to coloured points, and setting the x coordinate of a coloured point
must yield a coloured point.

4. The equational specification of the generic method must be refined to take its
new typing into account.

We consider these issues in order.
Various extensions of System Fm with subtyping have been proposed (Cardelli,

1990; Bruce & Mitchell, 1992; Pierce & Turner, 1994; Compagnoni & Pierce, 1993;
Steffen & Pierce, 1994; Compagnoni, 1994); we choose the simplest (Steffen &
Pierce, 1994). The formulation of this system, called Fg, follows the pattern used by
Cardelli and Wegner to obtain F<, from the pure polymorphic i-calculus (Girard,
1972; Reynolds, 1974):

• The typing relation T h e : T is extended with a subtype relation F \- S < T
and a rule of subsumption:

T\-e : S r\-S < T

r\-e : T

• For each kind K, we add a maximal element Top(K).

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

602 M. Hofmann and B. Pierce

• Binding occurrences of type variables in quantifiers are decorated with sub-
typing assumptions. In contexts, assumptions about type variables have the
form A^T instead of A:K.

• To keep the kind structure as simple as possible, type operators retain the
form Fun(A:K) T rather than changing to Fun(A^S) T. This means that the
rule for checking the well-formedness of a type operator cannot simply extend
the context with the assumption A:K, but must use A^Top(K) instead:

T, AzTop(Ki) \-T2 : K2

r\-Fun(A:Ki)T2 : Ki~*K2

• We introduce a 'pointwise subtyping' rule for operators:

S < T

T\-Fun(A:K)S <Fun{A:K)T

Intuitively, Fun{A:K)S is a subtype of Fun(4:K) T iff [U/A]S is a subtype of
[U / A] T f o r e v e r y U . K .

• Because subtyping of operators is pointwise, we may promote the operator in
a type application to any larger operator "in place":

r\-s < T

r\-s u < T u
The interesting case is when S is a variable, so that S U is not a /?-redex while
T U may be.

The resulting calculus is summarized in Appendix A.
Since the specification of the generic method depends on the map operator in

the ambient 1-calculus, we also need to consider the interaction between map and
subtyping. A natural requirement is that the two should commute:

T\- N' <N pos(N') pos(N)
T\-f : X^Y r\-n : N'(X)

r h mapN, [X] [Y]fn = mapN [X] [Y] f n : N(Y) (EQ-MAP-SUB)

i.e.,

N(X)

r v 1 r v 1 . N'{Y)
mapN, [X] [Y] f

This says precisely that, for each pair of positive operators N and TV' such that
TV' < TV, the family of coercions {IN'(S) < N(S)l \ S : Type} in the model forms a
natural transformation.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 603

Moreover, we require that all positive operators be monotone with respect to the
subtyping relation:

r I- N : Type^Type pos(N) T h S < T
(S-POS-MONO)r\-NS<NT

In Appendices B, D, and E we show that EQ-MAP-SUB and S-POS-MONO hold for
the particular definitions of pos(N) and mapN exhibited there.

With these extensions of the base calculus, we are ready to deal with object types.
We want the Object constructor to be monotone in the subtype relation, so that

CPoint = Object(CPointN) < Object(PointN) = Point,

where

CPointN = Fun(X) {set: Int->X, get: Int, setC: Color->X, getC: Color}.

This leads to the following subtyping rule for object types:

T\-N' <N fhJV : Type -> Type
T h Object (N1) <, Object (N)

(S-OBJ)

The monotonicity of the Object constructor captures the intuition that whenever the
interface N' of an object type Object {N') is more refined than the interface N of an
object type Object (JV), elements of Object (Nr) should be allowed in contexts where
elements of Object (JV) are expected.

Next, we consider generic methods. Observe that if we simply apply the generic set
method of points to an element of CPoint (which is valid by the rule of subsumption),
the result will be an element of Point, not of CPoint: in the presence of subtyping,
our generic methods are insufficiently polymorphic. More generally, suppose that
N is a positive operator and N' < N. The application of GMs to an element of
Object (N1) should yield an element of N(Object{N% not N(Object{N)) as above.
This suggests a change in the type of GM:

T\-N : Type-+Type pos(N) r M .
(T-GM)T h GMN : AlUN'zN) Object {N') ~* N(Object(N'))

(cf. (Cardelli & Wegner, 1985)). Note, here, that N'zN does not imply that N' is
also positive.

When GMN is applied to N itself, the original specification should continue to
hold:

Object {N) — G M N [N] ' N{Object (N))

mapN [R] [Object {N)]
objectN {R, —, m) F" , _ 'J NK objectN (R, —, m)

R m N(R)
(EQ-OBJ-MAP)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

604 M. Hofmann and B. Pierce

or, as an equational rule:

rhJV : Type-+Type pos(N)

r h s : R Thm : R-*N(R)

r h GMN [N] (objectN (R, S, m))
= mapN [R] [Object (N)] (objectN (R, —, m)) (m s)
: N(Object(N))

(EQ-OBJ-MAP)

In fact, the examples below show that this special instance of the commutativity
of object and map actually constrains their behaviour in a much broader range of
situations. We take this diagram as a basic axiom.

The interaction between the subtype relation and the term constructors object and
GM is axiomatized by two rules like EQ-MAP-SUB, which stipulate that they should
commute when all the operators involved are positive.

r h N' < N pos(N') pos(N)
T\-s : R T\-m : R -> N'(R)

(EQ-OBJ-SUB)T h objectN, (R, s, m) = objectN (R, s, m) : Object (N)

r I- N" < N' < N : Type^Type pos(fl') pos(N)

T h GMN< [N"] = GMN [N"] : Object (N")->N{Object(N"))
(EQ-GM-SUB)

(More generally, we might require that every well-typed equation whose type-erasure
is a syntactic identity should be provable in the equational theory; cf. (Cardelli et al,
1994; Mitchell, 1990b).)

4.1 Example: Mitchell's treatment of method specialization and inheritance via
natural transformations (1990a) includes a 'coherence condition' between different
instances of a given generic method. If N" < N' < N and pos(N), then:

Object (N1) GMN[N] (N(Object(N>y

GMN[N"] ' N{°bjeCt {N")]

The commutativity of this diagram also follows from our laws.

Proof: (This proof and those that follow depend on definitions and results from the
appendices. Readers who wish to follow in detail should first familiarize themselves
with the material presented there.)

By T-GM and EQ-REFL from Appendix A. 8,

T\-GMN = GMN : AllfN'^N) Object (N1) -> N(Object(N')).

On the other hand, by S-OBJECT, S-ARROW, and S-POS-MONO,

T h Object (AT) -> N(Object(N')) < Object (N") -> N(Object(N'))

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 605

and

T h Object (N") -» N'{Object (N")) < Object (N") -* N{Object (JV')).

E Q - T A P P now applies, yielding

T h GMN [JV'] = GMN [N"] : Object (JV") -> N{Object {N')),

as required. •

4.2 Example: EQ-GM-SUB can be used to derive a similar kind of coherence between
different generic methods. If JV' < N with pos{N) and pos{N'), then:

Object {N)

Object {N') N'{Object {N'))
GMN'[N']

Proof: Use EQ-GM-SUB with JV" = JV' to obtain

T I- GMN> [N1] = GMN [N1] : Object {N') - • N'{Object (JV')),

which, by EQ-SUBSUMPTION (using S-POS-MONO), gives

T I- GM^ [N7] = GMN [Nr] : Object {N') -> N{Object{N)).

Now rename JV' to JV and JV" to JV' in the diagram from Example 4.1, yielding

r h GMN [N] = GMN [N1] : Object (JV') — N{Object{N)).

The desired result follows by symmetry and transitivity. •

4.3 Example: Similarly, we can combine E Q - G M - S U B and EQ-OBJ-MAP to charac-
terize the behavior of the generic method when applied to some refinement JV' of
its own interface operator JV:

Object (JV')

objectN, {R, —, m)

t N{object{N'^

N'{Object {N'))

mapN, [R] [Object {N')]
objectN, {R, —, m)

R
m

N'{R)

5 Objects as packages

We now consider a specific encoding of objects, where existential types are used to
achieve the hiding of the internal states of objects (Pierce & Turner, 1994; Laufer

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

606 M. Hofmann and B. Pierce

& Odersky, 1994) (cf. Danforth and Tomlinson, 1988, and Bruce, 1993; the latter
is mainly based on recursive records, but existential types are used to implement
hidden instance variables). The type Object (N) is defined as an abstract type in the
sense of Mitchell and Plotkin (1988), with hidden representation A, a state of type
A, and an implementation of the methods of type A -* N(A)

Object (N) = Some (A) {state : A, methods : A -> N(A)}

or, in more familiar notation:

Object (N) = 3A.Ax(A^> N(A)).

The rules for existential types in F< are summarized in Appendix D, following
Cardelli and Wegner (1985) and Mitchell and Plotkin (1988). The definition of map
for this calculus, a straightforward extension of the definition of map for pure Fg,
is also given in Appendix D.

5.1 Definition: The type-theoretic encoding of objects in F< using existentials is
given by:

Object (N) = Some (A) { state : A, methods : A -* N{A) }

objectN (R, s, m) = pack {state = s, methods = m} as Object (N)
hiding R

GMN = fun(N'<N)
fun^ : Object(N'))

open x as [R, r] in
mapN [R] [Object (N1)]

objectN, (R, —, r.methods)
(r.methods r.state)

5.2 Proposition: This encoding satisfies the object axioms summarized in Appen-
dix C.

Proof: The typing and subtyping laws, K-OBJ, S-OBJ, T-OBJ-I, and T-GM, follow
directly from the definitions. The three equational laws are more interesting.

EQ-OBJ-MAP follows by the rules EQ-TBETA, EQ-BETA, EQ-ABS, and EQ-SOME-

BETA.

EQ-GM-SUB follows by EQ-MAP-SUB, EQ-OPEN, EQ-ABS, EQ-SUBSUMPTION, and
EQ-TBETA.

EQ-OBJ-SUB is derived as follows. We are given

r h N' < N
pos{N') pos(N)
r\-s : R
r\-m : R ->

Let
V = {state : R, methods : R -> N'(R)}
body = {state = s, methods =m}.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 607

Then

F I- body = body : V

by EQ-REFL. By S-APP, S-ARROW, and S-RCD,

r\-V < {state : R, methods : R -* N(R)}
r h V < {state : R, methods : R - • N'(R)}.

Now, by EQ-PACK,

T I- pack body as Some (A) {state : A, methods : A -> N'(A)} hiding R
= pack body as Some (A) {state : A, methods : A -> N(A)} hiding R
e Some (A) {state : A, methods : A —> N(A)},

i.e.,

T I- object^ (R, s, m) = objectN (R, s, m) : Object (iV). D

This encoding is interesting both because it works in a fairly simple calculus
— pure Fg enriched with existential types — and because it avoids introducing
the possibility of non-termination in situations where fixed points are not strictly
required. One situation where fixed points at the value level are required is the
modelling of inheritance, where the pseudovariable se l f is given meaning by taking
a fixed point of a method-building function; a more detailed discussion of this point
can be found elsewhere (Pierce & Turner, 1994; Hofmann & Pierce, 1994).

6 Objects as recursive records

Next, we show that a familiar encoding of objects as recursive records (Cardelli,
1984; Cardelli, 1992; Bruce, 1994; Mitchell, 1990a, etc.) satisfies the specification
developed in Sections 3 and 4 and summarized in Appendix C. This justifies both the
abstract framework itself (by showing that a well-known construction is a specific
instance of it) and the encoding (by showing that some of its tricky aspects, e.g. the
creation of objects, can be explained from general considerations).

We extend pure Fg with a recursive type constructor \i, which obeys the following
subtyping laws (Amadio & Cardelli, 1993):

T h n{A)T : Type
(S-FOLD*)r\-v(A)T~[(n(A)T)/A]T

T, BzTop(Type), A^B h S < T
r I- n(A)S < ii{B)T

(S-Mu*)

This extension is summarized in Appendix E. (We give slightly more general versions
of S-FOLD and S-Mu there.) We also assume the existence of a fixed-point combinator

fix : All(A^Top(Type)) (A-*A) -> A.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

608 M. Hofmann and B. Pierce

This combinator can be defined using mixed-variance /i-types (Amadio & Cardelli,
1993); however, we prefer to consider it as a primitive, since the equation EQ-FIX-

SUB in Appendix E is not provable syntactically for the encoding. The definitions of
positivity and map for the extended system appear in Appendix E.

Our type constructor Object can be encoded in this calculus by taking

Object (N) = n{X) N{X),

reflecting the intuition that the extension of an object comprises the potential results
of all methods applicable to it. This is analogous to the observation, captured
formally by the rule EQ-ETA in Appendix A.8, that the extension of a function is its
input-output behaviour.

Now, Object (N) is both a sub- and a supertype of N(Object(N)) by S-Mu.
Therefore, the generic method can be implemented as an identity function:

GMN = fun (N'<N) id [Object (N'j\

: All (N'^N) Object (AT) -> Object (N1)

~ All (N'^N) Object (A/') -» N'(Object (AT'))

N) Object (N') -> N(Object(N')).

The top arrow GMN [N] in the diagram corresponding to rule EQ-OBJ-MAP is now
invertible. Therefore, EQ-OBJ-MAP is satisfied iff

F I- objectN (R, s, m)
= mapN [R] [Object (N)] (objectN(R, —, m)) (m s)
: Object(N)

where

T\-N : Type-^Type pos(N) T h s : R T \-m : R^N(R).

In other words, the diagram can be read as a recursive specification of the object
constructor, which can be solved using the fixed point combinator:

objectN (R, s, m) = obj s

where

obj = fix [R^Object(N)]
fun(f:R^Object(N))

fun(p:R)
(fold : N(Object(N))^>Object(N))

(mapN[R\ [Object(N)]f(ms)).

(The function fold is actually an implicit coercion; we write it explicitly here as an
aid to the reader.)

For example, suppose we are given the representation type Int and the following
implementation of the point methods:

m = fun(s:Int) {get = s, set = fun(i:Int) i}
: Int -> PointN(Int)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 609

Then by expanding the definitions of object and map_PointN and /?-reducing, we
obtain a function mkpoint mapping internal states to point objects as follows:

mkpoint = fix [Int->Point]

funCmkp: Int->Point) fun(s:Int)

(fold {get = s, set = fun(i:Int) mkp i})

6.1 Proposition: The object laws in Appendix C are satisfied by this encoding.

Proof: The kinding, subtyping and typing rules are established by straightforward
calculation, using S-POS-MONO for the case of S-OBJ. AS in Proposition 5.2, the
equational rules are more interesting.

For EQ-OBJ-SUB, we are given

r\-N' <N
pos(N') pos(N)
r\-s : R
T\-m : R->N'(R).

From EQ-MAP-SUB and EQ-TAPP, we obtain

F, f-.R^Object(N'), s:R \- mapN, [R] [Object (AT)] / (m s)
= mapN [R] [Object (N)] f (m s)
: N(Object(N)).

Using EQ-ABS and EQ-ABS + (A.8.2), we deduce

F \- funif :R-^Object{N')) fun^:R)mapN, [R] [Object(N)'] f (m s)
=fun(f:R^>Object{N)) fun(s:R)mapN [R] [Object(N)] f (m s)
: [R-*Object(N')) - • (R-+Object (N)).

From this we obtain the desired result using EQ-FIX-SUB and EQ-APP.

For E Q - G M - S U B , the result follows directly from the definition using EQ-TBETA

twice plus EQ-REFL.

EQ-OBJ-MAP follows from EQ-TBETA and EQ-BETA (several times), EQ-FIX, and
EQ-ETA. •

7 F-bounded quantification

If objects are modelled using recursive types, the higher-order quantification in the
type of the generic method can be eliminated in favor of a specialized form of
second-order quantification called F-bounded quantification (Canning et al., 1989;
Cook et al., 1990), where the type variable introduced by a quantifier may appear
free in its bound.

Cardelli and Mitchell have observed that F-bounded quantification can be ex-
pressed in terms of higher-order quantification and recursive types (Abadi, 1992;
Bruce, 1994):

All(A<F(A))S » All(G<F) [(n(A)G(A))/A]S.

Indeed, it follows from an observation by Abadi (1992) that, 'in many models', these
two types denote the same collection.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

610 M. Hofmann and B. Pierce

Using this correspondence, we can recast the type of our generic method as

GMN : All(A< N(A)) A -> N(A)

to match the expected types of programs manipulating objects. It is interesting to
note that this also happens to be the simplest type of classes in the framework
proposed by Cook et al. (1990).

8 High-level syntax

One application of this abstract framework is that it yields a uniform syntax for
compactly declaring object types and their associated message-sending operations.
For example, the declaration

Point = ObjectType(Rep) with set: Int->Rep, get: Int

abbreviates the following set of declarations:

PointN = Fun(Rep) {set:Int->Rep, get:Int}
Point 'set = fun(N<PointN) fun(p:0bject(N)) (GM_PointN[N](p)).set
Point 'get = fun(N<PointN) fun(p:0bject(N)) (GM_PointN[N](p)).get

Similarly,

CPoint = ObjectType(Rep) with set: Int->Rep, get: Int,
setC: Color->Rep, getC: Color

stands for

CPointN = Fun(Rep) {set:Int->Rep, get:Int ,
setC:Color->Rep, getC:Color}

CPoint'set = fun(N<CPointN) fun(p:0bject(N)) (GM_CPointN[N](p)).set
CPoint'get = fun(N<CPointN) fun(p:0bject(N)) (GM_CPointN[N](p)).get
CPoint'setC = fun(N<CPointN) fun(p:Ubject(N)) (GM_CPointN[N](p)).setC
CPoint'getC = fun(N<CPointN) fun(p:0bject(N)) (GM_CPointN[N](p)).getC

This translation has been implemented in a prototype typechecker based on the
encoding of objects with existential types given in Section 5 (Pierce & Turner, 1994).

9 Mixed variance

In this section, we consider extending our theory with mixed-variance signatures to
account for binary methods. As we saw in Section 2, this cannot be accomplished
simply by dropping the positivity requirement on N. We must deal with the fact
that a binary method can be applied to objects with different representation types.
Our running example will be points with equality, described by the mixed-variance
signature:

EqPointN(X) = {set:Int->X, get:Int, eq:X->bool}

where the third method is used to compare two points for equality. Of course, in
the framework developed so far we could write an external equality function (as

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 611

opposed to an equality method local to one of the points) using the get method of
both points generically:

eqPoint = fun(p:Point) fun(q:Point) eqlnt (Point'get p) (Point'get q) .

But it may be desirable to package the equality test with the rest of the methods of
points. In this case, an implementation of the eq method must accept an arbitrary
point as its second argument and interrogate it to obtain an integer coordinate. Our
aim here is to give a formal account of this construction.

As always, we first state our requirements in an abstract form and try to give a
suitable axiomatization. We then observe that mixed-variance objects directly imply
possible non-termination of programs; thus no encoding is possible in a strongly
normalizing type-theory like pure FJ\ Finally, we show how recursive types may be
used in combination with an arbitrary encoding of covariant objects to implement
mixed-variance objects.

9.1 Mixed-variance objects

In general, let N : Type^Type be a mixed-variance type operator. We write N in
the form N = FunQC) F X X for some binary operator F that is positive in its
second argument. For example, the signature of points with equality is written

EqPointF = Fun(X) Fun(Y) {set:Int->Y, get:Int, eq:X->bool}.

This technique of separating positive and mixed parts of an object signature forms
the basis of the following definition of mixed-variance objects:

9.1.1 Definition: We write mixed(F) to indicate that F is positive in its second
argument:

mixed(F) iff pos(F X),

where F X = Fun(Y) FXY : Type -* Type. Notice that for a given N there

may be more than one such F; for example, we always have the trivial F =
FunQC) Fun(Y) N(X). However, the type of the method implementation depends
on the chosen F. In the trivial case, we have FOR = NO, independent of R,
so that the methods must always return proper objects, not bare elements of the
representation type. Such objects are completely degenerate, in the sense that the
methods cannot modify the state. It is therefore better to push as much as possible
of N into the positive part of F.

The well-formedness rule for mixed-variance object types and the typing of the
associated generic method are straightforward generalizations of the ones in Sec-
tion 3:

F h F : Type—*Type—>Type
y >v (K-MOBJ)MObject(F) : Type

F h F : Type—*Type^*Type mixed(F)
T I- MGMF : MObject (F) -> (F MObject (F) MObject (F))

(T-MGM*)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

612 M. Hofmann and B. Pierce

For example:
MGM_EqPointF : EqPoint -> {set: Int->EqPoint,

get: Int,
eq: EqPoint->Bool>,

where EqPoint=MObject(EqPointF).
In the introduction rule, it is not enough to implement the methods only with

respect to the representation type: a concrete equality method must be able to cope
with a second argument whose implementation uses a different representation type.
Since, in a sense, MObject (F) subsumes all other representation types, we can write
the rule this way:

r h F : Type-*Type-^Type mixed{F)
r\-R : Type T \-s : R T \-m : R-+(F MObject (F) R)

(T-MOBJ-I)
T h mobjectp (R, s, m) : MObject (F)

For example, point objects with equality can be created by

mkeqpoint = fun(s:Int) mobject_EqPointF(Int, s, m),

where
m = fun(s:Int)

{set = fund:Int) i,

get = s,

eq = fun(p:EqPoint) eqlnt s (MGM_EqPointF p).get}

and tested for equality in expressions like
EqPoint'eq (mkeqpoint 5) (mkeqpoint 6) ,

where EqPoint'eq is defined by projection from the generic method as in Section 8.
As in the specification of GM in Section 3, the observation that methods can

only manipulate other objects generically underlies the equational specification of
MGM. If R is some representation type and m : R —* (F MObject (F) R) is an
implementation of the methods according to the above rule, then EQ-OBJ-MAP*

generalizes to

MGMF FOO

mobjectF(R,-,m) maP{F0) [R] [0]
J F y ' mobjectF (R, —, m)

FOR
(EQ-MOBJ-MAP*)

where 0 = MObject(F) and, as before, FO = Fun(Y)FOY.
In the case of point objects with equality, this implies that the generic equality

method applied to two points should yield the same result as the application of the
concrete equality method of the first object to the second object:

(MGM_EqPointF (mkpoint x)).eq y = eqlnt (MGM_EqPointF y).get x.

This again reflects the intuition that the generic method should not perform any
computation of its own, but should simply invoke the local implementation.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 613

9.2 Mixed-variance subtyping

The typing of the generic method can now be extended to handle subtyping exactly
as in Section 4:

T\-F : Type^Type-^Type mixed(F)

ThMGMf : All(F'<F) MObject (F')-* (F MObject (F') MObject (F1)) (" '

Following the development in Section 4, we generalize the diagram specifying the
behavior of the generic method to make it account for the more refined type:

MGMF [F]
r UU

u- * IT, \ maP(FO) W [0]
mobjectF(R,—, m) y ' ,. ,„ ,

J ' ; mobjectF {R, —, m)

FOR
(EQ-MOBJ-MAP)

where again 0 = MObject (F).
For example, the generic method for points with equality now has the type

MGM_EqPointF : All(F'<EqPointF)

MObject(FJ) -> {set: Int->MObject(F'),

get: Int,

eq: MObject(F')->Bool}.

Subtyping between object types must be defined by a more restrictive rule than
the one we used in Section 4:

r h F F (S-MOBJ)
F h MObject (F) < MObject (F)

where

r t - F ' C F iff F, Bi,B2^Top(Type),Ai^BuA2^B2\-F'AiA2 <FBiB2.

That is, we require F to be monotonically a subtype of F, not just pointwise. To see
why this is necessary, consider

EqCPointF = Fun(X) Fun(Y) {set: Int->Y, get: Int , eq: X->bool,
setC: Color->Y, getC: Color}.

If we allowed MObject (EqCPointF) < MObject (EqPointF), then we could break the
type system by creating an instance cp of MObject (EqCPointF) whose equality method
called the getC method of its argument, promoting cp to type MObject (EqPointF),
and invoking its eq method with an instance of MObject (EqPointF) as argument (cf.
Cook et al. (1990) and Bruce (1994)). This observation might lead one to wonder
whether there are any nontrivial subtyping relations between mixed-variance object
types. Indeed, it seems that F' C. F cannot hold when both F and F are non-constant
in their first arguments. However, note that we do have, for example, EqPointF C
PointF = Fun(X) Fun(Y) PointN(Y).

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

(EQ-MGM-SUB)

(EQ-MOBJ-SUB)

614 M. Hofmann and B. Pierce

The rules EQ-OBJ-SUB and EQ-GM-SUB are extended as follows:

r\-F'QF r\-F" <F' r\-F" <F
mixed(F) mixed(F')

r h MGMp [F"] = MGMF [F"\
: MObject(F") -* (F MObject{F") MObject(F"))

rhF'CF rhs : J?
T h w : # - > (F MObject(F')R)

mixed(F) mixed(F')
F h mobjectp, (R, s, m) = mobjectF (R, s, m) : MObject (F)

9.3 Mixed variance implies non-termination

It may surprise the reader to learn that an implementation of mixed-variance objects
satisfying the specification EQ-MOBJ-MAP can be used to solve fixed-point equations
on terms, even in the absence of explicit type- or value-level recursion in the ambient
type theory.

Let <j> : D—>D be a function whose fixed point we wish to calculate, and let

F X Y = X^D
0 = MObject (F)
g = MGMF [F]

: MObject (F) -> MObject (F) -> D.

We can build an element of O using the type Top (or any other inhabited type) as
representation type and the function

m = fun(x:Top) funfy:O) </>(g y y)
: Top -> 0 -> D

= Top -> F 0 Top

as the concrete method

o = mobjectp (Top, top, m)
: 0,

where top is any element of Top. It follows from EQ-MOBJ-MAP that (g o o) is a
fixed point of <f>. To see this, observe that F is constant in its positive argument, so,
by the second clause of Definition B.6, map(F0^ [U] [V] f is the identity function on
O—*D no matter what / : U—*V is. So we can calculate as follows:

goo
= g (mobjectp (Top, top, m)) o
= id [0->D] (m top o)
= <j>(go o).

Thus, we cannot hope to find an implementation of mixed-variance signatures in a
strongly normalizing system like Fa with existential types.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 615

It might be the case that an implementation could be given in Fw augmented
with general recursion at the level of terms, without introducing recursive types.
Indeed, in an earlier presentation of this work (Hofmann & Pierce, 1992), we gave
an encoding of a slightly different version of mixed-variance signatures in F®
extended with a fixed-point operator at the level of values. Mixed-variance objects
were encoded as existential packages, with mixed-variance methods abstracted over
polymorphic functions representing the generic method. However, we found this
solution contrived; moreover, it could not satisfactorily be extended with subtyping.

9.4 Mixed variance objects via recursive types

On the other hand, a natural implementation of mixed-variance objects can easily
be given in terms of recursive types. Suppose we are given an implementation of the
covariant object constructors Object, GM, and object that satisfies the requirements
set out in the previous sections. Now, let

MObject(F) = fi(X) Object (FX).

Recall that mixed(F) means just pos(F X). Next, let

MGMF = fun(F'zF) GMF MObJect{F/) [F MObject(F')]
: All(F'zF) Object (F' MObject(F'))

-» F MObject(F') Object (F' MObject(F'))
F) MObject(F') ->• {F MObject{F') MObject(F')).

Note that the bounded quantifier in the type of the generic method refers to
pointwise subtyping of type operators, as always - not to monotone subtyping.
Finally, if R : Type and s : R and m : R -> (F MObject (F) R), then let

mobjectF (R, s, m) = objectF MObject(F) (R, s, m)
: Object (F MObject (F))
~ MObject (F).

The required laws follow from the laws governing covariant objects.
If we instantiate the covariant object constructors with the concrete implementa-

tion in terms of recursive types from Section 6, we obtain

MObject(F) = fi(X) fi(Y) F X Y',

which denotes the same regular tree as the familiar encoding

MObject (F) = n(X) F X X

proposed, for example, by several authors (Cardelli, 1984; Cardelli, 1992; Bruce,
1994; Mitchell, 1990a; Canning et al., 1989; Cook et al., 1990). On the other hand,
the existential encoding of objects of Section 5 leads to the implementation

MObject (F) = n(X) Some £4) {state : A, methods : A -• F X A}

of mixed-variance objects, as suggested by one of the referees.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

616 M. Hofmann and B. Pierce

10 Conclusions

We have presented a direct, high-level axiomatization of objects and their types
in a higher-order polymorphic 2-calculus with subtyping. This framework yields
a natural high-level syntax for sending messages to objects and allows previously
studied encodings of objects to be presented in a common setting.

The object encodings using existential types and recursive types essentially coin-
cide for positive method signatures. Extending these encodings to mixed-variance
signatures, on the other hand, seems to require recursive types. However, it might
be argued that using mixed-variance signatures to allow binary methods is rather
unnatural in the first place. For one thing, by implying the presence of fixed points,
it introduces the risk of non-termination even in simple situations like equality
methods for points, making the task of proving total correctness unnecessarily dif-
ficult. Moreover, the binary methods that can be supported in this way are not the
ones that are most often needed in practice, since they can only access the concrete
representation of one of their arguments. It may be better to reject the idea of binary
methods altogether and use ordinary abstract data types to achieve encapsulation in
situations where simultaneous access to the concrete state of more than one datum
is required. This perspective can be fully integrated with object-style programming,
as shown by Pierce and Turner (1993).

We have dealt here only with the basic mechanisms of objects and subtyping (a
relation between specifications of objects) and not with inheritance (a mechanism
for deriving the implementation of one class of objects by incrementally modifying
the implementation of another class; cf. Cook et al. (1990)). It can be shown that,
once the fundamental mechanisms of encapsulation and subtyping are accounted for
and their interaction properly handled, inheritance, including features like self and
super, arises as a collection of programming idioms completely within the resulting
type theory (Pierce & Turner, 1994). It would thus be a straightforward matter to ex-
tend the abstract framework developed here to include an implementation of inheri-
tance, using the ideas developed by others (Cook, 1989; Kamin & Reddy, 1994; Cook
et al, 1990; Bruce, 1994; Cardelli, 1992; Mitchell, 1990a; Pierce & Turner, 1994).

Another application of our framework may lie in suggesting appropriate proof
rules for the verification of object-oriented programs. Here, existing work on imple-
mentations of inheritance does not seem sufficiently abstract to yield useful high-level
rules for reasoning about programs involving inheritance. Instead, the process we
have described here for objects and subtyping — finding a direct axiomatization
and showing that existing implementations can be derived as instances of it — must
be repeated for inheritance as well. Some preliminary results in this direction are
reported in earlier work (Hofmann & Pierce, 1994).

Acknowledgments

David N. Turner joined in many discussions and helped formalize the definitions of
positivity and map in Section 5. Marcelo Fiore pointed out a relationship between
terminal algebras and recursive types that led to the axiomatization of mixed-

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 617

variance methods in Section 9. Phil Wadler posed the problem of relation the
encoding of objects using recursive records and the one using existential types.
Martin Abadi, Eugenio Moggi, and Andre Scedrov supplied pointers to releveant
literature. Terry Stroup and Zdzislaw Spiawski gave us helpful suggestions on earlier
drafts. Two anonymous referees made numerous suggestion, which led to substantial
reworking and improvement of both technical aspects and exposition.

This research was mainly carried out at the University of Edinburgh's Lab for
Foundations of Computer Science. Hofmann was supported by a European Union
HCM fellowship. Pierce was supported by a fellowship from the British Science
and Engineering Research Council. Earlier versions of this paper appeared in the
Symposium on Theoretical Aspects of Computer Science, 1994, and, under the title
"An Abstract View of Objects and Subtyping (Preliminary Report)," as University
of Edinburgh, LFCS technical report ECS-LFCS-92-226, 1992.

A Summary of F<

This appendix summarizes the syntax and typing rules of the typed A-calculus Fg, an
extension of Girard's system Fm (1972) with subtyping. The organizing ideas behind
the system are due to Cardelli, particularly to the 1988 paper, 'Structural Subtyping
and the Notion of Power Type' (1988); the extension of the subtype relation to
type operators was invented by Cardelli and Mitchell (Cardelli, 1990; Mitchell,
1990a; Bruce & Mitchell, 1992; Abadi, 1992). Cardelli's sketch (1990) also suggests
a more powerful treatment of operator subtyping, including both monotonic and
antimonotonic subtyping in addition to pointwise subtyping; but the metatheoretic
properties of this extension are not well understood.

The metatheory of pure F< has been studied by Steffen and Pierce (1994) and
Compagnoni (1994). Simple models have been given by Cardelli and Longo (1991)
and Compagnoni and Pierce (1993). A model for an extension of Fg with recursive
types has been given by Bruce and Mitchell (1992).

A.I Syntax

A.1.1 Definition: The sets of kinds, types, terms and contexts are given by the
following abstract grammar:

K ::= Type
/C,->K2

A
Fun(A:K)T
T\ T2

Top(K)
T\-*T2

All(A^Ti)T2

{l\\T\, ..., ln:Tn\

kind of types
kind of type operators

type variable
type operator
application of a type operator
maximal type of kind K
function type
universally quantified type
record type

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

618 M. Hofmann and B. Pierce

e ::= X

fun (x:T)e
e\ e2

fun(A^T)e
e[T]
{/ i=ei , •-.,
e.l

ln=en)

variable
abstraction
application
type abstraction
type application
record construction
field selection

F : := • empty context
| r , x:T variable binding
| F, A^T type variable binding with bound

A.1.2 Notation: The typing rules that follow define sets of valid judgements of the
following forms:

h F context r is a well-formed context
F h T : K type T has kind K
F t- T\ < T2 T\ is a subtype of T2

F h e : T term e has type T

We sometimes write r h S ~ T to mean that both T h S < T and T h T < S.

A.1.3 Definition: The domain of a context F, written dom(F), is the set of type
and term variables bound by F. A type T is closed with respect to a context F if
FTV(T) c dom(F). A term e is closed with respect to F if FTV(e)UFV(e) c dom(F).
A context F is closed if

1. F = •, or

2. F = Fi, A^T, with Fi closed and T closed with respect to Fi, or

3. F = Fi, x:T, with Fi closed and T closed with respect to Fi.
A subtyping statement F I- S < T is closed if F is closed and S and T are closed
with respect to F; a typing statement F I- e : T is closed if F is closed and e and
T are closed with respect to F.

A.1.4 Convention: In the following, we assume that all statements under discussion
are closed. In particular, we allow only closed statements in instances of inference
rules. This convention replaces the usual side-conditions in rules such as T-SOME-E

and allows a context to be viewed as a partial function, justifying the notation T(X)
for the unique upper bound of X : dom(F).

A .2 Conversion on types

The /JT-conversion relation on type expressions is the least congruence (with respect
to all of the type formers) containing the following rules:

(Fun(A:K)T)S =r [S/A]T
Top(Kx-+K2)S =pj Top(K2).

The corresponding reduction relation is defined in the usual way, orienting these
rules from left to right. When T has a /?T-normal form, we write it as T!.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects

A.3 Contexts

\- • context

T\-T : K

r,
ri-

r\-s

ri- Ti

i

\-T,A^T context

F \- T : Type
h F, x:T context

A.4 Kinding

T\-T{A) : K
Y\-A : K

A±Top{Kx) \-T2 : K2

Fun(A:Ki)T2 : K{^K2

. A.J—^A^2 1 l~ i • A-i

T\-S T : K2

h F context
T h 7bp(K) : X

: Type F h T2 : Type
T h Ti->T2 : Type

V,A^T\ h T2 : Type
r\-All(A*Ti)T2 : Type

h F context for each i, T h T, : Type

n-{/,:r, /.X} : Type

A.5 Subtyping

r\-u<s r\-s : K =pT T

T\-S <T

T\-U <T

T\-A< r(A)

T\-T <T

r\-T : K
T\-S< U

619

(C-EMPTY)

(C-TVAR)

(C-VAR)

(K-TVAR)

(K-ABS)

(K-APP)

(K-TOP)

(K-ARROW)

(K-ALL)

(K-RCD)

T\-T <U

(S-CONV)

(S-TVAR)

(S-REFL)

(S-TRANS)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

620 M. Hofmann and B. Pierce

r\-S : K

T\-S < Top{K)

r h r, < Si r\-s2<T2

r h Sl-*S2<Ti^T2

T,A^U\-S2< T2

r\-All(AzU)S2 <All(A*U)T2

{fi,...,/„} g {fci,... ,km} for each k, = lj, T \-St < Tj

F h {ki:SU ...,km:Sm} < {/, :TU ..., ln:Tn}

r, A^Top(K) h S < T

r h Fun(A:K)S <Fun(A:K)T

ThS <T

r\-s u<T u

A.6 Typing

The : S T\-S <T T h T : K
r h e : T

h

r

T\-fuM

T

T,A

r context
h x

-*T-

1-/

T\-fun{A^Ti),

r h / : All(A<Ti)T2

h F context for

: T(x)

h e : T2

2 r\-a :

a : T2

he : T2

z : A\l(A^T\

rhS : K
: [S/X]T2

• each i, F h

2

)?2

r

e, :

h S < T,

=eu ..., ln = en} : {h :T\, ..., ln:Tn}

The : {l:T}

The.I : T

(S-TOP)

(S-ARROW)

(S-ALL)

(S-RCD)

(S-ABS)

(S-APP)

(T-SUBSUMPTION)

(T-VAR)

(T-ARROW-I)

(T-ARROW-E)

(T-AIX-I)

(T-ALL-E)

(T-RCD-I)

(T-RCD-E)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 621

A.7 Basic properties

Proofs of the following can be found in Steffen and Pierce (1994). Strictly speaking,
the development there does not explicitly deal with record types, but this is a
straightforward extension: proof-theoretically, the record constructor behaves just
like other simple constructors such as arrow.

A.7.1 Proposition [Strong normalization of well-kinded types]: If T V- T : K, then
T has a unique /?T-normal form.

A.7.2 Definition [Promotion]: The promotion of a type A Si ...Sn in a well-formed
context T is T(A) S i . . . Sn. We write A S{... Sn fr r(A) S i . . . Sn.

A.7.3 Proposition: The following algorithm is sound and complete for the relation
F\-S<T, when S and T are well-kinded.
cheeky \-S < T) =

check\T\-S' < T')

checker \-S <T) =
ifT = Top(Kindr(S))

then true
else if S = T

then true
else if S | r U

then checker h Ul <T)
else ifS = St->S2 and T = T{^T2

then check1 (Th T, < S,)
and checker \- S2 < T2)

else ifS= All{A<U)S2 and T = All(A^U) T2

then check'(T, A<-U \-S2 < T2)
elseifS = {kl:SU--.,km:Sm} and T = {h:Tu ..., ln:Tn}

then {/i,...,/n} £ {ku...,km}
and for each /c,- = I,, check'(Y \- S, < Tj)

else ifS = Fun(A:K{)S2 and T = FuniAXx) T2

then checker, A^Top(Ki) \-S2 < T2)
else

false.

A.8 Equational theory

Developing a full-fledged equational theory for Fg remains a matter for future re-
search. For the sake of concreteness, we propose the following rules, which straight-
forwardly generalize the equational theory for pure second-order quantification
studied by Cardelli et al. (1994). All of the rules are sound in a standard PER model
of F™ (see, for example, Compagnoni and Pierce (1993)). We do not aim for a min-
imal set of rules. To reduce clutter, we elide the evident well-kindedness premises;
these can be filled in by analogy with the typing rules in the previous section.

r\-e : T

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

622 M. Hofmann and B. Pierce

r\-e = e' : T
T\-e' =

T\-e = e' : T

T\-e = e' : S

The =

T h e : Top(Type)

r\-e = e' :

r\-sr <s T\-T <v
jun\x.) —jur

T\-fa = _

r, A<.U h

r, A^U h b

e :

rh
e" :

r
e' :

r\-

T

e' = e" : T

T

\-S <T

T

e' : Top(Type)

Top(Type)

r
f a'

T <

r,x:S\-b = b' : T

\-a = a' : S

: T

r
: T

: All(4<U)T'

T\-e = e' : Att{A<.U)V

T\-S <U r\-S' <U

r i- [S/A]V <T r h [S'/A]V < T

r h e [S] = e1 [S1] : T

for all i, T h e, = e\ : T,

(EQ-SYMM)

(EQ-TRANS)

(EQ-SUBSUMPTION)

(EQ-TOP)

(EQ-ABS)

(EQ-APP)

(EQ-TABS)

Q. I — £> \ — } \ t O I — O' \ W i l l 1 1 f

r,

i

r i -

ri--
i

x:S)-b = b

T h (fun (x

r h

'' : T

:S)b) a =

f = f •

T\-fun(x:S) f x =

(fun (A^S) b

rh/ =

hfun^S)

n-{/i=e,,

Fhr :

r\-a = <

[a>/x]b> :

s->r

rh u
) [U] = [U/A]b' :

= / ' : All(A<S)T

. . . , / „ = £

: {h:Tu.

V : >4H(4

«} • /i = e,-

••Jn-Tn}

2' : S

T

T

<s
[U/A]T

*S)T

: Tt

= {h=r. / , , . . . , /n=r./„} : {/,:T,, ln:Tn}

(EQ-TAPP)

(EQ-RCD)

(EQ-BETA)

(EQ-ETA)

(EQ-TBETA)

(EQ-TETA)

(EQ-PROJ)

(EQ-SURJ)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 623

A.8.1 Remark: It might appear that the rule EQ-TABS should be generalized, by
analogy with EQ-ABS, to allow the comparison of type abstractions with different
upper bounds. Similarly, one might wish to generalize the rules EQ-MAP-SUB and
EQ-GM-SUB in Appendix B to allow the direct comparison of two different mapping
functions or generic methods, instead of comparing particular instances. But for such
equations even to typecheck, it would first be necessary to similarly generalize the
subtyping rule S-ALL, leading to a richer system, but one with a much more difficult
metatheory. See Steffen and Pierce (1994) for a related discussion.

The rule EQ-TAPP is closely related to the semantic concept of parametricity
(cf. (Cardelli et al., 1994)).

A.8.2 Fact: The following more general version of EQ-ABS is derivable using EQ-ABS

and transitivity:

T I - S ' < S r\-T<T' r,x:S'\-b' = b : T T,x:S\-b:T

r\-fun(x:S')b'=fun(?c:S)b : S'-+T'
(EQ-ABS+)

B Positivity

In the body of the article, we stipulated that the 'ambient type theory' should come
equipped with a positivity predicate pos and an operator map satisfying the following
laws:

F h N : Type^Type pos(N) r h S < T
(S-POS-MONO)Th-NS <NT

T\- N : Type -> Type pos(N)

r\-mapN : All(X)All(Y) (X^Y) - {N{X)

r h N : Type-^Type pos(N)
r\-f : x->y r i -g : Y^Z

r\-mapN[X] [Z](f;g)
= (mapN [X] [Y] f) ; (mapN [Y] [Z] g)
: N{X)-+N(Z)

(T-MAP)

(EQ-MAP-TRANS)

ThiV : Type-+Type pos{N) r h X : Type

T h mapN [X] [X] (id [X]) = id [N(X)] : N(X)->N(X) (Q" A?" °'

F h N' < N pos(N') pos(N)
r\-f : X^Y r\-n : N'(X)

(EQ-MAP-SUB)T I- mapN, [X] [Y]fn = mapN [X] [Y] f n : N(Y)

In this section, we show how such a pos and map can be defined for FJ\

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

624 M. Hofmann and B. Pierce

B.I Remark: Of course, the requirement that a given type theory should include
positivity can always be satisfied trivially by setting pos(N) = false for all N.
Furthermore, as we remark below, the following definitions of pos and map - which
essentially follow the prevailing type-theoretic 'folklore' - are less complete than
one might wish, in the sense that they do not handle arbitrary operators containing
higher-order variables. However, they are strong enough to establish the positivity
of many reasonable object interfaces.

B.2 Definition: Let T be a type that is closed in some context where a type variable
A is defined. Define the predicates posA(T) ('A occurs only positively in 7") and
negA{T) ('A occurs only negatively in T') simultaneously as follows:

POSA(A) = true
posA(T) with A not free in T = true
posA (Ti -> T2) = negA (Tx) and posA (T2)
posA{All(B<Ti) T2) = A not free in T{ and posA(T2)
posA{{h:Tu ...,ln:Tn}) = posA(T,) for all i

posA(T) in all other cases = false

negA(A) = false
negA(T) with A not free in T = true
negA(Ti->T2) = posA(Tx) and negA(T2)
negA(All(p<Ti) T2) = A not free in Tx and negA{T2)
negA({h :TU ..., ln:Tn}) = negA(T,) for all i
negA(T) in all other cases = false

B.3 Definition: If F I- N : Type-^Type, we write pos{N) to mean that N', the
normal form of N, equals Fun(A)P and posA(P).

Notice, in particular, that pos(N) is always false when N is a variable. Similarly,
an application N(S) can only be marked posA or negA if A does not occur free in
N or S. As we remarked in Section 3, a stronger calculus (cf. (Cardelli, 1990)) with
positive and negative (monotone and antimonotone) operators seems cleaner in this
respect, since it allows positivity/negativity to be ascribed to more type expressions.
However, the present formulation is sufficient for our purposes.

An occurrence of A in the bound of a quantifier is never considered to be only
positive or only negative: posA{All(Ji^T\) T2) and negA(All(B^T\) T2) can only hold
when T\ has no free occurrences of A. This restriction is necessary because it is not
the case, in this calculus, that applying map to a coercion function yields a coercion
function. (To see what goes wrong, try extending the All case of the definition of
lift below to handle the situation where A occurs in T\.) The same observation will
apply to the bounds of existential quantifiers.

It is easy to check that every positive operator is also monotone in the subtype
relation, validating S-POS-MONO:

B.4 Lemma: Let F = Ai, A^Top(Type), A2 and A = Ai, A2, with A not free in A2,
and suppose that F I- P : Type and A h S < T.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 625

1. If posA{P), then A h [S/A]P < [T/A]P.

2. If negA{P), then A I- [T/A]P < [S/A]P.

Proof: By simultaneous induction on the definitions of posA and negA. For each
part, the first two cases are easy, the next three follow by straightforward use of the
induction hypothesis, and the last one holds trivially. •

B.5 Corollary: [Positivity implies monotonicity]

1. If T h N : Type^Type and pos(N), then r \-S < T implies F h NS <NT.

2. If T h N : Type^Type and neg(N), then r h S < T implies T\- NT <NS.

B.6 Definition: Fix a context F, a type variable A, two types X and y, and a
function / : X-+Y. Then the lifting of/ through a type T, written liffp~f, is

= id [S]

when ,4 is not free in S

= M<8-
fun{a :

Hft£f iS VowerA
T~f a))

when A is not free in T\

{li=liftArf{g.li), ...,ln = lift

liftT = undefined in all other cases,

and the lowering of / through T, written lower^f~^, is

lowerA
A*~^ = undefined
' "' = id[S]

when A is not free in S

fun((i:{X/A]Tx)

~f (g wA
T7f«))

[Y/A]T2))

^ (g [B])
when A is not free in T\

i& IT} = /««fe : [y / 4 { ' i ^ i . • • •.'»:Tn})
{/, = / o w e ^ ^ g . / ,) , . . . , /„ = lower*^ (g. /„)}

lower j ^ = undefined in all other cases.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

626 M. Hofmann and B. Pierce

Note that lift£~f is denned iff posA(T), that lower**"1 is denned iff negA{T), and
that

lift£~f : [X/A]T - • [Y/A]T
lower$~f : [Y /A]T — [X/A]T.

Intuitively, liftj^ 'maps / over elements of T" by destructing and rebuilding an
element of T, inserting a call to / at each occurrence of the variable A (all of which
are positive); lowery*"^ does the same for negative occurrences of A. The change in
sign of the occurrences of A accounts for the switch of X and Y in the types of
liftr~* and lower^1'. More abstractly, lift%~* witnesses the fact that every positive
type operator induces a functor, i.e. a pair of maps, one on types and one on terms.

B.7 Lemma: Suppose A is not free in A. Then the following equality rules for lift
and lower are derivable:

F, A<Top(Type), A h T : Type posA(T) T h X : Type
(EQ-LIFT-ID)

(EQ- LOWER-ID)

(EQ-LIFT-TRANS)

T, A h liftA
T~luw = id [[X/A]T] : [X/A]T->[X/A]T

T,A<Top{Type),Ay-T : Type negA(T) r h X : Type

T, A h lower^W = id [[X/A]T] : [X/A]T-+[X/A]T

F, A^Top(Type), Ah T : Type posA{T)
T\-f : X^Y T h g : Y^Z

r , A h / ! / 4 H / ; g) = (itft*rf • HftA
T^s)

r,AzTop(Type),A\-T : Type negA{T)
F h / : X-+Y T\-g : Y->Z

T, A h lower?-*1*) = (lower^T* ; lower^f)
(EQ-LOWER-TRANS)

Proof: Each pair of rules is proved simultaneously, by induction on the structure
of T. The -ID pair uses EQ-ETA, EQ-TETA, and EQ-SURJ for the three inductive cases.
The -TRANS pair uses EQ-BETA, EQ-TBETA, and EQ-PROJ. •

B.8 Lemma: Suppose A is not free in A. If T and T are normal forms of kind Type
in F, A^Top(Type), A, then the following rules are derivable:

T, A<Top(Type), A\-T <T
posA{T) posA(T) r\-f : X^Y

T, Ah \iftA
TTS = Hf4"f • [X/A]V -+[Y/A]T

(EQ-LIFT-SUB)

T, A^Top(Type), A h V < T
negA(T') negA(T) r \-f : X^Y

(EQ-LOWER-SUB)
T, A h lowerT7S = lower^T1 : [Y/A]T -+ [X/A]T

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 627

Proof: Both statements are proved by simultaneous induction on a successful
execution of the algorithm check1 applied to F, A^Top{Type) h T < T. We give the
argument just for EQ-LIFT-SUB; the other is symmetric.

When T = Top(Type), use EQ-TOP, EQ-ETA, and EQ-ABS. When T = T, use
EQ-REFL.

If T j r U, then by the definition of promotion, T has the form B U\ ... Un.
There are two cases to consider. If B = A, then since A : Type, we have n = 0,
T = A, and U = Top{Type). If B ± A, then A is not free in T, since posA(T')
implies that A does not occur in any of the [/,-; since A is not free in F or A, it
therefore cannot be free in U. Thus, we see that posA(U) and lift^rf and lift^~{ are
the same identity function. In either case, we have

r, A h uftA
Trf = liftf • [X/A] r->u

(since A is not free in U). By the induction hypothesis, f, A h lift^j = Ufrf- '•
U —• [Y/A]T. The result follows by transitivity, using

T, Ah [X/A]T < U
r , Ah U < [Y/A]T

and EQ-SUBSUMPTION.

The following three structural cases use straightforward equality reasoning. The
final case, where T is an abstraction, cannot occur because T is of kind Type. •

B.9 Definition [cf. Coquand and Paulin-Mohring (1989)]: When pos(N),

mapN = funQC) fun(Y)fun(f:X-+Y) lift^f

: All <X) All (Y) (X-> 7) -> (N(X)-+N(Y)),

where S is the jS-normal form of N(A).

B.10 Corollary: The definition of map satisfies the laws at the beginning of this
section.

Proof: From B.7 and B.8, using EQ-SUBSUMPTION, S-CONV, and EQ-ABS to deal
with the conversion to normal form in the definition of map. O

C Object types

Having defined pos and map, we can further enrich F£ with the high-level type
constructor Object and the term constructors object and GM. Their associated
typing, subtyping, and equational rules (taken from the text) are as follows:

F h Object (N) : Type

V < N F h N : Type —» 7ype

T\-Object{N')< Object (N)
(S-OBJ)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

628 M. Hofmann and B. Pierce

TV-N : Type—*Type pos(N)
T\-s : R T V- m : R->N(R)

(T-OBJ-I)

(T-GM)

(EQ-OBJ-SUB)

(EQ-GM-SUB)

r

r
r h

r V- objectN (R, s, m) : Object (N)

T V- N : Type^Type
V-GMN : All(N'^N) Object (N']

TV-N' <N pos(N')
TV-s : R TV-m : R

V- objectN, (R, s, m) = object^ (R,

N" <N' <N : Type-+Type

pos(N)
)-*N(Object (N1))

pos(N)
-» N'(R)
s, m) : Object (N)

pos(N') pos(N)

T\-GMN, [N"] = GMN [N"] : Object (N")->N(Object (N"))

TV-N : Type->Type pos(N)
TV-s : R TV-m : R^N(R)

— — (EQ-OBJ-MAP)T V- GMN [N] (objectN (R, s, m))
= mapN [R] [Object (N)] (objectN (R, —, m)) (m s)
: N(Object(N))

C.I Remark: Observe that by EQ-TBETA and EQ-BETA, we have

F h objectN (R, s, m)
= (fun(R) fun(s:R) fun(fn:R -» N(R)) objectN(R, s, m)) [R] s m
: Object (N)

From this equivalence and the equational rules in Section A.8 (EQ-TAPP in partic-
ular), we may obtain a stronger version of EQ-OBJ-SUB where R, s, and m are also
permitted to vary.

D Existential types

The sets of F< types and terms are extended with existentials as follows:

T ::=
| Some(A<.T\) T2 existentially quantified type

e ::=
I pack e as T\ hiding T2 packing
I open ei as [A, x] in e2 unpacking

The kinding, typing and subtyping rules are extended as follows:

(K-SOME)
r

r

T, A<.T{ V- T2 :
\-Some^Ti)T2

T,A^U\-S2<
V- Some(A<U)S2

Type
• : Type

T2

: Type
T V- Some(A<U)S2 < SomeiA^U) T2 (S-SOME)

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects

r\- T ~ Some(A^Ui)U2 T\-S<Ui T \-e : [S/A]U2

F h pack e as T hiding S : T

629

(T-SOME-I)

, A<S{, x:S2 h e2 : T

F (- open ej as [/I, x] in e2 : T
(T-SOME-E)

The equational theory is extended with the following rules (cf. Martin-Lof's weak
Z-types (Smith et al, 1990)):

T\-T ~Some(A<Ui)U2 T\-S<Ui
r\-e = e' : [S/A]U2

T,A<Uux:U2\-b = b' : V

F h open (pack e as T hiding S) as [A, x] in b
= [e'/x][S/A]b'
: V

r i - r ^SomeiA<Ui)U'2 r h T ~ Some(A^Ui)U2

T\-V <T
r\-s',s <Ui r \- v < [S'/A] U'2, [S/A] U'2

r\-e' = e : V
F\- pack e' as T hiding S' = pack e as T hiding S : T

r\-e = e' : Some(A<Ti)T2

x:S2\-b = b' : T

(EQ-SOME-BETA)

F\- open e as [A, x] in b = open e1 as [A, x] in b' : T

r \- V : Type
r,y:Some(A<S)T\-e,e' : V

T, A^S, x:T\- [(pack x as Some(A^S) T hiding S)/y](e = e')

r, y:Some{A<S)T\-e = e' : V

(EQ-PACK)

(EQ-OPEN)

(EQ-SOME-IND)

D.I Remark: All of the above rules except for the 'induction principle' EQ-SOME-

IND are valid under the usual encoding of existential types in terms of universal
quantifiers:

Some(AzS)T = AU$) (All(A^S)T^B) -> B.

Moreover, all the rules including EQ-SOME-IND are sound in the PER model, if
we interpret the existential type as the sub-PER of the interpretation of the en-
coding restricted to those elements semantically equal to an element interpreting
an expression of the form pack.... More precisely, we define e^Some^S) T\e' iff
elAU(B) (All(AsS)T->B) -» B]] / and elAlUB) (All(A^S)T^B) -> BJ^Xk h x,
where x e dom(^T^^A^R^)) for some PER R c [[SJ .̂ It also seems possible to model
an existential by the transitive closure of the union of all instances of its body. It
is a matter for future research to inquire whether the equational theory of exis-
tential types can be axiomatized using only unconditional equations. Interestingly,
Lemma D.5 can also be proven for the universal encoding of existentials.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

630 M. Hofmann and B. Pierce

D.2 Definition: The definitions of the predicates posA and negA (Definition B.2) are
extended as follows:

posA{Some(B<Ti) T2) = A not free in Ti and posA(T2)
negA{Some(B^Ti) T2) = A not free in Tt and negA(T2)

D.3 Fact: These definitions validate the rule S-POS-MONO for Ft? extended with
existentials.

Proof: Extend the proof of B.4 with an analogous case for existentials, using
S-SOME. •

D.4 Definition: The definitions of the lifting and lowering of a function / through
a type T (B.6) are extended as follows:

open g as [B, x] in
pack (liftTl x)
as SomeQB^Ti) [Y/A]T2

hiding B
when A is not free in Ti

= fun(g : {Some{p<Ty) [Y/A]T2))
open g as [B, x] in

pack (lowerT2 x)
asSomeffizTi) [X/A]T2

hiding B
when A is not free in T\

D.5 Lemma: The rules listed at the beginning of Section B are derivable in the
extended calculus.

Proof: By extension of the previous inductive arguments, leading up to Corol-
lary B.10. For EQ-MAP-ID and EQ-MAP-TRANS, we use EQ-SOME-IND to 'replace'
the variable g in the definition of lift and lower by an instance of pack. The re-
sult then follows by straightforward equality reasoning using EQ-SOME-BETA. For
EQ-MAP-SUB, we use EQ-PACK and EQ-OPEN. •

E Recursive types

The following extension of the basic F%? calculus with recursive types is somewhat
tentative. The rules are suggested by existing treatments of recursive types in lower-
order calculi (Amadio & Cardelli, 1993), but a full study of recursive types in this
setting falls outside the scope of the present article.

The set o f f " types is extended as follows:

T ::=
| n(A:K)T least fixed point

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 631

The inference rules are extended by the formation rule

T,A<Top(K)\- T : K
r\~n(A:K)T : K

(K-Mu)

and two subtyping rules — one for 'unfolding' a recursive type and one for (finitely)
comparing two recursive types (cf. (Amadio & Cardelli, 1993)):

r\~n(A:K)T : K
(S-FOLD)

r,B.Top(K),AsB,S<T ^
r 1- fi(A)S < n(B)T

E.1 Remark: Note that we have the derived rule

T, B<Top(K), A<-B,

\-S(A,C)<S(B,D)
(S-MU-MONO)T, B$Top(K), A^B V- n(C)S(A,C) < n(D)S(B,D)

which states that a type whose outer constructor is \i is monotone in a free variable
A if the body of the \i is monotone in both A and the bound variable. This suggests
the following extension of the definitions of pos and neg.

E.2 Definition: The definitions of the predicates posA and negA (B.2) are extended
as follows:

posA(fi(B)T2) = posA(T2) and posB(T2)

negA(n(B)T2) = negA(T2) and posB(T2)

The definition of the pos predicate still makes sense, since, for purposes of type
normalization, the \i operator can simply be treated as a constant.

E.3 Remark: Note that a type variable A appears positively in a type T = n{B)F
only if both A and B appear only positively in F.

E.4 Definition: We introduce a value-level fixed-point combinator^x with the typing
rule

fix : All(AzTop(Type)) (A^>A) -> A (T-Fix)

and (in addition to the equations implied by its typing), the equational rules

r\-f : A^A
r\-fix[A]f=f(fix[A]f) : A

T\-A' <A
r\-f: A'-+A' r h / : A^A

T\-f=f : A'^A
T \-fix [A] f =fix [A'] f : A

(EQ-FIX)

(EQ-FIX-SUB)

which respectively characterize fix as a fixed point and describe its behaviour with
respect to subtyping.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

632 M. Hofmann and B. Pierce

E.5 Remark: These rules can be interpreted in the 'cuper model' of Amadio and
Cardelli (1993), realizing^?* by Xj. \Jkem fk-L- For EQ-FIX-SUB, we use the observation
that f = f : A'—*A implies /* = / * : A'-*A (by nontrivial equality reasoning),
and then use continuity.

Amadio and Cardelli actually exhibit a typed version of the usual Y combinator
satisfying T-Fix and EQ-FIX. Interestingly, EQ-FIX-SUB does not seem to be provable
for this term. Our^zx therefore constitutes a proper extension of their calculus.

E.6 Definition: The definitions of the lifting and lowering of a function / through a
type T (B.6) are extended as follows. To reduce clutter, we adopt the abbreviation
S[U,V] = [V/B][U/A]S.

lift
ti(B)S =

fix [M(B)S[X,B] -» n(B)S[Y,B]]

funig :n(B)S[X,B]^fi(B)S[Y,B])

(unfold : n(B)S [X, B] -» S [X, n(B)S [X, B]];
Ai S[X,n(B)S[X,B]] -> S[Y,ii(B)S[X,B]\);

p% S[Y,KB)S[X,B]] -> S[Y,n(B)S[Y,B]]);

(fold : S[Y,fi(B)S[Y,B]] -»[i(B)S[Y,B])

when POSA(S) and posg(S)

lower dB)s =

fix\M(B)S[Y,B]^n(B)S[X,B]]

funig : KB)S[Y,B] -» »(B)S[X,B])

(unfold : li(B)S[Y,B] - S[Y,n(B)S[Y,B]];

• S[Y,IJ{B)S[Y,B]] -» S[X,n(B)S[Y,B]]);

mw S[X,fi(B)S[Y,B]] - S[X,ii(B)S[X

(fold : S[X,n(B)S[X,B]] -* n(B)S[X,B])

when negA(S) and

(The coercions fold and unfold and the explicit typings of lift and lower are included
only for the convenience of the reader; in practice, they would be inferred by a
typechecker.)

E.7 Remark: To show that the extended definition of map still satisfies the laws in
Appendix B, we need some assumptions about the equational theory of the type
system with recursive types. In domain-theoretic models of recursive types (and, as
far as we know, in metric space models), the laws seem to hold because the solutions
to the recursive equations defining lift and lower are unique, since the recursion we
use defines the iterator of an initial algebra (the recursive types involved are always
positive).

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 633

References

Abadi, M. 1992 (Feb.). Doing without F-bounded quantification. Message to Types electronic
mail list.

Abadi, M. 1994. Baby Modula-3 and a Theory of Objects. Journal of Functional Programming,
4(2). An earlier version appeared as DEC Systems Research Center Research Report 95,
(February, 1993).

Abadi, M., & Cardelli, L. 1994b. A Theory of Primitive Objects: Second-order Systems. In:
European Symposium on Programming (ESOP), Edinburgh, Scotland.

Abadi, M., & Cardelli, L. 1994a. A Theory of Primitive Objects: Untyped and First-order
Systems. In: Theoretical Aspects of Computer Software (TACS), Sendai, Japan.

Amadio, R. M., & Cardelli, L. 1993. Subtyping Recursive Types. ACM Transactions on
Programming Languages and Systems, 15(4), 575-631. A preliminary version appeared in
POPL '91 (pp. 104-118), and as DEC Systems Research Center Research Report number
62, August 1990.

Barendregt, H. 1992. Lambda Calculi with Types. In: Abramsky, G., & Maibaum (eds),
Handbook of Logic in Computer Science, vol. II. Oxford University Press.

Barr, M., & Wells, C. 1990. Category Theory for Computing Science. Prentice Hall.

Bruce, K., & Mitchell, J. 1992 (Jan.). PER models of subtyping, recursive types and higher-
order polymorphism. In: Proceedings of the Nineteenth ACM Symposium on Principles of
Programming Languages.

Bruce, K. B. 1994. A Paradigmatic Object-Oriented Programming Language: Design, Static
Typing and Semantics. Journal of Functional Programming, 4(2). A preliminary version
appeared in POPL 1993 under the title "Safe Type Checking in a Statically Typed Object-
Oriented Programming Language".

Canning, P., Cook, W, Hill, W, Olthoff, W., & Mitchell, J. 1989 (Sept.). F-Bounded Quantifica-
tion for Object-Oriented Programming. Pages 273-280 of: Fourth International Conference
on Functional Programming Languages and Computer Architecture.

Cardelli, L. 1984. A semantics of multiple inheritance. Pages 51-67 of: Kahn, G., MacQueen,
D., & Plotkin, G. (eds), Semantics of Data Types. Lecture Notes in Computer Science, vol.
173. Springer-Verlag. Full version in Information and Computation 76:138-164, 1988.

Cardelli, L. 1988 (Jan.). Structural Subtyping and the Notion of Power Type. Pages 70-79
of: Proceedings of the 15th ACM Symposium on Principles of Programming Languages.

Cardelli, L. 1990 (Oct.). Notes about F% . Unpublished manuscript.

Cardelli, L. 1992 (Jan.). Extensible Records in a Pure Calculus of Subtyping. Research re-
port 81. DEC Systems Research Center. Also in Carl A. Gunter and John C. Mitchell,
editors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and Lan-
guage Design (MIT Press, 1994).

Cardelli, L., & Longo, G. 1991. A semantic basis for Quest. Journal of Functional Pro-
gramming, 1(4), 417—458. Preliminary version in ACM Conference on Lisp and Functional
Programming, June 1990. Also available as DEC SRC Research Report 55, Feb. 1990.

Cardelli, L., & Wegner, P. 1985. On Understanding Types, Data Abstraction, and Polymor-
phism. Computing Surveys, 17(4).

Cardelli, L., Martini, S., Mitchell, J. C , & Scedrov, A. 1994. An Extension of System F with
Subtyping. Information and Computation, 109(1-2), 4-56. A preliminary version appeared
in TACS '91 (Sendai, Japan, pp. 750-770).

Castagna, G., Ghelli, G., & Longo, G. 1994. A calculus for overloaded functions with
subtyping. Information and Computation. To appear; a preliminary version appeared in
LISP and Functional Programming, July 1992 (pp. 182-192), and as Rapport de Recherche
LIENS-92-4, Ecole Normale Superieure, Paris.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

634 M. Hofmann and B. Pierce

Compagnoni, A. B. 1994 (Jan.). Subtyping in F% is decidable. Tech. rept. ECS-LFCS-94-281.
LFCS, University of Edinburgh. To appear in the proceedings of Computer Science Logic,
September 1994, under the title "Decidability of Higher-Order Subtyping with Intersection
Types".

Compagnoni, A. B., & Pierce, B. C. 1993 (Aug.). Multiple Inheritance via Intersection Types.
Tech. rept. ECS-LFCS-93-275. LFCS, University of Edinburgh. Also available as Catholic
University Nijmegen computer science technical report 93-18.

Cook, W. 1991. Object-oriented programming versus abstract data types. Pages 151-178 of:
de Bakker, J. W., et a/.(eds), Foundations of Object-Oriented Languages. Lecture Notes in
Computer Science, vol. 489. Springer-Verlag.

Cook, W. 1989. A Denotational Semantics of Inheritance. Ph.D. thesis, Brown University.

Cook, W. R., Hill, W. L., & Canning, P. S. 1990 (Jan.). Inheritance is not Subtyping. Pages
125-135 of: Seventeenth Annual ACM Symposium on Principles of Programming Languages.
Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design (MIT Press, 1994).

Coquand, T., & Paulin-Mohring, C. 1989. Inductively denned types. In: LNCS 389. Springer-
Verlag.

Danforth, S., & Tomlinson, C. 1988. Type Theories and Object-Oriented Programming. ACM
Computing Surveys, 20(1), 29-72.

Fisher, K., & Mitchell, J. 1994. Notes on Typed Object-Oriented Programming. Pages 844-885
of: Proceedings of Theoretical Aspects of Computer Software, Sendai, Japan. Springer-Verlag.
LNCS 789.

Girard, J.-Y. 1972. Interpretation fonctionelle et elimination des coupures de I'arithmetique
d'ordre superieur. Ph.D. thesis, Universite Paris VII.

Goldberg, A., & Robson, D. 1983. Smalltalk-80: The Language and Its Implementation.
Reading, MA: Addison-Wesley.

Hofmann, M., & Pierce, B. 1992. An Abstract View of Objects and Subtyping (Preliminary
Report). Technical Report ECS-LFCS-92-226. University of Edinburgh, LFCS.

Hofmann, M., & Pierce, B. 1994 (Sept.). Positive Subtyping. Tech. rept. ECS-LFCS-94-303.
LFCS, University of Edinburgh.

Kamin, S. N., & Reddy, U. S. 1994. Two Semantic Models of Object-Oriented Languages.
Pages 464-495 of: Gunter, C. A., & Mitchell, J. C. (eds), Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design. The MIT Press.

Kock, A. 1970. Strong Functors and Monoidal Monads. Various Publications Series 11,
Aarhus Universitet.

Laufer, K., & Odersky, M. 1994. Polymorphic Type Inference and Abstract Data Types. ACM
Transactions on Programming Languages and Systems (TOPLAS). To appear; an earlier
version appeared in the Proceedings of the ACM SIGPLAN Workshop on ML and its
Applications, 1992, under the title "An Extension of ML with First-Class Abstract Types".

Mitchell, J., & Plotkin, G. 1988. Abstract Types Have Existential Type. ACM Transactions
on Programming Languages and Systems, 10(3).

Mitchell, J. C. 1990a (Jan.). Toward a Typed Foundation for Method Specialization and
Inheritance. Pages 109-124 of: Proceedings of the 17th ACM Symposium on Principles of
Programming Languages. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical
Aspects of Object-Oriented Programming: Types, Semantics, and Language Design (MIT
Press, 1994).

Mitchell, J. C. 1990b. A Type-Inference Approach to Reduction Properties and Semantics
of Polymorphic Expressions. Pages 195-212 of: Huet, G. (ed), Logical Foundations of

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

A unifying type-theoretic framework for objects 635

Functional Programming. University of Texas at Austin Year of Programming Series.
Addison-Wesley.

Moggi, E. 1989. Computational lambda-calculus and monads. Pages 14—23 of: Fourth Annual
Symposium on Logic in Computer Science (Asilomar, CA). IEEE Computer Society Press.

Pierce, B., Dietzen, S., & Michaylov, S. 1989 (Mar.). Programming in Higher-order Typed
Lambda-Calculi. Technical Report CMU-CS-89-111. Carnegie Mellon University.

Pierce, B. C , & Turner, D. N. 1993 (Apr.). Statically Typed Friendly Functions via Partially
Abstract Types. Technical Report ECS-LFCS-93-256. University of Edinburgh, LFCS. Also
available as INRIA-Rocquencourt Rapport de Recherche No. 1899.

Pierce, B. C , & Turner, D. N. 1994. Simple Type-Theoretic Foundations for Object-Oriented
Programming. Journal of Functional Programming, 4(2), 207-247. A preliminary version
appeared in Principles of Programming Languages, 1993, and as University of Edinburgh
technical report ECS-LFCS-92-225, under the title "Object-Oriented Programming Without
Recursive Types".

Reichel, H. 1995. An Approach to Object Semantics based on Terminal Co-algebras. Mathe-
matical Structures in Computer Science. To appear.

Reynolds, J. 1974. Towards a Theory of Type Structure. Pages 408-425 of: Proc. Colloque
sur la Programmation. New York: Springer-Verlag LNCS 19.

Reynolds, J. C. 1978. User Defined Types and Procedural Data Structures as Complementary
Approaches to Data Abstraction. Pages 309-317 of: Gries, D. (ed), Programming Methodol-
ogy, A Collection of Articles by IFIP WG2.3. New York: Springer-Verlag. Reprinted from
S. A. Schuman (ed.), New Advances in Algorithmic Languages 1975, Inst. de Recherche
d'Informatique et d'Automatique, Rocquencourt, 1975, pages 157-168. Also in Carl A.
Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design (MIT Press, 1994).

Smith, J., Nordstrom, B., & Petersson, K. 1990. Programming in Martin-Lof's Type Theory.
An Introduction. Oxford University Press.

Steffen, M., & Pierce, B. 1994 (June). Higher-Order Subtyping. In: IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET). An earlier version appeared
as University of Edinburgh technical report ECS-LFCS-94-280 and Universitat Erlangen-
Niirnberg Interner Bericht IMMD7-01/94, January 1994.

Stroustrup, B. 1986. The C++ Programming Language. Reading, Mass: Addison-Wesley.

Wand, M. 1987 (June). Complete type inference for simple objects. In: Proceedings of the
IEEE Symposium on Logic in Computer Science.

Wraith, G. C. 1989. A note on categorical datatypes. Lecture Notes in Computer Science,
no. 389. Springer-Verlag.

https://doi.org/10.1017/S0956796800001490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001490

