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Abstract

Invoking a recent characterization of Optimality for a convex programming problem with finite
dimensional range without any constraint qualification given by Borwein and Wolkowicz, we establish
duality theorems. These duality theorems subsume numerous earlier duality results with constraint
qualifications. We apply our duality theorems in the case of the objective function being the sum of a
positively homogeneous, lower-semi-continuous, convex function and a subdifferentiable convex
function. We also study specific problems of the above type in this setting.

1980 Mathematics subject classification (Amer. Math. Soc): 90 C 25, 90 C 30, 90 C 48.

1. Introduction

We consider the following pair of problems:

Problem (P). Minimize/(x) subject to

g , (x )^0 , i—\,...,m and x G C.

Problem (D). Maximize f{x) + y'g(x) subject to
y s* 0, x EC and

(1-1) 0 e 3/(x) + 2 U 3&(*) + N(x/C).
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Here / and g, are continuous convex function on a real locally convex space X.
C is a convex subset of X and 3 denotes subdifferential. y = (y{,...,ym) is a
vector in Rm and t denotes transpose. N(x/C) denotes the normal cone to C at JC
defined by

N(x/C) = {yeX*: (y, z-x)<0, for every z G C)

where X* is the topological dual space of X.
Recently, Schechter [19] established a duality theorem between the problems

(P) and (D) assuming Slater's Constraint qualification, namely, there exists an
x' G C such that gt(x') < 0, for / = 1,... ,m. His duality theorem [19,Theorem
2.2] is the following.

THEOREM 1.1. Suppose that x is optimal for problem (P). Then there exists y such
that (3c, y) is optimal for problem (D) and the two problems have the same extremal
values.

If / and g,, / = l , . . . ,m, are differentiate, X= R" and C = X, then (1.1)
becomes

= 0, y>0,

where V denotes gradient vector and Theorem 1.1 becomes the duality theorem
of Wolfe [21], where he has assumed the constraint qualification of Kuhn and
Tucker [10, page 483].

Recently, Ben-Israel, Ben-Tal and Zlobec [2,3] established necessary and
sufficient conditions for a vector x0 to be optimal for problem (P) without the
need for a constraint qualification when X is a finite dimensional space. Their
results are called 'BBZ' conditions. Using 'BBZ' conditions, Mond and Zlobec
established duality theorems in [13]. More recently, the above characterization for
optimality was established by Borwein and Wolkowicz [4] in a general locally
convex space without assuming any constraint qualification. In this paper we
utilize the results of Borwein and Wolkowicz [4] to establish duality results
without assuming any constraint qualification. Duality results in [18], including
those of Wolfe [21] and Schechter [19], are special cases of our duality results. In
Section 3, we also give a converse duality theorem. In Section 4, we apply our
duality results to the case where the objective function is the sum of a positively
homogeneous, lower-semi-continuous, convex function and a subdifferentiable
convex function. Finally, we reformulate many other duality results in the
literature so as to eliminate the need for any constraint qualification.
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2. Preliminaries

In this paper we consider the convex programming problem:

Problem (P,). Minimize p(x) subject to
g(x) E-S and x G C

where/?: X-> R U { + oo}, g : X - > 7 U { + <»}; A'and Yare real locally convex
spaces; Y is finite dimensional with an abstract maximal element + oo (see [14]);
C C X and S C Y are convex and S is also a cone; p is a convex functional and g
is 5-convex (on C), that is,

rg(x,) + (1 - t)g(x2) - g(txx + (1 - r)*2) G S,

for any xv x2 G C and 0 < / < 1.

The convex cone 5 induces a partial ordering' > ' on F given on

X, s* x 2 <=> x , — x 2 G S.

We make the additional routine assumption that the feasible set

A = g~\S) D C
is a non-empty subset of dom p, where dom p = {x G X: p(X) < oo}. Let A'*
and y* denote the continuous dual spaces of X and Y, respectively. We suppose
throughout that X* is endowed with the weak star topology a( X*, X) (see [15] for
details). We write (x*,x) for the value of the continuous linear functional
x* G X* at the point x G X.

Given any set K in X, the dual cone of K is the set in X*

K+ = {x* EX*: (x*,x)>0, for every x G A"}.

We denote the annihilator of a set A in X by A"x = A+ D (-K+ ) and the convex
cone generated by K by cone K.

A continuous linear operator T: X -» 7 is a subgradient for g at a if

r(x — a) < g(x) — g(a) for every JC G A'.

The set of all such subgradients is denoted by dg(a).
The S-convex operator g: X -» F is said to be regularly-sub-differentiable at a if

9(** ° # ) ( a ) =** ° 9g(a)
for every x* G S*. It is easy to see that, if g is continuous and differentiable at a,
that is dg(a) contains a unique element (for instance if g is Frechet differentiable),
then g is regularly subdifferentiable at a. For more details about regular subdif-
ferentiability, the reader can refer to [1,22].
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K is a face of a convex cone S if K is a convex cone, and J,, J2 £ S,
5, + J2 G Jf => sx, s2 G /if. We denote by Sf, the (unique) smallest face of S which
contains -g{A).

Let a G A. We define

(2.1) />^(a) = {rf: there exists a > 0 with g(a+7rf) G S / - 5 if 0 < / < a}.

If Y = Rm and S — R™ , then (2.1) corresponds to the intersection of the cones of
non-increase of the equality constraints, that is, the constraints which are identi-
cally zero on the feasible set [2,3].

3. Duality and converse duality theorems

The following theorem can be proved using the definition of regular subdif-
ferentiability and Corollaries 4.2 and 4.3 of Borwein and Wolkowicz [4] (see also
Zowe [22]).

THEOREM 3.1. Suppose that S+ +(Sf)±= (Sf)+ holds. Suppose also that f is a
convex functional and g is S-convex on X and that they are continuous at a. Further,
we assume that g is regularly subdifferentiable at a. Then a G A is optimal for (P,) //
and only if there exists s+ G S+ such that

0 G dp(a) + s+dg(a)-(Dg (a) DCone(C-a))+ and s+ g(a) = 0.

Based on the above characterization of optimality without any constraint
qualification, we can formulate the following dual problem (D,) to the primal
problem (P,).

Problem (D,). Maximizep(x) + s+ g(x) subject to
s+ £ S+ , x G Af and
0 G dp(x) + s+ dg(x) - (£>*(x) n Cone(C - *))+

where Af = g~\Sf - S) (1 C.

Note. A C Af. Further D^(x) n Cone(C — x) is the smallest cone containing
Af (see [4] for details).

Now, we establish the duality theorem between the problems (P,) and (D,)
without any constraint qualification.
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THEOREM 3.2 (duality). Let us assume the hypothesis of Theorem 3.1. If a0 E A is
optimal for problem (P,), then there exists s£ E S+ such that (a0, SQ ) is optimal for
problem (D() and furthermore the two problems have the same extremal values.

PROOF. Since a0 E A is optimal for (P,), Theorem 3.1 guarantees the existence
of feasible solutions to problem (D,).

Let (a, s+) be a feasible solution for problem (D,). Then a E Af, s+ E S+ and

OGdp(a) + s+ dg(a) - {Df{a) n Cone(C - a))+ .

This implies that there exist v* E dp(a) and TG dg(a) and w* E (D^(a) D
Cone(C — a))+ such that

(3.1) O = v*+s+T- w*.

Now, consider

PM-[p(a)+s+g(a)] =[p(a0) -p(a)] - s+g(a)

> (v*, a0 — a) — s+ g(a), since v* £ dp{a)

= (-s+T+w*,a0-a)-s+g(a), from (3.1)

= (-s+T,ao-a)+(w*,ao-a)-s+g(a)

> (s+ , g(a) - g{a0)) + (w*, a0 - a)-s+g{a),

since T £ 9g(a)

= s+g(a0) + (w*,ao-a)

>0 ,

sinces+ £ S+ ,g(a0) E -Sandw* £(£>*(a) (1 Cone(C - a))+ = 3/4/(^)(see
[16], Corollary 23.5.4), where IA/ is the indicator function of Af; that is, IAr(x) is 0
on A1 and + oo elsewhere. Thus,

(3-2) />(*<>) >/»(«) + ^+g(«)

for every feasible solution (a, 5+ ) of (D,).
Since a0 is an optimal solution of (P,), we have from Theorem 3.1, that there

exists SQ e S+ such that s£ g(a0) — 0 and

0 £ dp(a0) + 4 dg(aQ) - (D* (a0) n Cone(C - ao))
+ .

In other words, (a0, SQ ) is a feasible solution for (D,) and

(3.3) /Kao)=/>(ao)+4g(ao).
Hence, from (3.2) and (3.3), (a0, s£ ) is an optimal solution of (D,) and that the
extremal values of the two problems (P,) and (D,) are equal.
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REMARKS 3.3. Lemma 3.1(a) in [4] shows that when the convex cone S has
non-empty interior, then Sf = S exactly when Slater's constraint qualification
holds for (P,), that is, there exists x G C with g(x) G — int S, where int denotes
interior. Thus, we can draw the following conclusions.

(a) If Slater's constraint qualification is satisfied for (P,), then Sf = S and in
this case Df (a) = X and Z>* (a) n Cone(C - a) - Cone(C - a). Hence
(Df(a) n Cone(C - a))+ = (Cone(C - a))+ = N(a/C) (see Holmes [6], page
24).

When Y = Rm, S = R% , problem (D,) now reduces to problem (D) and
Theorem 3.2 yields Schechter's duality theorem [19], that is, Theorem 1.1 in the
introduction.

(b) In addition to the assumptions in (a), if we further assume that X = R",
C = X, then D*(a) n Cone(C - a))+ = {0}. Problem (D,) becomes

Maximizep{x) + s'g(x) subject to

s>0 and 0 G dp(x) + s'dg(x)

and Theorem 3.2 becomes Schechter's duality theorem 1 in [18].
(c) In addition to the conditions in (b) if p and g are differentiable, then

problem (D,) becomes

Maximizep(x) + s'g(x) subject to

s^O, Vp(x) + s+ Vg(x) = 0

and Wolfe's duality theorem 2 in [21] in recovered from Theorem 3.2.
Assuming Slater's constraint qualification a duality theorem in the spirit of

Schechter [18,19] has been proved in a locally convex space with operatorial
constraints in [8,9].

We shall now prove a converse duality theorem between the problems (P,) and
(D,) without any constraint qualification.

THEOREM 3.3 (converse duality). Let us assume the hypothesis of Theorem 3.1
and assume that the problem (P,) has a solution a. If(a0, SQ ) is an optimal solution
of the problem (D,), and if p is strictly convex at a0, then a0 — a. Hence a0 solves
the problem (P,). Furthermore, the extremal values of the two problems are the
same.
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PROOF. Supposing a0 ¥= a. Since a is a solution of (P,), it follows from Theorem
3.1 that there exists s+ G S+ such that

0 G dp(a) + s+ 3g(a) - (/>*(a) n Cone(C - a)) +

and

(3.4) s+g(a) = 0.

Let L(a, s+)= p(a) + s+ g(a) be the Lagrangian of (P,). Then

L(a, s+) = L(a0, SQ ) = max L(a,s+)

where N = {(a, s+): a G Af, s+ G S+ and 0 G 3/>(a) + j + 3g(a) - (Z)*(a) n
Cone(C - a))+ }. Note that (a, i + ) G AT.

Since (a0, s£ ) G N, we have 0 G 8^(a0) + 4 8g(a0) - (Df(a0) D Cone(C
- ao))+- Hence there exist w* G 3/>(a0), T G 3g(o0) and ̂ * £ (Df{a0) D
Cone(C — ao))+ such that

(3.5) 0 = u* + s 0
+ r - w * .

Now, consider

L(a, ^ ) - L(a0, s$ ) = p(a) + 4 g(a) - p(a0) - 4 g(o0)

> (u*,a- ao)+ (s£ ,g(a) - g(a0)),

since p is strictly convex at a0

s* («•, a - ao)+ ( 4 , T(a) - T(a0)),

since T G 9g(a0)

= (u*,a-ao)+ (s+T,d-a0)

= (w*,a-ao)^0, by (3.4).

since w* G (D*(aQ) D Cone(C - ao))+ (s«e the proof of Theorem 3.2). It fol-
lows that, L(a, s^ ) > L(a0, j+ ) = L(a, j + ) . That is,

(3.6) / > ( a ) + 4 g ( a ) > / > ( a ) + . s + g ( a ) .

Hence, (3.6) becomes by (3.4), s^ g(a) > 0, which is a contradiction to the fact
that SQ G S+ , g(a) G — S. Hence a = a0 and a0 solves problem (P,).

Furthermore, we have

p(a0) = p(a) = p{a) + s+ g(a) = L(a, s+ ) = L(a0, s+ )

Hence the extremal values of the two problems are equal.
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EXAMPLE. The following is an example of a minimization problem where the
Slater's constraint qualification is not satisfied. We will show that Wolfe's duality
theorem is not applicable to this example. However, the duality theorem of this
section can be applied.

Problem (P'). Minimizep(x) = -x subject to

* ( * ) < 0 ,

where g(x) = x2 if x > 0 and g(x) = 0 otherwise.

The feasible set F for this problem (P') is

F= {xER:g(x)<0} =(-oo,0].

Clearly x = 0 is the optimal solution of problem (P'). The functions p and g are
differentiable everywhere. The derivative of g at x is denoted by g'(x), where

=(2x if

1-1 ifi f x < 0 .

Corresponding to the primal problem (P'), the Wolfe's [21] dual problem (D') is

Problem (D'). Maximize -x + \x2 subject to

(3.7) xEF,\>0, -\+Xg'(x) = 0.

For any x 6 f , \ > 0 , the condition (3.7) is not satisfied, which implies feasible
solutions for problem (D') do not exist and hence there is no optimal solution for
problem (D'). Wolfe's duality theorem does not hold in the case.

It is clear that Sf = {0} and the condition that S+ +(Sf)±= (Sf)+ is also
satisfied.

By definition

Dg(x) = [d: 3a >0 with g(x + td) G Sf - S, 0 < t < a}

= {d: 3a>0wi thg(x + td) e(-oo,0], 0 < / < a}

= R if x < 0
= (-oo,0] ifx = 0

= empty set if x > 0.

As per the dual problem (D,) in this section, the dual problem (D") in this case
is:

Problem (D"). Maximize -x + \x2 subject to
x 6 F , A G 5 + = [0, oo) and
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It is clear that the set of feasible solutions for problem (D") i s { ( x , A ) : J C = O

and X> 0} and any feasible solution is an optimal solution of problem (D") .

Further the optimal value zero is same for the two problems (P') and (D") .

4. Applications

We shall now apply the theorems in Section 3 to the case where the objective
function is the sum of a positively homogeneous, lower-semi-continuous, convex
function and a continuous convex function. Specific problems of this type are
studied in detail in [11,12] assuming a constraint qualification such as Slater's
type. In the next section, we shall examine the forms which the dual problem
takes in these special cases without a constraint qualification.

We shall need the following definition and propositions whose proofs can be
found in [7,8].

DEFINITION 4.1. Let V be a non-empty subset of a locally convex space X*.
Then the support function of V, denoted by s(-/V) is defined by

s(u/V) = sup{(u*,u):u* G V).

Note. Let p b e a positively homogeneous, lower-semi-continuous, convex func-
tion, defined on a locally convex space X. Then

8/>(0) = {«* G A-*:/?(M)»(M*,M>forallu 6 1 ) ,

since p(0) = 0.

PROPOSITION 4.2. Let p be a positively homogeneous, lower-semi-continuous,
convex function defined on a locally convex space X. Then p is the support function
dp(0).

REMARK 4.3. If p is a positively homogeneous lower-semi-continuous, convex
function, then 9/»(0) is a non-empty, convex, subset of X* (see [7], page 3). In fact,
there is a one to one correspondence between convex subsets of X* and positively
homogeneous, lower-semi-continuous, convex functions on X.

PROPOSITION 4.4 Let p be a positively homogeneous, lower-semi-continuous
convex function defined on a locally convex space X and let u ¥= 0. Then

dp(u) = {u* G dp(0):p(u) = ( « * , « > } .
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Let the objective function p: X -> R be of the form p = px + p2, where pi is a
continuous convex function and p2 is a positively homogeneous, lower-semi-con-
tinuous, convex function.

The primal problem (P2) is

Problem (P2). Minimize/>,(x) + p2(x) subject to

g(x) G -S and x G C.

Let (D2) denote the following dual problem.

Problem (D2). Maximize/?,(*) + (**, x) + s+ g(x) subject to
s+ G S, x G y*/ x* G 9p2(0) and
0 G dpx(x) + x* + s*dg(x) - (D*(x) D Cone(C -

We shall now prove a duality theorem between the problems (P2) and (D2).

THEOREM 4.5. Let us assume the hypothesis of Theorem 3.1 If a0 E A is optimal
for (P2), then there exist x$ and SQ such that (a0, x*, SQ ) is optimal for (D2).

PROOF. Since a0 G A is optimal for (P2), by Theorem 3.1, there exists s+ G S+

such that s+ g(a0) = 0 and

0 G 9(/>, +/»2)(fl0) + *+ 3g(a0) - (^f(flo) n cone(C - ao))
+ .

But 3(/?! +/>2)(a0) = 9/7i(ao) + dPi(.ao) by the Moreau-Rockafellar Theorem
[16]. Also,

Therefore, by Proposition 4.4,

0 G 3/>,(a0) + {** G aftW:ft(ao) = <**. ao)}

+ s+dg(a0) - (Df (a0) n Cone(C - ao))+ .

Hence, there is x* G dp2(0) satisfyingp2(a0) = (x*,ao) such that

0 G dPl(a0) + x* + s+ dg(a0) - ( 0 * (a0) n Cone(C - ao))+ .

Thus, feasible solutions to problem (D2) exist.
As in the proof of Theorem 3.2, if (a, x*, s+) is any feasible solution for (D2),

then we can prove the following inequality by invoking the definition of support
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function, the convexity of the functions/», and g and using the Propositions 4.2
and 4.4,

(4.1) Pi(a0)+p2(a0)>pl(a)+(x*,a)+s+g(a)

for every feasible solution (a, x*, s+ ) of (D2). Now, since a0 is optimal for (P2),
there exists^ £ S+ , JC£ G dp2(0) satisfyingp2(a0)

 = (xo> a o) s u c n t n a t

0 e dpx(a0) + x*0 + ^ dg(a0) - (D* (a0) n Cone(C - ao))
 +

and such that s£ g(a0) = 0. Therefore

P\(ao) +P2(°o) =Pi(ao)+P2(ao) + *o g(a0)-
Hence, by (3.6), />,(a0) + (x%, ao)+ s£ g(a0) =^ , ( a 0 ) +/?2(a0) + s£ g(a0) >
/7,(a) + (x*, a)+ s+ g(a) for every feasible solution (a, x*, s+) of (D2), which
imphes that (a0, x j , 5^ ) is optimal for (D2). Further, it is clear that

Pi(flo) + Pi(ao) =Pi(oQ) + (x*, ao)+s£ g(a0),

sincep2(a0) = (x%, ao> and s£ g(a0) — 0. Hence, the extremal values of the two
problems are the same.

5. Special cases

We shall now apply the theory developed in Section 4 to special cases of the
problems that have been found in the literature.

(1) First we consider a programming problem whose objective function con-
tains a norm. Such types of problems are studied by Watson in [20].

Let X be a real normed linear space. Consider the problem:

Problem (P^). Maximize k{x) + \\x\\ subject to
g,(x)<0, i,...,m,xGC.

Here it: X -* R is a continuous convex functional, g,: X -» R, i = 1,... , m, are
subdifferentiable convex functional and C is a convex subset of X. Let g:
X - Rm be defined by g(x) = (g,(x),. . . ,gm(x)).

Now, let us formulate the dual problem:

Problem (D2). Maximize k(x) + \\x\\ + y'g(x) subject to
y G R"l , x G A1,

o G 3*(x) + a||x|| + iTy^giM - (D?(x) n
Cone(C - x))+.
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It is a well known fact that the norm as a function from X into R is a
continuous convex functional which is positively homogeneous. Therefore, the
norm function can be expressed as a support function of the weak star closed
convex set 8||0||, by Proposition 4.2. Furthermore, it is proved in ([7], page 46),
that

( Y* F X*- IIY*II = 1 ( r* V- \ = II v-tl \ if r =£ 0
all 11 __ 1 •" " ' \ ' ' " ">' '

{** G T : ||JC*||< 1} =fi'(0, 0> if Jc = 0,

where X* is the topological dual of X.
Thus, the subdifferential of the norm, in a normed linear space, at the origin

coincides with the closed unit ball of the dual space. Hence, by Proposition 4.2,
the norm is the support function of the unit ball of the dual space X*.

Hence, by the foregoing argument, the dual problem (D'2) becomes

Problem (D'2). Maximize k(x) + (x*, x) + y'g(x) subject to
y£R'Z,x<EAf,x*e B'(0,1) and
0 e dk(x) + x* + S^ , 9g,(*) - (D*(x) n
Cone{C - x))+.

If we assume Slater's constraint qualification, then (D*(x) n Cone(C — x))
= N(x\C) and Af = {0} (see Holmes [6]).

REMARK 5.1. If A: is a zero functional, then problem (Pj) becomes a problem in
approximation theory, that is, finding a vector of minimum norm from the convex
set K = {x £ X: g,(x) < 0, / = 1,... ,m} D C.

(2) Let us define the function h: R" -> R by h(x) - {x'Bx)x/2, where B is a
(symmetric) positive semi-definite n X n matrix. Then the following lemma is
proved in [5].

LEMMA 5.2. The function h is convex, and z e dh(a) if and only if z = w'B,
w'Bw < 1, and h(a) = w'Ba.

Now, consider the following dual pair.

Problem (P3'). Minimize k{x) + (x'Bx)i/2 subject to
g,(jc)<0, i = l,...,m, x G C.
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Problem (D3). Minimize k(x) + x'Bz + y'g(x) subject to
y G R1, x G Af, Bz G dh(O) and
0 G 3*(x) + 5z + 2r^,3g,(^) - (D*(x) n
Cone(C - x) ) + .

Here k and the g, are convex functions on R". Hence, they are continuous and
subdifferentiable everywhere. It is clear that (x'Bx)l/2 = s(x/dh(0)), where 3/i(0)
= {By:y'By<* 1}.

If we assume Slater's constraint qualification and C = X, then (P3') and (D3)
are the dual pair studied in the differentiable case in [11,18,19].

REMARK 5.3. If A = {0}, then the pair (P3) and (D3) becomes the duality pair
in Remark 3.3(b).
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