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A NOTE ON M/G/1 VACATION SYSTEMS
WITH SOJOURN TIME LIMITS

TSUYOSHI KATAYAMA,* Chubu Teletraffic Engineering Laboratory

Abstract

In this paper we deal with an M/G/1 vacation system with the sojourn time (wait plus
service) limit and two typical vacation rules, i.e. multiple and single vacation rules.
Using the level crossing approach, we derive recursive equations for the steady-state
distributions of the virtual waiting times in M/G/1 vacation systems with a general
vacation time and two vacation rules.
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1. Introduction

We consider an M/G/1 vacation system with the sojourn time limit (7"), in which all customers
without blocking at their arrival instants are guaranteed service completion as described below.
For the M/G/1 vacation system, the following integral equation for the probability density
function, w(x), of the virtual waiting time (W) was formulated in Katayama (2011) using the
level crossing approach (see, e.g. Brill (2008)):

AV (x) + AW (0){H (x) — H(T))}
w(x) = +/\/ {H(x —y) — H(T — y)}w(y)dy, T>x>0, (1)
0+
AV (x), x>T. (2)

Here A and A, are the arrival rates of ordinary and vacation customers, respectively. The
service time of a customer H and the vacation time of a vacation customer V are independent
and identically distributed random variables. Given a nonnegative-valued random variable F,
we denote its distribution function (DF) by F (), its probability density function (PDF) by f (),
its Laplace-Stieltjes transform by F*(s), and its finite first and mth moments of the DF by f
and f(’”), m = 2,3, ..., respectively. We define F(t) :=1—F(r)fort > 0, and p:=AE(H)
and p, ;= Ay E(V).

The solution of the above integral equation for w(x), however, has been given for only
exponential service time and constant service time distributions, that is, the M/M/1 and the
M/D/1 models. In the M/G/1 vacation system with sojourn time limit, customers are served
by a single server in order of arrival (first-in—first-out (FIFO) discipline). They cannot stay in
the system longer than an interval of length 7. We assume that the sojourn times of arriving
customers are known by a system manager at their arrival instants, and that they are refused
entry to the system if their sojourn time ® exceeds the interval T, i.e. ® > T. (The system
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manager may utilize a reneging rule before starting service for the blocked customers.) If the
queue becomes empty at the end of a service period, the server takes a vacation with vacation
time V (i.e. the so-called exhaustive service vacation).

We consider the following two typical vacation rules.

(1) If the system is empty upon the server’s return from a vacation, another vacation begins
immediately. If the system is notempty upon the server s return, the server starts servicing
again (multiple vacation (MV) rule).

(ii) If the system is empty upon the server’s return from a vacation, the server does not take
another vacation and waits for a new arrival. If the system is not empty upon the server's
return, the server starts servicing again, i.e. the server takes exactly one vacation (single
vacation (SV) rule).

2. Preliminaries

We recall the virtual workload process {W;} of the M/G/1 vacation system with the sojourn
time limit, which leads to (1) and (2), where W; represents the virtual waiting time (W) at time
t > 0 under the FIFO discipline; see Figures 1 and 2 of Katayama (2011), depicting typical
sample paths for the MV and SV rules, respectively. The virtual workload process {W;} is a
stochastic process with independent cycles defined as an interval between successive vacation
starting epochs, in which the expected length of a cycle is denoted by E(C).

Next we prepare the following two propositions on the SV rule for the analysis of W(0) in
the next section. Let us denote by / a nonbusy period immediately following a vacation, in
which W, = 0. Furthermore, let us denote by b(7T : n > 1) the probability that only blocked
customers, at least one customer, arrive during a vacation.

Proposition 1. The PDF of 1, i (x), for the SV rule and the first moment of I are given by
i(x) = AH(T)e * (T

and

E(I)

T AH(T)

Proof. Let i,(x)dx denote the probability that only n — 1, n = 1,2,3,..., blocked
customers arrive successively before the nth customer, i.e. the first nonblocked customer, arrives
at a small interval (x, x + dx). Then we obtain

in(x)dx = pp_1()AdxH(T)" "' H(T) forn > 1

and

()‘x)n e—Ax

pn(-x) = | k]
n:

where H (T') represents the probability that a customer is blocked at the arrival instant, because
W; = 0. Hence, ) oo | in(x) leads to i (x) and E(]).

Proposition 2. The probability b(T : n > 1) is expressed as

b(T:nzn:Z/ Pa(0)Gn(x, T)dV (), 3)
n=1 0
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where
A' n
pn(x) = A e,
n!
n _
H(T —x+y;)
Gute. T) =[] | =22y,

=17V X

1 X x x noo_

=—n/ / / [[A@ —x+y)dy. @)
x™ Jyi=0 Jy,= =Vu_1
y1 Y2=y1 Yn=Yn—1 ;_1

WithO < y| < -+ < Yp_1 <¥p <xand H(T —x +y;)=1forT —x +y; <0.

Proof. The function p,(x) represents the probability that n customers, who arrive at
0 <yi <y2 < -+ < Y1 < yn < x, arrive during a vacation, given V = x. Note
here that the arrival instants U;, i = 1,2, ..., n, are uniformly distributed in the interval (0, x]
under the condition that n customers arrive during the vacation time V = x. For the customer
that arrived at U; = y;, the probability that this is blocked, i.e. ® = W + H > T, is given by
H(T —x + y;), because W; (= W) equals x — y;. That is, the probability that n > 1 customers
arrive in the interval (0, x] and all of the n customers are blocked is given by p,(x)G, (x, T).
Hence, unconditioning of p, (x)G, (x, T)leadstob(T: n > 1). Inthecase where T < V = x,
it possibly happens that 7 — x 4+ y; < 0. Then we have to put H(T — x + y;) = 1.

3. Virtual waiting time analyses for MV and SV rules

From (1) and (2), we obtain the following results for a general service time distribution.

Theorem 1. For the M/G/I vacation systems (MV and SV rules) with limited sojourn time (T),
the PDF of the virtual waiting time, w(x), x > 0, and W(0) are given by

_Jrwox), x <T,
W) = {AU‘_/(x), x>T, )
@o(x) 1= go(x) + Y M (%),
n=1
0u () :=/ K Dgnady,  n=1,23 ...,
_O+ —_ —_
@o(x) := V(x) + AW (0){H (x) — H(T)}, (6)
K(x,y):=Hx—y)— H({T —y),
T %) -1
Ay 1= <W+(0)+/ wo(x)dx+/ \’/(x)dx) ,
0+ T
W(0) = A, W (0), @)
and
0 for the MV rule,
wt(0) := * . 8
(0) VW) +b(T:n>1) for the SV rule, ®)
AH(T)

where the probability b(T : n > 1) is given in (3).
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Proof. 1t follows from the observation of a sample path W; that W (0) = O for the MV rule,
and, for the SV rule,

1
v = m,
W(0) = goEW) +b(T:n> l)E(II);r {1—qo—b(T:n=>1)}x 0’ ©)
(&)
E(I) = ;, q0 :=V*(), b(T:n>1)= Z/oo Pn(X)Gp(x, T)dV (x),
AH(T) —Jo

using the property of the regenerative process { W;}; see, e.g. Chapter VI of Asmussen (2003).
We now comment on how to derive the numerator on the right-hand side of (9). The first term
corresponds to the case where no customers arrive during a vacation and after the vacation only
blocked customers arrive successively before a nonblocked customer arrives. The second term
corresponds to the case where only blocked customers, at least one customer, arrive during a
vacation and after the vacation only blocked customers arrive successively before a nonblocked
customer arrives. For the other case, the mean nonbusy period is 0, where 1 —go —b(T: n > 1)
in the last term represents the probability that nonblocked customers, at least one customer,
arrive during a vacation. Hence, these facts lead to (7) and (8). For the MV and SV rules, (1)

18 rewritten as
X

w(x) = Aygo(x) +)\f0 K(x, y)w(y)dy,
+

where ¢o(x) and K (x, y) are defined in (6). This integral equation is called a Volterra equation
of the second kind. Now we introduce the series { f,, (x)} satisfying the relation

o0
wx) =Y A" fu(x), T>x>0, (10)
n=0
which is also called a Neumann series; see Remark 1 below. Then, it follows from (1) that

SR = k) + 3 [ K@ A0y
n=0 n=0 0+

= hopo(x) + Y A" /O+ K (x, y) fuo1() dy. (11)

n=1

Comparing the left-hand side with the right-hand side of (11), we obtain the recursive equations

fn(x) 2/0 K(X, y)fn—l()’) dy’ n= 1’ 2’ 3’ ceey f()(x) = )‘v(pO(x)v (12)
+

that is,
@n(x) =/0 K, y)pn—1(y)dy, Ju(x) = Ay (x), n=1273,.... (13)
Jr

Hence, using (10) and (13), w(x), T > x > 0, can be expressed as in (5) together with (6),
where A, is yet unknown. For x > T, w(x) is given by (2), directly. The arrival rate A, of
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vacation customers should be determined from the normalization condition,

T 00

W(0)+/ w(x)dx—i—[ wx)dx =1,
0+

T

which concludes the proof.

Remark 1. It is known that the Volterra equation (1) with kernel K (x, y) < oo has a unique
solution w(x), given by (10), for every continuous function A,¢p(x) < oo and every complex
value of |[A| < oo, which is ensured by the DFs H(x) and V (x) and the arrival rate A in the
vacation systems analyzed in this section; see, e.g. Chapter VI of Roubine (1970). (The explicit
solution (10) for a general service time distribution would be useful to discuss computational
implications for w(x). However, the formula Zf:lzo A" fu (x) together with (12) has an inevitable
problem due to a truncated error given by Y oo 11 A" fu(x), i.e. the convergence speed to
compute { f,,(x), n = 1, 2, 3, ...}. Furthermore, a similar problem arises from computing (3)
together with (4) for the SV rule.)

Using Theorem 1 and the PASTA (Poisson arrivals see time averages) property, the following
performance measures for an arbitrary ordinary customer are obtained for the MV and SV rules.
Let p denote the blocking probability (or loss probability) that a customer cannot enter the
system upon arrival, i.e. its sojourn time ® > T.

Corollary 1. The blocking probability in the M/G/1 vacation system with limited sojourn time
T is given by

9]

T
p= AU<W+(0)I:I(T) +/ H(T — x)wo(x) dx +/ V(x) dx), (14)
0+ T

where Ay, WT(0), and wo(x) are given in (6) and (8) for both the MV and SV rules. The DF of
the actual waiting time for a nonblocked customer is given by

Ay

W (x | no blocking) = N <H(T)W+(0) + /x H(T — y)wo(y) dy), T>x>0,
0+

(15)
where L,, WT(0), and wo(x) are given in (6) and (8) for both the MV and SV rules. The
probability of no delay for a nonblocked customer is given by

0 for the MV rule,

W (O | no blocking) = { ) AV*(L) +b(T:n > 1 (16)
8 LA i(_’l_ ( ) nz D) for the SV rule,
- P

whereb(T : n > 1) and \y are givenin(3) and (6), respectively. The mthmoment,m = 1,2, ...,
of the actual waiting time is given by

A T
E(W™ | no blocking) = ﬁ x"H(T — x)wy(x) dx, a7
- 0+

where L, and wy(x) are given in (6) and (8) for both the MV and SV rules.
Proof. By definition,

T 00
p= l(AW(O)IEI(T) +)\f H(T — x)w(x) dx +A/ w(x)dx),
A 0+ T
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which leads to (14), and
1 X
W (x | no blocking) = 1—/ H(T — y)dW(y),
—PJo

which leads to (15), (16), and (17).

Remark 2. The functions W (x) and w(x) exist even for 1 < p + p, < o0, since the vacation
systems analyzed in this section are a loss and delay system with the sojourn time limit for
ordinary customers. (Such a result has been found for the dam model in Takacs (1967).)
The DF of the actual waiting time W (x | no blocking), T > x > 0, is not affected by the
reneging rule introduced in Section 1. Propositions 1 and 2, i.e. (9), should also be applied to
Theorems 2 and 4 of Katayama (2011) for the SV rule, i.e. Equation (9) therein. The stochastic
decomposition property exists in the vacation systems considered in the present paper; see, e.g.
Fuhrmann and Cooper (1985). Similar sojourn time limit queueing models without service
vacations have been studied in Gavish and Schweitzer (1977) for the M/M/1 model, in Hokstad
(1979) for the M/D/1 model, and in Perry and Asmussen (1995) for the M/G/1 model (Model
II) (note that Equations (2.8) and (2.11) of Perry and Asmussen (1995) contain typographical
errors and use different notation to that used in (13)).
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