VALUE GROUPS AND DISTRIBUTIVITY

H. H. BRUNGS AND J. GRÄTER

0. Let F be a skew field with a valuation (also called total) subring B, i.e. x in $F \backslash B$ implies x^{-1} in B. Such rings are useful not only in the investigation and construction of division algebras (see for example [5],[6],[12]) but also in geometry ([15]).

Associated with B is an invariant subring R of F and a value group G. We investigate the relationship between properties like the distributivity of R and properties like being lattice ordered of G.

In particular, we construct in Section 3 examples for B and F such that R is distributive but G is not lattice ordered and we need some results of algebraic number theory in the process. An example where R is not distributive and G is not lattice ordered is also provided. If B is commutative or invariant ([19]) then $R=B$ is itself a valuation ring and G is totally ordered.

1. Let B be a valuation subring of the skew field F and we define $W=\{k B \mid 0 \neq$ $k \in F\} \cup\{\infty\}$ with ∞ as its largest element and $a B \leq b B$ if and only if $a B \supseteq b B$. The set W is totally ordered and the mapping v from F onto W with $v(a)=a B$ if $a \neq 0$, $v(0)=\infty$, satisfies the following conditions:
(1) $v(x)=\infty$ if and only if $x=0$;
(2) $v(x+y) \geq \min \{v(x), v(y)\}$ for all x, y in F;
(3) $v(x) \leq v(y)$ implies $v(z x) \leq v(z y)$ for all x, y, z in F.

Conversely, given a skew field F, a totally ordered set W with largest element ∞ and a mapping v from F onto W satisfying (1), (2), (3) above-called a valuation on F-then $B_{v}=\{x \in F \mid v(x) \geq v(1)\}$ is a valuation subring of F.

Associated with such a valuation is the group G_{v} of order preserving bijections \tilde{x} of W_{v} defined by $\tilde{x}(w)=\tilde{x}(v(k))=v(x k)$ for x in $F^{*}=F \backslash\{0\}, w=v(k)$ in W, k in F.

The mappings \tilde{x} are well defined because of condition (3) and the operation in G_{v} is given by $\tilde{x} \circ \tilde{y}=\tilde{x y}$ for x, y in F^{*}.

The group

$$
G_{v}=\left\{\tilde{x} \mid x \text { in } F^{*}\right\}
$$

is called the value group of the valuation v and it is partially ordered by $\tilde{x} \leq \tilde{y}$ if and only if $\tilde{x}(w) \leq \tilde{y}(w)$ for all w in W. We say that G_{v} is lattice ordered if the infimum and the supremum exist for any two elements \tilde{x}, \tilde{y} in G_{v} in which case G_{v} is a distributive lattice.

[^0]If the valuation subring B of F is invariant under all inner automorphisms of F, then one can define on the set $\left\{k B \mid k\right.$ in $\left.F^{*}\right\}$ an operation $a B b B=a b B$ to obtain an ordered group Γ.

The valuation v, associated with B, onto $\Gamma \cup\{\infty\}$ satisfies conditions (1) and (2) above and

$$
v(x y)=v(x) v(y) \text { for } x, y \text { in } F .
$$

Conversely, to every mapping v from F with (1), (2) and (3^{\prime}) onto a set $\Gamma \cup\{\infty\}$ for an ordered group Γ there corresponds an invariant valuation subring B_{v} of F. In this case we have $\Gamma \cong G_{v}$ for an isomorphism φ of ordered groups given by $\varphi(v(x))=\tilde{x}$ for x in F^{*}.

These are the valuations considered by Schilling in [18].
If F is finite dimensional over its center K and v a valuation of F then G_{v} is lattice ordered. The group G_{v} is totally ordered in this case only if B is invariant, i.e. v is a Schilling valuation ([5],[11]).

On the other hand, it is in general not necessary for B_{v} to be invariant in order for G_{v} to be totally ordered. This condition is equivalent with the existence of an invariant valuation ring B of F with $B \subseteq B_{v} \subset F$ ([13]) and defines subinvariant valuations. The not necessarily invariant ring B_{v} is then a localization of the invariant valuation ring B.

Another interesting class of valuations is given by the locally invariant valuations which can be defined by properties of G_{v} ([9],[1]) and which are exactly the valuations for which the general approximation theorem holds.

As before, let B_{v} be a valuation subring of the skew field F. We define:

$$
R_{v}=\bigcap_{a \in F^{*}} a B_{v} a^{-1}
$$

and R_{v} is an invariant subring of F, i.e. $a R_{v} a^{-1}=R_{v}$ for all $a \neq 0$ in F.
We denote by $H\left(R_{v}\right)$ the set of all cyclical R_{v}-submodules $\neq(0)$ of F, i.e. $H\left(R_{v}\right)=$ $\left\{a R_{v} \mid a \in F^{*}\right\}$ and $H\left(R_{v}\right)$ is a group with $a R_{v} b R_{v}=a b R_{v}$ as operation.

The group $H\left(R_{v}\right)$ is partially ordered with $a R_{v} \leq b R_{v}$ if and only if $a R_{v} \supseteq b R_{v}$ and the mapping η from G_{v} to $H\left(R_{v}\right)$ defined by $\eta(\tilde{x})=x R_{v}$ is well defined and an order preserving group isomorphism; G_{v} is a lattice ordered group if and only if $H\left(R_{v}\right)$ is lattice ordered.
2. Let F be a skew field with valuation ring B_{v} and G_{v}, R_{v} and $H\left(R_{v}\right)$ as defined in Section 1.

The first result gives a condition for $H\left(R_{v}\right)$ to be lattice ordered.
THEOREM 2.1. $\quad H\left(R_{v}\right)$ is lattice ordered if and only if $a R_{v} \cap b R_{v} \in H\left(R_{v}\right)$ for a, b in F^{*}.

Proof. Let $H\left(R_{v}\right)$ be lattice ordered and $c R_{v}=\sup \left\{a R_{v}, b R_{v}\right\}$ be the supremum of $a R_{v}$ and $b R_{v}$.

It follows that $c R_{v} \subseteq a R_{v} \cap b R_{v}$ and for every d in $a R_{v} \cap b R_{v}$ we have $d R_{v} \geq a R_{v}$, $b R_{v}$, hence, $d R_{v} \subseteq c R_{v}$ and $c R_{v}=a R_{v} \cap b R_{v}$ follows.

Conversely, assume that for any a, b in F^{*} there exists c in F^{*} with $a R_{v} \cap b R_{v}=c R_{v}$. Then obviously $c R_{v}=\sup \left\{a R_{v}, b R_{v}\right\}$. In addition, there exists an element d in F^{*} with $a^{-1} R_{v} \cap b^{-1} R_{v}=d R_{v}$ which implies $d^{-1} R_{v}=\inf \left\{a R_{v}, b R_{v}\right\}$, since $a R_{v} \subseteq t R_{v}$ if and only if $t^{-1} R_{v} \subseteq a^{-1} R_{v}$ for a, t in F^{*}.

COROLLARY. If G_{v} is lattice ordered then F is the skew field of quotients of R_{v}.
Proof. For any k in F^{*} there exists an x in F^{*} with $k R_{v} \cap R_{v}=x R_{v}$ and x in R_{v}, $x=k a, a$ in R_{v}, follows.

It was mentioned in Section 1 that G_{v} is lattice ordered if F is finite dimensional over its center. This follows from the fact that R_{v} is a Bezout domain in this case, i.e. every finitely generated ideal of R_{v} is a principal ideal. We consider one other condition on R_{v}. We say R_{v} is a distributive ring if the lattice of ideals of R_{v} is distributive, i.e. $A \cap(B+C)=(A \cap B)+(A \cap C)$ for all ideals A, B, C of R_{v}.

Theorem 2.2. Let R_{v} be a distributive ring with F as skew field of fractions. Then the following statements are equivalent:
(i) R_{v} is a Bezout ring;
(ii) G_{v} is lattice ordered;
(iii) Forarbitrary elements \tilde{x}, \tilde{y} in G_{v} there exists \tilde{z} in G_{v} with $\tilde{z}(w)=\min \{\tilde{x}(w), \tilde{y}(w)\}$ for all w in W_{v}.

Proof. If (iii) holds then $\tilde{z}=\inf \{\tilde{x}, \tilde{y}\}$. Further, we have $\sup \{\tilde{x}, \tilde{y}\}=$ $\left(\inf \left\{\tilde{x}^{-1}, \tilde{y}^{-1}\right\}\right)^{-1}$, i.e. G_{v} is lattice ordered.

To prove that (ii) implies (i) choose $a, b \neq 0$ in R_{v}. It must be proved that $I=a R_{v}+b R_{v}$ is a principal ideal. We define $I^{-1}=\left\{x \in F \mid x I \subseteq R_{v}\right\}$ and $I^{-1}=\left\{x \in F \mid I x \subseteq R_{v}\right\}$ follows, since R_{v} is invariant.

We have $I^{-1}=a^{-1} R_{v} \cap b^{-1} R_{v}$ and (by [8], 2.3)

$$
\left(a^{-1} R_{v} \cap b^{-1} R_{v}\right)\left(a R_{v}+b R_{v}\right)=I^{-1} I=R_{v}
$$

Using Theorem 2.1 there exists an element c in F with $a^{-1} R_{v} \cap b^{-1} R_{v}=c R_{v}$ and $c R_{v}\left(a R_{v}+b R_{v}\right)=R_{v}, a R_{v}+b R_{v}=c^{-1} R_{v}$ follows.

Next, we assume (i) and for x, y in F^{*} there exists a z in F^{*} with $x R_{v}+y R_{v}=z R_{v}$, since F is the skew field of fractions of R_{v}. It must be shown that $\tilde{z}(w)=\min \{\tilde{x}(w), \tilde{y}(w)\}$ for all w in W_{v} which is equivalent with $z k B_{v}=x k B_{v}+y k B_{v}$ for all k in F, which in turn follows from the above equation and the invariance of R_{v}.
3. In this section we construct valuation rings in skew power series rings which have value groups that are not lattice ordered and the associated invariant ring is distributive in one case (Example 2) and not distributive in another (Example 1).

Let K be a skew field with invariant valuation ring B and let G be a group of automorphisms of K. Then G can be considered as the homomorphic image of a free group Γ under a homomorphism φ and Γ as a free group can be totally ordered.

The skew field $D=K((\Gamma, \varphi))$ of skew power series $d=\Sigma \gamma k_{\gamma}, \gamma \in \Gamma$, with well ordered support $\left\{\gamma \mid k_{\gamma} \neq 0\right\}, k_{\gamma} \in K$, exists where the multiplication is defined by $k \gamma=\gamma k^{\varphi(\gamma)}$ (see [16]). If we identify the elements γ of Γ with $\gamma 1$ in D then we have $\gamma^{-1} k \gamma=k^{\varphi(\gamma)}$ for k in K and γ in Γ.

The subring $B^{\prime}=\left\{\Sigma \gamma k_{\gamma} \in D \mid \gamma \geq e, k_{e} \in B\right\}$ is a valuation ring of D where e is the identity in Γ. We show that B^{\prime} is total by considering an element $d=\gamma_{0}\left(k_{\gamma_{0}}-\sum_{\gamma>e} \gamma k_{\gamma}\right)$ in D with $k_{\gamma_{0}} \neq 0$ and γ_{0} the least element in the support of d.

We have $d k_{\gamma_{0}}^{-1} \gamma_{0}^{-1}=1-\Sigma \gamma_{0} \gamma k_{\gamma} k_{\gamma_{0}}^{-1} \gamma_{0}^{-1}=1-m$ and $(1-m)^{-1}=\sum_{i=0}^{\infty} m^{i}$ follows and hence

$$
d^{-1}=\gamma_{0}^{-1}\left(k_{\gamma_{0}}^{-1}\right)^{\varphi\left(\gamma_{0}^{-1}\right)}\left(1+m+m^{2}+\ldots\right) .
$$

One concludes that either $\gamma_{0}>e$ or $\gamma_{0}=e$ and $k_{\gamma_{0}}$ in B in which case d is in B^{\prime} or $\gamma_{0}=e$ and $k_{\gamma_{0}}^{-1}$ in B or $\gamma_{0}^{-1}>e$ in which case d^{-1} is in B^{\prime}.

For σ in G we denote with B_{σ}^{\prime} the following subring of D :

$$
B_{\sigma}^{\prime}=\left\{k_{e}+\sum_{\gamma>e} \gamma k_{\gamma} \mid k_{e} \text { in } \sigma(B)\right\}
$$

and it follows that the set $\left\{B_{\sigma}^{\prime} \mid \sigma \in G\right\}$ is exactly the set of subrings of D conjugate to B^{\prime} in D.

To see this we write $d \neq 0$ in D as before in the form $d=(1-m) \gamma_{0} k_{\gamma_{0}}$ with $m \in$ $M=\left\{\sum_{\gamma>e} \gamma k_{\gamma} \in D\right\}$. Then

$$
\begin{aligned}
d B^{\prime} d^{-1} & =(1-m) \gamma_{0} k_{\gamma_{0}}(B+M) k_{\gamma_{0}}^{-1} \gamma_{0}^{-1}\left(\sum_{0}^{\infty} m^{i}\right) \\
& =(1-m)\left[\gamma_{0} B \gamma_{0}^{-1}+\gamma_{0} M \gamma_{0}^{-1}\right]\left(\sum_{0}^{\infty} m^{i}\right) \\
& \subseteq \gamma_{0} B \gamma_{0}^{-1}+M=\sigma^{-1}(B)+M
\end{aligned}
$$

if $\varphi\left(\gamma_{0}\right)=\sigma \in G$, where we also use the fact that B is invariant in K.
The same argument shows $d^{-1}\left(\sigma^{-1}(B)+M\right) d \subseteq B+M=B^{\prime}$ and $\sigma^{-1}(B)+M=d B^{\prime} d^{-1}$ follows.

If we write $R=\cap_{\sigma \in G} \sigma(B)$ and $R^{\prime}=\cap_{d \in D^{*}} d B^{\prime} d^{-1}$ we obtain

$$
R^{\prime}=\bigcap_{\sigma \in G} B_{\sigma}^{\prime}=\left\{k_{e}+\sum_{\gamma>e} \gamma k_{\gamma} \in D \mid k_{e} \in R\right\}=R+M
$$

THEOREM 3.1. The following conditions are equivalent:
(i) For any a, b in K^{*} there exists c in K^{*} with $a R \cap b R=c R$.
(ii) For any a, b in D^{*} there exists c in D^{*} with $a R^{\prime} \cap b R^{\prime}=c R^{\prime}$.

To prove that (i) implies (ii) we can assume that $a=1$, i.e. $a R^{\prime}=R^{\prime}$. We write $b=\gamma_{0}\left(k_{\gamma_{0}}+m\right)$ with m in $M, k_{\gamma_{0}} \neq 0$ in K. For $\gamma_{0}>e$ it follows that γ_{0} is in M and $b R^{\prime} \subseteq M \subseteq R^{\prime}$.

For $\gamma_{0}<e$ it follows that $\gamma_{0}^{-1}>e, \gamma_{0}^{-1} \in M$ and $R^{\prime}=a R^{\prime} \subseteq b R^{\prime}$. For $\gamma_{0}=e$ we have $b R^{\prime}=k_{e} R^{\prime}=k_{e} R+M$. Let d be in K^{*} with $R \cap k_{e} R=d R$ and it follows that $R^{\prime} \cap b R^{\prime}=(R+M) \cap\left(k_{e} R+M\right)=\left(R \cap k_{e} R\right)+M=d R+M=d R^{\prime}$.

To prove that (ii) implies (i) let a, b be in K^{*} and $a R^{\prime}=a R+M, b R^{\prime}=b R+M$ and $a R^{\prime} \cap b R^{\prime}=(a R \cap b R)+M=c R^{\prime}$ follows for some $c=k_{e}+m, m \in M, k_{e} \in K$.

It is enough to show that $k_{e} \neq 0$ since we have $a R \cap b R=k_{e} R$. This is trivial if $R=K$ and otherwise there exists $k \in K \backslash R$. Under the assumption $k_{e}=0$ we have $c \in M, c k R^{\prime} \subseteq M \subseteq a R^{\prime} \cap b R^{\prime}=c R^{\prime}$ and therefore the contradiction $k \in R^{\prime}, k \in R$.

The next two results are proved in similar fashion:
Theorem 3.2. The following conditions are equivalent:
(i) For any a, b in K^{*} there exists c in K^{*} with $a R+b R=c R$.
(ii) For any a, b in D^{*} there exists c in D^{*} with $a R^{\prime}+b R^{\prime}=c R^{\prime}$.

THEOREM 3.3. The following conditions are equivalent:
(i) $a R \cap(b R+c R)=(a R \cap b R)+(a R \cap c R)$ for any a, b, c in K.
(ii) $a R^{\prime} \cap\left(b R^{\prime}+c R^{\prime}\right)=\left(a R^{\prime} \cap b R^{\prime}\right)+\left(a R^{\prime} \cap c R^{\prime}\right)$ for any a, b, c in D.

These results show that the following properties: $H\left(R^{\prime}\right)$ is lattice ordered, R^{\prime} is a Bezout ring, R^{\prime} is distributive, follow from related properties of the R-module K.

In the following examples B is a valuation subring of a commutative field K that admits a group G of automorphisms such that $R=\cap \sigma(B), \sigma \in G$, has the desired properties.

Example 1. Let L be an algebraically closed field and $K=L(x)$, the function field in one indeterminate x over L. Let B be the valuation ring of K associated with the x-adic valuation on K.

We define for any ℓ in L the L-mapping φ_{ℓ} from K to K with $\varphi_{\ell}(x)=x-\ell$.
The mapping φ_{ℓ} is an automorphism of K and $\varphi_{\ell}(B)$ is the valuation ring of K associated with the $(x-\ell)$-adic valuation of K. Since L is algebraically closed, it follows that the set $\{(x-\ell) \mid \ell \in L\}$ is the set of all irreducible polynomials in $L[x]$ and we obtain:

$$
\bigcap_{\ell \in L} \varphi_{\ell}(B)=L[x]
$$

Finally, let φ_{∞} be the L-automorphism of K with $\varphi_{\infty}(x)=\frac{1}{x}$ and let G be the subgroup of the automorphism group of K generated by φ_{∞} and the elements $\varphi_{\ell}, \ell \in L$. Then:

$$
R=\bigcap_{\sigma \in G} \sigma(B)=L
$$

We have $1 R \cap x R=\{0\}$; the condition (i) in Theorem 3.1 is not satisfied. It follows from Theorem 2.1 that the value group associated with B^{\prime} is not lattice ordered where B^{\prime} is the valuation ring of D constructed as above from K, B and G. From Theorem 3.3 it follows that R^{\prime}, the intersection of all valuation rings in D conjugate to B^{\prime}, is not distributive, since
K is a vectorspace over $R(=L)$ of dimension greater than one and hence the distributive law does not hold for the lattice of L-subspaces of K.

In Section 4 we will investigate Gauss-extensions of valuations in skew polynomial rings. As for invariant or subinvariant valuation rings or for valuation rings in division algebras finite dimensional over their centers the value group in all these cases is lattice ordered and R^{\prime}, the intersection of all conjugates of the valuation ring B^{\prime}, is distributive. In Example 1, neither is the value group of the valuation ring B^{\prime} lattice ordered nor is R^{\prime} distributive.

EXAMPLE 2. We construct a valuation ring B in a field K with a group G of automorphisms such that
(i) $R=\cap \sigma(B), \sigma \in G$, is distributive with K as its field of quotients and
(ii) R is not a Bezout domain.

It then follows from the above construction and Theorems 3.2 and 3.3 that R^{\prime} is distributive, but not a Bezout ring. Theorem 2.2 then shows that the value group associated with the valuation ring B^{\prime} is not lattice ordered even though R^{\prime} is distributive.

The construction of B and K with (i) and (ii) will be based on some preliminary results from algebraic number theory.

Lemma 3.4. Let S be a Dedekind domain with quotient field F and F^{\prime} a separable field extension of F with S^{\prime} the integral closure of S in F^{\prime}. Let I be an ideal of S with $I S^{\prime}=a S^{\prime}$ for a in S^{\prime}. Then $I S^{\prime \prime}=a S^{\prime \prime}$ for the integral closure $S^{\prime \prime}$ of S in $F^{\prime \prime}=F(a)$.

We prove first that $I S^{\prime} \cap S^{\prime \prime}=I S^{\prime \prime}$ where $I S^{\prime \prime} \subseteq I S^{\prime} \cap S^{\prime \prime}$ is trivial. To prove the opposite inclusion it is enough to consider only the case $\left[F^{\prime}: F^{\prime \prime}\right]<\infty$, since every element of $I S^{\prime}$ is contained in a finite extension of $F^{\prime \prime}$. The result follows immediately from [17] (1.A, p. 161) for the Dedekind rings $S^{\prime}, S^{\prime \prime}$ and the ideal $I S^{\prime \prime}$ of $S^{\prime \prime}$.

Now, we show $a S^{\prime \prime}=a S^{\prime} \cap S^{\prime \prime}$ where $a S^{\prime \prime} \subseteq a S^{\prime} \cap S^{\prime \prime}$ holds trivially. Assume $a s=$ $t \in S^{\prime \prime}, s \in S^{\prime}$ and $s=a^{-1} t \in F^{\prime \prime} \cap S^{\prime}=S^{\prime \prime}$ follows. We conclude $I S^{\prime \prime}=I S^{\prime} \cap S^{\prime \prime}=$ $a S^{\prime} \cap S^{\prime \prime}=a S^{\prime \prime}$.

Lemma 3.5. Let S be a Dedekind domain with quotient field F and $I \neq(0)$ an ideal of S with order n as element of the class group of S. Let F ' be a separable field extension of F and S^{\prime} be the integral closure of S in F^{\prime}. If $I S^{\prime}=a S^{\prime}$ for some a in S^{\prime}, then n divides [$F(a): F]$.

For a proof let $S^{\prime \prime}$ be the integral closure of S in $F^{\prime \prime}=F(a)$. By Lemma 3.4 it follows that $I S^{\prime \prime}=a S^{\prime \prime}$ and $N_{F^{\prime \prime} / F}\left(I S^{\prime \prime}\right)=I^{\left[F^{\prime \prime}: F\right]}=N_{F^{\prime \prime} / F}(a) \cdot S$ is a principal ideal in S and the statement of the lemma follows.

We now turn to the construction of the example. Let L be an algebraically closed field of characteristic $\neq 2,3$ and let $L[t]$ be the polynomial ring over L in one indeterminate with $L(t)$ as field of quotients. Then $L[t]$ is a Dedekind ring. We define $F=L(t)\left(\sqrt{t^{3}+1}\right)$ and let S be the integral closure of $L[t]$ in F.

It follows that $S=L\left[t, \sqrt{t^{3}+1}\right]$, since $t^{3}+1$ is square free (char $L \neq 3$) in $L[t]$ and S is a Dedekind domain.

Let $M=t L[t]$ and the minimal polynomial $x^{2}-t^{3}-1$ of $\sqrt{t^{3}+1}$ over $L(t)$ splits into two distinct (char $L \neq 2$) irreducible factors modulo M. Hence, $M S=M_{1} M_{2}$ for two distinct maximal ideals M_{i} of S.

We claim that M_{1} is not a principal ideal in S. Otherwise, $M_{1}=a S$ and $N_{F / L t)}(a S)=$ $N_{F / L(t)}(a) L[t]=N_{F / L(t)}\left(M_{1}\right)=M=t L[t]$. Hence, there exists $\ell \in L^{*}$ with $\ell t=$ $N_{F / L(t)}(a)$. If $a=f(t)+g(t) \sqrt{t^{3}+1}, f(t), g(t) \in L[t]$, then $f(t) \neq 0 \neq g(t)$ and $N_{F / L(t)}(a)=$ $f^{2}(t)-g^{2}(t)\left(t^{3}+1\right)$.

The degree of $\left(t^{3}+1\right) g^{2}(t)$ is odd and the degree of $f^{2}(t)$ is even and hence $1=$ $\operatorname{deg}(\ell t)=\operatorname{deg}\left(f^{2}(t)-\left(t^{3}+1\right) g^{2}(t)\right)=\max \left\{\operatorname{deg} f^{2}(t), \operatorname{deg}\left(t^{3}+1\right) g^{2}(t)\right\} \geq 3$ leads to a contradiction.

Next, it will be shown that the order of M_{1} in the class group of S is three. Since we know that M_{1} is not principal, it is sufficient to prove that M_{1}^{3} is a principal ideal.

Let $\alpha=1+\sqrt{t^{3}+1}$ and $\alpha^{\prime}=1-\sqrt{t^{3}+1}$. It follows that neither α nor α^{\prime} is contained in any maximal ideal P of S with $P \cap L[t]=(t-\ell) L[t]$ for $\ell \neq 0$.

To see this assume α in P or α^{\prime} in P, hence $\alpha \alpha^{\prime}=1-t^{3}-1=-t^{3}$ is in $P \cap L[t]=$ $(t-\ell) L[t]$ - a contradiction. Let σ be the $L(t)$-automorphism of F different from the identity. Then $\sigma\left(M_{1}\right)=M_{2}$ and $\sigma\left(\alpha^{\prime}\right)=\alpha$.

We have $\alpha \alpha^{\prime}=-t^{3} \in M \subseteq M_{1}$ and we can assume $\alpha \in M_{1}$. Since $\alpha+\alpha^{\prime}=2$, it follows that $\alpha^{\prime} \notin M_{1}$ and $\alpha=\sigma\left(\alpha^{\prime}\right) \notin \sigma\left(M_{1}\right)=M_{2}$. We conclude that M_{1} is the only maximal ideal of S containing αS and therefore $\alpha S=M_{1}^{k}$.

However,

$$
\begin{aligned}
M^{3} & =t^{3} L[t]=N_{F / L(t)}(\alpha) L[t] \\
& =N_{F / L(t)}(\alpha S)=N_{F / L(t)}\left(M_{1}^{k}\right) \\
& =\left(N_{F / L(t)}\left(M_{1}\right)\right)^{k}=M^{k},
\end{aligned}
$$

which shows that $k=3$. We consider $F^{\prime}=L(t)\left(\left\{\sqrt{(t-\ell)^{3}+1} \mid \ell \in L\right\}\right)$. This is an infinite Galois extension of $L(t)$ and we denote by Σ the Galois group of F^{\prime} over $L(t)$.

If V is the valuation ring of $L(t)$ associated with the t-adic valuation and B an extension of V in F^{\prime}, then

$$
R_{B}=\bigcap \sigma(B), \quad \sigma \in \Sigma
$$

is the integral closure of V in F^{\prime}.
For every ℓ in L one can define the L-automorphism φ_{t} of $L(t)$ with $\varphi_{\ell}(t)=t-\ell$. Since L is algebraicall' closed, we have $L[t]=\bigcap_{\ell \in L} \varphi_{\ell}(V)$. Every φ_{ℓ} can be extended to an automorphism of F^{\prime} which we denote again by φ_{ℓ} and it follows that

$$
\bigcap \varphi_{\ell}(\sigma(B))=\bigcap \sigma \varphi_{\ell}(B), \quad \sigma \in \Sigma
$$

is the integral closure of $\varphi_{\ell}(V)$ the valuation ring of $L(t)$ associated with the $(t-\ell)$-adic valuation.

We obtain: $S^{\prime}=\cap_{\ell \in L} \cap_{\sigma \in \Sigma} \varphi_{\ell}(\sigma(B))$ is the integral closure of $L[t]$ in F^{\prime}.

Let G be the subgroup of the automorphism group of F generated by Σ and $\left\{\varphi_{\ell} \mid\right.$ $\ell \in L\}$. It follows that Σ is a normal subgroup of G and that

$$
S^{\prime}=\bigcap_{\gamma \in G} \gamma(B)
$$

Every element γ in G can be written as $\gamma=\sigma \varphi_{\ell}=\varphi_{\ell} \sigma^{\prime}$ for some $\ell \in L$ and some σ, $\sigma^{\prime} \in \Sigma$.

Since F^{\prime} is algebraic over $L(t)$ and $L[t]$ is distributive, it follows that S^{\prime} is distributive (i.e. S^{\prime} is a Prüfer domain).

It remains to show that S^{\prime} is not a Bezout domain. Let M_{1} be the maximal ideal in $S=L\left[t, \sqrt{t^{3}+1}\right]$ defined above. The ideal M_{1} is finitely generated, since S is a Dedekind domain, and hence $M_{1} S^{\prime}$ is finitely generated in S^{\prime}. The assumption $M_{1} S^{\prime}=a S^{\prime}$ for some a in S^{\prime} implies that 3 divides $[F(a): F]$ by Lemma 3.5 and the result proved above says that 3 is the order of M_{1} in the class group of S. However, $[F[a]: F]$ is a power of 2 by construction. The contradiction shows that S^{\prime} is not a Bezout domain and the valuation ring B of the field $F^{\prime}=K$ with $R=S^{\prime}$ satisfy the required conditions.
4. In this section we consider the extension of valuations on a skew field K to an Ore extension of K. Let K be a skew field with an automorphism σ. The skew polynomial ring $K[x, \sigma]$ with $x a=\sigma(a) x$ defining the multiplication is a right and left Ore domain with a skew field $F=K(x, \sigma)$ of quotients. If v is a valuation of K with valuation ring B_{v} which satisfies $\sigma\left(B_{v}\right)=B_{v}$ then v can be extended to a valuation u from $K(x, \sigma)$ to W_{v} by defining $u\left(\sum_{i=1}^{n} a_{i} x^{i}\right)=\min \left\{v\left(a_{i}\right) \mid i=1, \ldots, n\right\}$, (see: [4],[14]). This extension u of v will be called Gauss-extension of v. The elements in $K(x, \sigma)$ are of the form $k t(x) s^{-1}(x)$ for some k in K and $t(x), s(x)$ in $K[x, \sigma]$ which are units in B_{u}. The set of the valuation rings in $K(x, \sigma)$ conjugated to B_{u} is therefore $\left\{k B_{u} k^{-1} \mid k \in K^{*}\right\}$ and $k B_{u} k^{-1}$ is the valuation ring associated with the valuation u_{k} from $K(x, \sigma)$ to W_{v} defined by $u_{k}(y)=u\left(k^{-1} y k\right)$.

In particular,

$$
\begin{aligned}
u_{k}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) & =u\left(k^{-1} a_{0} k+k^{-1} a_{1} \sigma(k) x+\cdots+k^{-1} a_{n} \sigma^{n}(k) x^{n}\right) \\
& =\min \left\{v\left(k^{-1} a_{0} k\right), v\left(k^{-1} a_{1} \sigma(k)\right), \ldots, v\left(k^{-1} a_{n} \sigma^{n}(k)\right)\right\} .
\end{aligned}
$$

The next results establish a relationship between properties of $R_{v}=\bigcap_{k \in K^{*}} k B_{v} k^{-1}$ and properties of the ring $R_{u}=\cap_{s \in F^{*}} s B_{u} s^{-1}=\cap_{k \in K^{*}} k B_{u} k^{-1}$.

THEOREM 4.1. Let v be a valuation of the skew field K, σ an automorphism of K with $\sigma\left(B_{v}\right)=B_{v}$ and u the Gauss extension of v to $F=K(x, \sigma)$. Then R_{u} is a distributive ring if K is the skew field of quotients of R_{v} and R_{v} is distributive.

Proof. It must be shown that $A \cap(B+C) \subseteq(A \cap B)+(A \cap C)$ for any ideals A, B, C in R_{u}-the opposite inclusion holds trivially.

The following proof is similar to the proof of Theorem 1 in [10].

Let a^{\prime} be an element in $A \cap(B+C)$, hence $a^{\prime}=b^{\prime}+c^{\prime}, b^{\prime} \in B, c^{\prime} \in C$. There exist $a, b, c, d \in K[x, \sigma]$ with $d \neq 0$ and

$$
a^{\prime}=d^{-1} a, b^{\prime}=d^{-1} b, c^{\prime}=d^{-1} c \text { and } a=\sum_{i=0}^{n} a_{i} x^{i}, b=\sum_{i=0}^{n} b_{i} x^{i}, c=\sum_{i=0}^{n} c_{i} x^{i}
$$

and

$$
a_{i}=b_{i}+c_{i}, a_{i} \in a_{i} R_{v} \cap\left(b_{i} R_{v}+c_{i} R_{v}\right)=\left(a_{i} R_{v} \cap b_{i} R_{v}\right)+\left(a_{i} R_{v} \cap c_{i} R_{v}\right)
$$

follows for $i=0, \ldots, n$. Hence, elements r_{i}, s_{i} exist in R_{v} with

$$
a_{i}=b_{i} r_{i}+c_{i} s_{i} \text { and } b_{i} r_{i}, c_{i} s_{i} \in a_{i} R_{v}
$$

Define the element

$$
h=b_{0}\left(1-r_{0}\right)+b_{1}\left(1-r_{1}\right) x+\cdots+b_{n}\left(1-r_{n}\right) x^{n}
$$

and since $a=(b-h)+(h+c)$ it is sufficient to show that $b-h \in a R_{u} \cap b R_{u}$ and $h+c \in$ $a R_{u} \cap c R_{u}$. This in turn follows if one can prove that $u_{k}(b-h) \geq u_{k}(a), u_{k}(b-h) \geq u_{k}(b)$ and also $u_{k}(h+c) \geq u_{k}(a), u_{k}(h+c) \geq u_{k}(c)$ for all $k \in K^{*}$ holds. We will show the first inequality.

$$
\begin{aligned}
u_{k}(b-h) & =\min \left\{v\left(k^{-1} b_{0} r_{0} k\right), v\left(k^{-1} b_{1} r_{1} \sigma(k)\right), \ldots, v\left(k^{-1} b_{n} r_{n} \sigma^{n}(k)\right)\right\} \\
u_{k}(a) & =\min \left\{v\left(k^{-1} a_{0} k\right), v\left(k^{-1} a_{1} \sigma(k)\right), \ldots, v\left(k^{-1} a_{n} \sigma^{n}(k)\right)\right\} .
\end{aligned}
$$

We have: $b_{i} r_{i} \in a_{i} R_{v}$, hence, $k^{-1} b_{i} r_{i} \sigma^{i}(k) \in k^{-1} a_{i} R_{v} \sigma^{i}(k)=k^{-1} a_{i} \sigma^{i}(k) R_{v}$ and $v\left(k^{-1} b_{i} r_{i} \sigma^{i}(k)\right) \geq v\left(k^{-1} a_{i} \sigma^{i}(k)\right)$.

THEOREM 4.2. Let v be a valuation of the skew field K, σ an automorphism of K with $\sigma\left(B_{v}\right)=B_{v}$ and u the Gauss-extension of v to $K(x, \sigma)$. Assume that K is the skew field of quotients of R_{v} and that R_{v} is a Bezout domain. Then:
(i) R_{u} is a Bezout domain with $F=K(x, \sigma)$ as its field of quotients.
(ii) G_{u} is lattice ordered.

Proof. To show (ii) let \tilde{a}, \tilde{b} be elements in G_{u} and there exist c, d, e in $K[x, \sigma]$ with $0 \neq e$ and $a=e^{-1} c, b=e^{-1} d$. As we observed earlier, it is enough to show that $\inf \{\tilde{c}, \tilde{d}\}$ exists in G_{u}.

Let $c=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ and $d=d_{0}+d_{1} x+\cdots+d_{n} x^{n}$. Since R_{v} is a Bezout domain, there exists for every $i=0, \ldots, n$ an element f_{i} in K with $c_{i} R_{v}+d_{i} R_{v}=f_{i} R_{v}$ and for all k in K we obtain

$$
\begin{gathered}
c_{i} \sigma^{i}(k) R_{v}+d_{i} \sigma^{i}(k) R_{v}=f_{i} \sigma^{i}(k) R_{v} \text { and } \\
c_{i} \sigma^{i}(k) B_{v}+d_{i} \sigma^{i}(k) B_{v}=f_{i} \sigma^{i}(k) B_{v} \text { which implies } \\
v\left(f_{i} \sigma^{i}(k)\right)=\inf \left\{v\left(c_{i} \sigma^{i}(k)\right), v\left(d_{i} \sigma^{i}(k)\right)\right\} .
\end{gathered}
$$

It remains to show that $\inf \{\tilde{c}, \tilde{d}\}=\tilde{f}$ for $f=f_{0}+f_{1} x+\cdots+f_{n} x^{n}$. For all k in K we have:

$$
\begin{aligned}
\tilde{f}(v(k)) & =\tilde{f}(u(k))=u(f k)=u\left(\sum_{i=1}^{n} f_{i} \sigma^{i}(k) x^{i}\right) \\
& =\inf \left\{v\left(f_{0} k\right), \ldots, v\left(f_{n} \sigma^{n}(k)\right)\right\} \\
& =\inf \left\{\inf \left\{v\left(c_{0} k\right), v\left(d_{0} k\right)\right\}, \ldots, \inf \left\{v\left(c_{n} \sigma^{n}(k)\right), v\left(d_{n} \sigma^{n}(k)\right)\right\}\right\} \\
& =\inf \left\{\inf \left\{v\left(c_{0} k\right), \ldots, v\left(c_{n} \sigma^{n}(k)\right)\right\}, \inf \left\{v\left(d_{0} k\right), \ldots, v\left(d_{n} \sigma^{n}(k)\right)\right\}\right\} \\
& =\inf \{u(c k), u(d k)\} \\
& =\inf \{\tilde{c}(v(k)), \tilde{d}(u(k))\},
\end{aligned}
$$

and the equation $\tilde{f}=\inf \{\tilde{c}, \tilde{d}\}$ follows.
To prove (i) one observes that by (ii) and the Corollary to Theorem 2.1, it follows that $K(x, \sigma)$ is the skew field of quotients of R_{u}. Theorem 4.1 shows that R_{u} is distributive and Theorem 2.2 can be applied to R_{u} and (i) follows from (ii).
5. Let B be a valuation ring of the skew field D, G the value group and $R=$ $\cap_{d \in D^{*}} d B d^{-1}$ the intersection of all subrings in D conjugate to B. We were not able to answer the following two questions:
A. Is D the skew field of quotients of R ?
B. Does there exist an example for B and D such that R with D as its skew field of quotients is not distributive, however, G is lattice ordered?
If one would want to construct such an example using the methods in Section 3, then the following question arises: does there exist a valuation ring B_{0} of a commutative field K and a subgroup H of the automorphism group of K such that $R_{0}=\cap \sigma\left(B_{0}\right), \sigma \in H$, does not satisfy the distributivity condition in Theorem 3.3 for all elements a, b, c in K, but for $a, b \in K^{*}$ there exists $c \in K^{*}$ with $a R_{0} \cap b R_{0}=c R_{0}$?

References

1. Chr. Bessenrodt and G. Törner, Locally archimedean right-ordered groups and locally invariant valuation rings, J. Algebra 105(1987), 328-340.
2. G. Birkhoff, Lattice theory. AMS Colloquium Publications, 25, Providence, R.I., 1967.
3. H. H. Brungs, Bezout domains and rings with a distributive lattice of right ideals, Can. J. Math. 38(1986), 286-303.
4. H. H. Brungs and G. Törner, Extensions of chain rings, Math. Z. 185(1984), 93-104.
5. H. H. Brungs and J. Gräter, Valuation rings in finite-dimensional division algebras, J. Algebra 120(1989), 90-99.
6. P. M. Cohn and M. Mahdavi-Hezavehi, Extensions of valuations on skew fields, in Ring Theory Antwerp 1980, ed. F. Van Oystaeyen, L.N.M. 825, Springer-Verlag, Berlin, 1980, 28-41.
7. O. Endler, Valuation theory. Springer-Verlag, Berlin-New York, 1972.
8. J. Gräter, Zur Theorie nicht kommutativer Prüferringe, Arch. Math. 41(1983), 30-36.
9. Lokalinvariante Bewertungen, Math. Z. 192(1986), 183-194.
10. \longrightarrow On noncommutative Prüfer rings, Arch. Math. 46(1986), 402-407.
11. Valuations on finite-dimensional division algebras and their value groups, Arch. Math. 51(1988), 128-140.
12. B. Jacob and A. R. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc. 293(1986), 693-721.
13. K. Mathiak, Bewertungen nicht kommutativer Körper, J. Algebra 48(1977), 217-235.
14. \qquad Zur Bewertungstheorie nicht kommutativer Körper, J. Algebra 73(1981), 586-600.
15. \qquad Valuations of skew fields and projective Hjelmslev spaces. L.N.M. 1175, Springer-Verlag, BerlinNew York, 1986.
16. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66(1949), 202-252.
17. P. Ribenboim, Algebraic numbers. John Wiley and Sons, 1972.
18. O. F. Schilling, Noncommutative valuations, Bull. Amer. Math. Soc. 51(1945), 297-304.
19. \qquad The theory of valuations. Math. Surveys, No. 4, Amer. Math. Soc. Providence, R.I., 1950.

Department of Mathematics
University of Alberta
Edmonton, Alberta T6G 2Gl

Institut für Analysis
Abt. für Topologie u. Grundlagen der Analysis
Technische Universität, Pockelsstrasse 14
D-3300 Braunschweig, Germany

[^0]: The first author's work was supported in part by NSERC Canada.
 Received by the editors April 9, 1990; revised May 2, 1991.
 AMS subject classification: 16A14, 16A10, 0615, 12F10.
 (C) Canadian Mathematical Society 1991.

